-
Notifications
You must be signed in to change notification settings - Fork 0
/
jpier_met1_plot.py
executable file
·322 lines (256 loc) · 10.9 KB
/
jpier_met1_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/env /opt/env/haines/dataproc/bin/python
# Last modified: Time-stamp: <2012-05-14 15:27:38 haines>
"""jpier_met_plot1"""
import os, sys
import datetime, time, dateutil.tz
import pycdf
import numpy
sys.path.append('/opt/env/haines/dataproc/raw2proc')
del(sys)
os.environ["MPLCONFIGDIR"]="/home/haines/.matplotlib/"
from pylab import figure, twinx, savefig, setp, getp, cm, colorbar
from matplotlib.dates import DayLocator, HourLocator, MinuteLocator, DateFormatter, date2num, num2date
import procutil
print 'jpier_met_plot1 ...'
prev_month, this_month, next_month = procutil.find_months(procutil.this_month())
#ncFile1='/seacoos/data/nccoos/level1/jpier/met/jpier_met_2008_02.nc'
#ncFile2='/seacoos/data/nccoos/level1/jpier/met/jpier_met_2008_03.nc'
ncFile1='/seacoos/data/nccoos/level1/jpier/met/jpier_met_'+prev_month.strftime('%Y_%m')+'.nc'
ncFile2='/seacoos/data/nccoos/level1/jpier/met/jpier_met_'+this_month.strftime('%Y_%m')+'.nc'
# load data
have_ncFile1 = os.path.exists(ncFile1)
have_ncFile2 = os.path.exists(ncFile2)
print ' ... loading data for graph from ...'
print ' ... ... ' + ncFile1 + ' ... ' + str(have_ncFile1)
print ' ... ... ' + ncFile2 + ' ... ' + str(have_ncFile2)
if have_ncFile1 and have_ncFile2:
nc = pycdf.CDFMF((ncFile1, ncFile2))
elif not have_ncFile1 and have_ncFile2:
nc = pycdf.CDFMF((ncFile2,))
elif have_ncFile1 and not have_ncFile2:
nc = pycdf.CDFMF((ncFile1,))
else:
print ' ... both files do not exist -- NO DATA LOADED'
return
ncvars = nc.variables()
#print ncvars
es = nc.var('time')[:]
units = nc.var('time').units
dt = [procutil.es2dt(e) for e in es]
# set timezone info to UTC (since data from level1 should be in UTC!!)
dt = [e.replace(tzinfo=dateutil.tz.tzutc()) for e in dt]
# return new datetime based on computer local
dt_local = [e.astimezone(dateutil.tz.tzlocal()) for e in dt]
dn = date2num(dt)
ap = nc.var('air_pressure')[:]
at = nc.var('air_temp')[:]
dp = nc.var('dew_temp')[:]
h = nc.var('humidity')[:]
p = nc.var('rainfall_day')[:]
nc.close()
# last dt in data for labels
dt1 = dt[-1]
dt2 = dt_local[-1]
diff = abs(dt1 - dt2)
if diff.days>0:
last_dt_str = dt1.strftime("%H:%M %Z on %b %d, %Y") + ' (' + dt2.strftime("%H:%M %Z, %b %d") + ')'
else:
last_dt_str = dt1.strftime("%H:%M %Z") + ' (' + dt2.strftime("%H:%M %Z") + ')' \
+ dt2.strftime(" on %b %d, %Y")
fig = figure(figsize=(10, 8))
fig.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.1, hspace=0.1)
#######################################
# Last 30 days
#######################################
print ' ... Last 30 days'
ax = fig.add_subplot(4,1,1)
axs = [ax]
# use masked array to hide NaN's on plot
ap = numpy.ma.masked_where(numpy.isnan(ap), ap)
# ax.plot returns a list of lines, so unpack tuple
l1, = ax.plot_date(dt, ap, fmt='b-')
l1.set_label('Barometric Pressure')
ax.set_ylabel('Pressure (mbar)')
ax.set_ylim(980.,1040.)
