-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
175 lines (154 loc) · 7.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""Cream
Copyright (c) 2023-present NAVER Cloud Corp.
MIT license"""
import argparse
import datetime
import os
import sys
from os.path import basename
from pathlib import Path
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.strategies.ddp import DDPStrategy
from sconf import Config
sys.path.insert(0, ".")
from lightning_module import CreamDataPLModule, CreamModelPLModule
def train(config):
seed_everything(config.get("seed", 42), workers=False)
if config.get("pretrained_checkpoint_path", None):
print(f"load ckpt: {config.pretrained_checkpoint_path}")
model_module = CreamModelPLModule.load_from_checkpoint(
config.pretrained_checkpoint_path, config=config, strict=False
)
else:
model_module = CreamModelPLModule(config)
if config.get("llm_integration_enabled", False):
for param in model_module.llm_backbone.parameters():
param.requires_grad = False
model_module.llm_backbone.eval()
if config.get("freeze", None):
if config.freeze.get("image_encoder", False):
print("this will freeze image encoder")
for param in model_module.model.image_encoder.parameters():
param.requires_grad = False
if config.freeze.get("aux_encoder", False):
print("this will freeze text encoder")
for param in model_module.model.aux_encoder.parameters():
param.requires_grad = False
if config.freeze.get("text_decoder", False):
print("this will freeze text decoder")
for param in model_module.model.text_decoder.parameters():
param.requires_grad = False
if config.freeze.get("aux_encoder_layer_only", False):
print("this will freeze aux_encoder_layer_only")
for param in model_module.model.aux_encoder.encoder.layers.parameters():
param.requires_grad = False
if config.freeze.get("proj", False):
print("this will freeze proj")
for param in model_module.proj.parameters():
param.requires_grad = False
if config.get("train_llm_with_lora", False):
lora_target_regex = config.get("lora_target_regex", None)
lora_rank = config.get("lora_rank", 16)
print(f"train_llm_with_lora is set True, lora_rank: {lora_rank}, lora_target_regex: {lora_target_regex}")
from peft import LoraConfig, get_peft_model
model_module.llm_backbone = get_peft_model(
model_module.llm_backbone,
LoraConfig(
r=lora_rank,
lora_alpha=32,
inference_mode=False,
target_modules=lora_target_regex if lora_target_regex else None,
lora_dropout=0.05,
task_type="CAUSAL_LM",
),
)
model_module.llm_backbone.print_trainable_parameters()
data_module = CreamDataPLModule(config)
data_module.build_datasets(
model=model_module.model,
llm_tokenizer=model_module.llm_tokenizer if config.get("llm_integration_enabled", False) else None,
)
# logger = None # 이거랑 tokenizer 쪽 하드코딩
# lr_callback = None
logger = TensorBoardLogger(
save_dir=config.get("result_path", "./"),
name=config.exp_name,
version=config.exp_version,
default_hp_metric=False,
)
lr_callback = LearningRateMonitor(logging_interval="step")
checkpoint_callback = ModelCheckpoint(
dirpath=Path(config.get("result_path", "./")) / config.exp_name / config.exp_version,
filename=config.callbacks.model_checkpoint.filename,
every_n_epochs=config.callbacks.model_checkpoint.every_n_epochs,
save_top_k=config.callbacks.model_checkpoint.save_top_k,
save_last=config.callbacks.model_checkpoint.save_last,
monitor=config.callbacks.monitor.target,
mode=config.callbacks.monitor.mode,
)
max_epochs = 0
reload_dataloaders_every_n_epochs = config.get("reload_dataloaders_every_n_epochs", 0)
if len(config["train"].items()) > 1:
reload_dataloaders_every_n_epochs = 1
if len(config["train"].items()) > 10:
raise ValueError(f"[Warning] Too many phases.")
for _, phase_setting in config["train"].items():
max_epochs += phase_setting["num_epochs"]
print(f"Max epochs: {max_epochs}")
ddp_strategy = DDPStrategy(find_unused_parameters=True)
trainer = pl.Trainer(
num_nodes=config.get("num_nodes", 1),
reload_dataloaders_every_n_epochs=reload_dataloaders_every_n_epochs,
strategy=ddp_strategy,
accelerator=config.get("accelerator", "gpu"),
devices=config.num_gpus_per_node if config.get("accelerator", "gpu") == "gpu" else 1,
accumulate_grad_batches=config.get("accumulate_grad_batches", 1),
max_epochs=max_epochs,
check_val_every_n_epoch=config.callbacks.model_checkpoint.every_n_epochs
if isinstance(config.callbacks.model_checkpoint.every_n_epochs, int)
else 1,
gradient_clip_val=config.get("gradient_clip_val", 1.0),
precision=16 if config.get("accelerator", "gpu") == "gpu" else "bf16",
num_sanity_val_steps=config.get("num_sanity_val_steps", 2),
logger=logger,
callbacks=[lr_callback, checkpoint_callback],
limit_val_batches=config.get("limit_val_batches", 1.0),
)
trainer.fit(
model_module,
data_module,
ckpt_path=config.get("resume_from_checkpoint_path", None),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--exp_version", type=str, required=False)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
if "exp_name" not in config:
config.exp_name = basename(args.config).split(".")[0]
config.exp_version = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") if not args.exp_version else args.exp_version
config.num_gpus_per_node = torch.cuda.device_count() if config.get("accelerator", "gpu") == "gpu" else 1
dataset_path = config.get("dataset_path", None)
if dataset_path is not None and (Path(dataset_path).exists() and Path(dataset_path).is_dir()):
# train dataset_name_or_paths
for phase_name in config.train.keys():
dataset_name_or_paths = list()
for dataset_name_or_path in config.train[phase_name]["dataset_name_or_paths"]:
if not Path(dataset_name_or_path).exists():
dataset_name_or_path = os.path.join(dataset_path, dataset_name_or_path)
dataset_name_or_paths.append(dataset_name_or_path)
config.train[phase_name]["dataset_name_or_paths"] = dataset_name_or_paths
# val dataset_name_or_paths
dataset_name_or_paths = list()
for dataset_name_or_path in config.val["dataset_name_or_paths"]:
if not Path(dataset_name_or_path).exists():
dataset_name_or_path = os.path.join(dataset_path, dataset_name_or_path)
dataset_name_or_paths.append(dataset_name_or_path)
config.val["dataset_name_or_paths"] = dataset_name_or_paths
train(config)