From 3f00f0627d833683d7828e428c69e60f2374ac62 Mon Sep 17 00:00:00 2001 From: Nathanael Bosch Date: Tue, 6 Feb 2024 18:57:06 +0100 Subject: [PATCH] JuliaFormatter.jl --- src/checks.jl | 2 -- src/covariance_structure.jl | 2 -- src/data_likelihoods/dalton.jl | 19 +++++++++---------- src/data_likelihoods/fenrir.jl | 4 ++-- src/data_likelihoods/filtering.jl | 7 ++++--- 5 files changed, 15 insertions(+), 19 deletions(-) diff --git a/src/checks.jl b/src/checks.jl index c7f810479..6fb213b08 100644 --- a/src/checks.jl +++ b/src/checks.jl @@ -14,8 +14,6 @@ end function check_densesmooth(integ) if integ.opts.dense && !integ.alg.smooth error("To use `dense=true` you need to set `smooth=true`!") - # elseif !integ.opts.dense && integ.alg.smooth - # @warn "If you set dense=false for efficiency, you might also want to set smooth=false." end if !integ.opts.save_everystep && integ.alg.smooth error("If you do not save all values, you do not need to smooth!") diff --git a/src/covariance_structure.jl b/src/covariance_structure.jl index 5a9e98557..1e264f492 100644 --- a/src/covariance_structure.jl +++ b/src/covariance_structure.jl @@ -45,8 +45,6 @@ to_factorized_matrix(::DenseCovariance, M::AbstractMatrix) = Matrix(M) to_factorized_matrix(::IsometricKroneckerCovariance, M::AbstractMatrix) = error("Cannot factorize Matrix") to_factorized_matrix(::IsometricKroneckerCovariance, M::IsometricKroneckerProduct) = M -to_factorized_matrix(FAC::IsometricKroneckerCovariance, M::Diagonal{T, <:Fill{T, 1}}) where {T} = - IsometricKroneckerProduct(FAC.d, M.diag.value*Eye(FAC.q+1)) for FT in [:DenseCovariance, :IsometricKroneckerCovariance] @eval to_factorized_matrix(FAC::$FT, M::PSDMatrix) = diff --git a/src/data_likelihoods/dalton.jl b/src/data_likelihoods/dalton.jl index 2f7f356e3..a309eab55 100644 --- a/src/data_likelihoods/dalton.jl +++ b/src/data_likelihoods/dalton.jl @@ -26,19 +26,20 @@ function dalton_data_loglik( args...; # observation model observation_matrix=I, - observation_noise_cov::Union{Number, AbstractMatrix}, + observation_noise_cov::Union{Number,AbstractMatrix}, # data data::NamedTuple{(:t, :u)}, - kwargs... + kwargs..., ) - if alg.smooth - str = "The passed algorithm performs smoothing, but `dalton_nll` can be used without. " * + str = + "The passed algorithm performs smoothing, but `dalton_nll` can be used without. " * "You might want to set `smooth=false` to imprpove performance." @warn str end if !(:adaptive in keys(kwargs)) - throw(ArgumentError("`dalton_nll` only works with fixed step sizes. Set `adaptive=false`.")) + str = "`dalton_nll` only works with fixed step sizes. Set `adaptive=false`." + throw(ArgumentError(str)) end if :tstops in keys(kwargs) @@ -68,10 +69,8 @@ function dalton_data_loglik( tstops, ) - dalton_ll = (data_ll.ll - + sol_with_data.pnstats.log_likelihood - - sol_without_data.pnstats.log_likelihood) - + sol_with_data_pn_ll = sol_with_data.pnstats.log_likelihood + sol_without_data_pn_ll = sol_without_data.pnstats.log_likelihood + dalton_ll = data_ll.ll + sol_with_data_pn_ll - sol_without_data_pn_ll return dalton_ll end - diff --git a/src/data_likelihoods/fenrir.jl b/src/data_likelihoods/fenrir.jl index 9d49b3ac5..b270eed10 100644 --- a/src/data_likelihoods/fenrir.jl +++ b/src/data_likelihoods/fenrir.jl @@ -36,7 +36,7 @@ function fenrir_data_loglik( observation_noise_cov::Union{Number,AbstractMatrix}, # data data::NamedTuple{(:t, :u)}, - kwargs... + kwargs..., ) if !alg.smooth throw(ArgumentError("fenrir only works with smoothing. Set `smooth=true`.")) @@ -64,7 +64,7 @@ end function fit_pnsolution_to_data!( sol::AbstractProbODESolution, - observation_noise_var::Union{Real, AbstractMatrix}, + observation_noise_var::Union{Real,AbstractMatrix}, data::NamedTuple{(:t, :u)}; proj=I, ) diff --git a/src/data_likelihoods/filtering.jl b/src/data_likelihoods/filtering.jl index 01fabd7d0..7568d03fa 100644 --- a/src/data_likelihoods/filtering.jl +++ b/src/data_likelihoods/filtering.jl @@ -4,13 +4,14 @@ function filtering_data_loglik( args...; # observation model observation_matrix=I, - observation_noise_cov::Union{Number, AbstractMatrix}, + observation_noise_cov::Union{Number,AbstractMatrix}, # data data::NamedTuple{(:t, :u)}, - kwargs... + kwargs..., ) if alg.smooth - str = "The passed algorithm performs smoothing, but `dalton_nll` can be used without. " * + str = + "The passed algorithm performs smoothing, but `dalton_nll` can be used without. " * "You might want to set `smooth=false` to imprpove performance." @warn str end