# ax.set_xlim(dt[0], dt[-1]) # first to last regardless of what
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1])) # last minus 30 days to last
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.set_xticklabels([])
# this only moves the label not the tick labels
ax.xaxis.set_label_position('top')
ax.set_xlabel('JPIER Met -- Last 30 days from ' + last_dt_str)
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) mbar to (rhs) in Hg
inHG = [procutil.millibar2inches_Hg(val) for val in ax.get_ylim()]
ax2.set_ylim(inHG)
ax2.set_ylabel('Pressure (in Hg)')
# legend
ls1 = l1.get_label()
leg = ax.legend((l1,), (ls1,), loc='upper left')
ltext = leg.get_texts() # all the text.Text instance in the legend
llines = leg.get_lines() # all the lines.Line2D instance in the legend
frame = leg.get_frame() # the patch.Rectangle instance surrounding the legend
frame.set_facecolor('0.80') # set the frame face color to light gray
frame.set_alpha(0.5) # set alpha low to see through
setp(ltext, fontsize='small') # the legend text fontsize
setp(llines, linewidth=1.5) # the legend linewidth
# leg.draw_frame(False) # don't draw the legend frame
#######################################
#
ax = fig.add_subplot(4,1,2)
axs.append(ax)
# use masked array to hide NaN's on plot
at = numpy.ma.masked_where(numpy.isnan(at), at)
# ax.plot returns a list of lines, so unpack tuple
l1, = ax.plot_date(dt, at, fmt='b-')
l1.set_label('Air Temperature')
l2, = ax.plot_date(dt, dp, fmt='g-')
l2.set_label('Dew Point')
ax.set_ylabel('Temp (deg C)')
ax.set_ylim(-10.,40.)
# ax.set_xlim(dt[0], dt[-1])
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.xaxis.set_major_formatter( DateFormatter('%m/%d') )
ax.set_xticklabels([])
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) deg C to (rhs) deg F
f = [procutil.celsius2fahrenheit(val) for val in ax.get_ylim()]
ax2.set_ylim(f)
ax2.set_ylabel('Temp (deg F)')
# legend
ls1 = l1.get_label()
ls2 = l2.get_label()
leg = ax.legend((l1,l2), (ls1,ls2), loc='upper left')
ltext = leg.get_texts() # all the text.Text instance in the legend
llines = leg.get_lines() # all the lines.Line2D instance in the legend
frame = leg.get_frame() # the patch.Rectangle instance surrounding the legend
frame.set_facecolor('0.80') # set the frame face color to light gray
frame.set_alpha(0.5) # set alpha low to see through
setp(ltext, fontsize='small') # the legend text fontsize
setp(llines, linewidth=1.5) # the legend linewidth
# leg.draw_frame(False) # don't draw the legend frame
#######################################
#
ax = fig.add_subplot(4,1,3)
axs.append(ax)
# use masked array to hide NaN's on plot
h = numpy.ma.masked_where(numpy.isnan(h), h)
# ax.plot returns a list of lines, so unpack tuple
l1, = ax.plot_date(dt, h, fmt='b-')
l1.set_label('Relative Humidity')
ax.set_ylabel('RHUM (%)')
ax.set_ylim(0.,100.)
