diff --git a/docs/src/tutorials/dae.md b/docs/src/tutorials/dae.md index dcbe7df6a..56287cb02 100644 --- a/docs/src/tutorials/dae.md +++ b/docs/src/tutorials/dae.md @@ -12,7 +12,7 @@ Currently, we recommend using the semi-implicit `EK1` algorithm. First, define the DAE (here the ROBER problem) as an ODE problem with singular mass matrix: ```@example dae -using ProbNumDiffEq, Plots, LinearAlgebra, OrdinaryDiffEq, ModelingToolkit +using ProbNumDiffEq, Plots, LinearAlgebra, OrdinaryDiffEq, ModelingToolkit, LinearAlgebra function rober(du, u, p, t) y₁, y₂, y₃ = u diff --git a/docs/src/tutorials/dynamical_odes.md b/docs/src/tutorials/dynamical_odes.md index 2204f70e8..caebc979a 100644 --- a/docs/src/tutorials/dynamical_odes.md +++ b/docs/src/tutorials/dynamical_odes.md @@ -89,6 +89,8 @@ The probabilistic numerical solvers from ProbNumDiffEq.jl have the same internal As a result, we can use the `EK1` both for first and second order ODEs, but it automatically specializes on the latter to provide a __2x performance boost__: ``` +julia> using BenchmarkTools + julia> @btime solve(prob, EK1(order=3), adaptive=false, dt=1e-2); 766.312 ms (400362 allocations: 173.38 MiB)