-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
271 lines (229 loc) · 12.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python3 -u
# Copyright (c) DP Technology.
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.utils import cpp_extension
from torch.utils.cpp_extension import CUDAExtension, BuildExtension
import os
import subprocess
import sys
from setuptools import find_packages, setup
DISABLE_CUDA_EXTENSION = False
CROSS_COMPILE = False
CUDA_AVAILABLE = torch.cuda.is_available()
filtered_args = []
for i, arg in enumerate(sys.argv):
if arg == '--disable-cuda-ext':
DISABLE_CUDA_EXTENSION = True
elif arg == '--cross-compile':
CROSS_COMPILE = True
else:
filtered_args.append(arg)
sys.argv = filtered_args
#
if not CROSS_COMPILE and not CUDA_AVAILABLE:
DISABLE_CUDA_EXTENSION = True
if sys.version_info < (3, 7):
sys.exit("Sorry, Python >= 3.7 is required for unicore.")
def write_version_py():
with open(os.path.join("unicore", "version.txt")) as f:
version = f.read().strip()
# write version info to unicore/version.py
with open(os.path.join("unicore", "version.py"), "w") as f:
f.write('__version__ = "{}"\n'.format(version))
return version
version = write_version_py()
# # ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
if not torch.cuda.is_available() and not DISABLE_CUDA_EXTENSION:
print('\nWarning: Torch did not find available GPUs on this system.\n',
'If your intention is to cross-compile, this is not an error.\n'
'By default, it will cross-compile for Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
'If you wish to cross-compile for a single specific architecture,\n'
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5;8.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5"
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if not ((TORCH_MAJOR >= 1 and TORCH_MINOR >= 4) or (TORCH_MAJOR > 1)):
raise RuntimeError("Requires Pytorch 1.4 or newer.\n" +
"The latest stable release can be obtained from https://pytorch.org/")
cmdclass = {}
ext_modules = []
extras = {}
if not DISABLE_CUDA_EXTENSION:
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError("Cuda extensions are being compiled with a version of Cuda that does " +
"not match the version used to compile Pytorch binaries. " +
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda))
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("Nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
check_cuda_torch_binary_vs_bare_metal(torch.utils.cpp_extension.CUDA_HOME)
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, 'include', 'ATen', 'CUDAGenerator.h')):
generator_flag = ['-DOLD_GENERATOR']
ext_modules.append(
CUDAExtension(name='unicore_fused_rounding',
sources=['csrc/rounding/interface.cpp',
'csrc/rounding/fp32_to_bf16.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + generator_flag,
'nvcc':['-O3', '--use_fast_math',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_80,code=sm_80',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_BFLOAT16_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'-U__CUDA_NO_BFLOAT16_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + generator_flag}))
ext_modules.append(
CUDAExtension(name='unicore_fused_multi_tensor',
sources=['csrc/multi_tensor/interface.cpp',
'csrc/multi_tensor/multi_tensor_l2norm_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'],
'nvcc':['-O3', '--use_fast_math',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_80,code=sm_80',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_BFLOAT16_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'-U__CUDA_NO_BFLOAT16_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda']
}))
ext_modules.append(
CUDAExtension(name='unicore_fused_adam',
sources=['csrc/adam/interface.cpp',
'csrc/adam/adam_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'],
'nvcc':['-O3', '--use_fast_math']}))
ext_modules.append(
CUDAExtension(name='unicore_fused_softmax_dropout',
sources=['csrc/softmax_dropout/interface.cpp',
'csrc/softmax_dropout/softmax_dropout_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + generator_flag,
'nvcc':['-O3', '--use_fast_math',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_80,code=sm_80',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_BFLOAT16_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'-U__CUDA_NO_BFLOAT16_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + generator_flag}))
ext_modules.append(
CUDAExtension(name='unicore_fused_layernorm',
sources=['csrc/layernorm/interface.cpp',
'csrc/layernorm/layernorm.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + generator_flag,
'nvcc':['-O3', '--use_fast_math',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_80,code=sm_80',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_BFLOAT16_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'-U__CUDA_NO_BFLOAT16_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + generator_flag}))
ext_modules.append(
CUDAExtension(name='unicore_fused_layernorm_backward_gamma_beta',
sources=['csrc/layernorm/interface_gamma_beta.cpp',
'csrc/layernorm/layernorm_backward.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + generator_flag,
'nvcc':['-O3', '--use_fast_math', '-maxrregcount=50',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_80,code=sm_80',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_BFLOAT16_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'-U__CUDA_NO_BFLOAT16_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + generator_flag}))
setup(
name="unicore",
version=version,
description="DP Technology's Core AI Framework",
url="https://github.com/dptech-corp/unicore",
classifiers=[
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
setup_requires=[
"setuptools>=58.0.0",
],
install_requires=[
'numpy; python_version>="3.7"',
"lmdb",
"torch>=2.0.0",
"tqdm",
"tensorboardX",
"tokenizers",
"wandb",
],
packages=find_packages(
exclude=[
'build',
'csrc',
"examples",
"examples.*",
"scripts",
"scripts.*",
"tests",
"tests.*",
]
),
ext_modules=ext_modules,
cmdclass=cmdclass,
extras_require=extras,
entry_points={
"console_scripts": [
"unicore-train = unicore_cli.train:cli_main",
"unicore-infer = unicore_cli.infer:cli_main",
],
},
zip_safe=False,
)