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1])) # last minus 30 days to last
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.set_xticklabels([])
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# no cenversion needed
ylim = [(val) for val in ax.get_ylim()]
ax2.set_ylim(ylim)
ax2.set_ylabel('RHUM (%)')
# legend
ls1 = l1.get_label()
leg = ax.legend((l1,), (ls1,), loc='upper left')
ltext = leg.get_texts() # all the text.Text instance in the legend
llines = leg.get_lines() # all the lines.Line2D instance in the legend
frame = leg.get_frame() # the patch.Rectangle instance surrounding the legend
frame.set_facecolor('0.80') # set the frame face color to light gray
frame.set_alpha(0.5) # set alpha low to see through
setp(ltext, fontsize='small') # the legend text fontsize
setp(llines, linewidth=1.5) # the legend linewidth
# leg.draw_frame(False) # don't draw the legend frame
#######################################
#
ax = fig.add_subplot(4,1,4)
axs.append(ax)
# use masked array to hide NaN's on plot
p = numpy.ma.masked_where(numpy.isnan(p), p)
# ax.plot returns a list of lines, so unpack tuple
l1, = ax.plot_date(dt, p, fmt='b-')
l1.set_label('Daily Precipitation')
ax.set_ylabel('Rain (mm/day)')
ax.set_ylim(0.,40.)
# last minus 30 days,
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.xaxis.set_major_formatter( DateFormatter('%m/%d') )
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) mm/day to (rhs) in/day
ylim = [procutil.millimeters2inches(val) for val in ax.get_ylim()]
ax2.set_ylim(ylim)
ax2.set_ylabel('Rain (in/day)')
ax.set_xlabel('JPIER Met -- Last 30 days from ' + last_dt_str)
# legend
ls1 = l1.get_label()
leg = ax.legend((l1,), (ls1,), loc='upper left')
ltext = leg.get_texts() # all the text.Text instance in the legend
llines = leg.get_lines() # all the lines.Line2D instance in the legend
frame = leg.get_frame() # the patch.Rectangle instance surrounding the legend
frame.set_facecolor('0.80') # set the frame face color to light gray
frame.set_alpha(0.5) # set alpha low to see through
setp(ltext, fontsize='small') # the legend text fontsize
setp(llines, linewidth=1.5) # the legend linewidth
# leg.draw_frame(False) # don't draw the legend frame
# save figure
savefig('/home/haines/rayleigh/img/jpier_met_last30days.png')
#######################################
# Last 30 days
#######################################
if plot_type=='latest':
print ' ... Last 30 days'
for idx, ax in enumerate(axs):
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.set_xticklabels([])
if idx==0:
ax.set_xlabel('JPIER Met -- Last 30 days from ' + last_dt_str)
elif idx==len(axs)-1:
ax.xaxis.set_major_formatter( DateFormatter('%m/%d') )
ax.set_xlabel('JPIER Met -- Last 30 days from ' + last_dt_str)
savefig('/home/haines/rayleigh/img/jpier_met_last30days.png')
#######################################
# Last 7 days
#######################################
if plot_type=='latest':
print ' ... Last 7 days'
for idx, ax in enumerate(axs):
ax.set_xlim(date2num(dt[-1])-7, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(0,32,1)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,6)) )
ax.set_xticklabels([])
if idx==0:
ax.set_xlabel('JPIER Met -- Last 7 days from ' + last_dt_str)
elif idx==len(axs)-1:
ax.xaxis.set_major_formatter( DateFormatter('%m/%d') )
ax.set_xlabel('JPIER Met -- Last 7 days from ' + last_dt_str)
savefig('/home/haines/rayleigh/img/jpier_met_last07days.png')
#######################################
# Last 1 day (24hrs)
#######################################
if plot_type=='latest':
print ' ... Last 1 days'
for idx, ax in enumerate(axs):
ax.set_xlim(date2num(dt[-1])-1, date2num(dt[-1]))
ax.xaxis.set_major_locator( HourLocator(range(0,25,1)) )
ax.xaxis.set_minor_locator( MinuteLocator(range(0,61,30)) )
ax.set_xticklabels([])
if idx==0:
ax.set_xlabel('JPIER Met -- Last 24 hours from ' + last_dt_str)
elif idx==len(axs)-1:
ax.xaxis.set_major_formatter( DateFormatter('%H') )
ax.set_xlabel('JPIER Met -- Last 24 hours from ' + last_dt_str)
savefig('/home/haines/rayleigh/img/jpier_met_last01days.png')