diff --git a/articles/Introduction-to-SoilProfileCollection-Objects.html b/articles/Introduction-to-SoilProfileCollection-Objects.html index 1b1a4135..44d8bb01 100644 --- a/articles/Introduction-to-SoilProfileCollection-Objects.html +++ b/articles/Introduction-to-SoilProfileCollection-Objects.html @@ -373,8 +373,8 @@
#> [1] 21 27 32 55 25 34 3 15 27 32 25 31 33 13 21 23 15 17 12 19 14 14 22 25 40 51 67 24 25 32
sp4$elevation # vector of simulated elevation (site data)
#> [1] 1022.3399 1203.3951 1083.7666 1128.5180 1216.1056 535.7320 1066.8665 1109.1063 929.2504
-#> [10] 1009.1309
+#> [1] 1009.9889 1006.1053 944.9123 932.4596 1065.9364 1022.1107 1368.4942 1113.8545 1122.1764
+#> [10] 1212.8237
# unit-length value explicitly targeting site data
site(sp4)$collection_id <- 1
@@ -430,12 +430,12 @@ Horizon and Site Data#>
#> ----- Sites (6 / 10 rows | 5 / 5 columns) -----
#> id elevation collection_id constant group
-#> colusa 1022.340 1 1 A
-#> glenn 1203.395 1 1 B
-#> kings 1083.767 1 1 A
-#> mariposa 1128.518 1 1 B
-#> mendocino 1216.106 1 1 A
-#> napa 535.732 1 1 B
+#> colusa 1009.9889 1 1 A
+#> glenn 1006.1053 1 1 B
+#> kings 944.9123 1 1 A
+#> mariposa 932.4596 1 1 B
+#> mendocino 1065.9364 1 1 A
+#> napa 1022.1107 1 1 B
#> [... more sites ...]
#>
#> Spatial Data:
@@ -594,16 +594,16 @@ Spatial Data# extract coordinates as matrix
getSpatial(sp4)
#> x y
-#> [1,] 353960.5 4109745
-#> [2,] 354031.4 4109540
-#> [3,] 353992.7 4109635
-#> [4,] 354144.0 4109630
-#> [5,] 354194.7 4109483
-#> [6,] 354086.9 4109318
-#> [7,] 353849.7 4109454
-#> [8,] 354081.5 4109532
-#> [9,] 354334.5 4109422
-#> [10,] 354068.1 4109592
+#> [1,] 353783.1 4109357
+#> [2,] 354163.2 4109556
+#> [3,] 354088.0 4109566
+#> [4,] 353944.1 4109435
+#> [5,] 353877.0 4109613
+#> [6,] 353957.6 4109556
+#> [7,] 353994.9 4109491
+#> [8,] 354048.2 4109584
+#> [9,] 353947.6 4109520
+#> [10,] 353937.6 4109442
# get/set spatial reference system using prj()<-
prj(sp4) <- '+proj=utm +zone=11 +datum=NAD83'
@@ -1660,13 +1660,13 @@ Aggregation over “slabs”# note: horizon names are lost due to aggregation
head(d.gsm, 7)
#> variable id value contributing_fraction top bottom
-#> 1 p1 1 22.90227 1.00 0 5
-#> 2 p1 1 22.90227 1.00 5 15
-#> 3 p1 1 22.91421 1.00 15 30
-#> 4 p1 1 23.25383 1.00 30 60
-#> 5 p1 1 28.06044 1.00 60 100
-#> 6 p1 1 26.91447 0.46 100 200
-#> 7 p1 2 13.58069 1.00 0 5
+#> 1 p1 1 19.77679 1.0 0 5
+#> 2 p1 1 19.79667 1.0 5 15
+#> 3 p1 1 19.84657 1.0 15 30
+#> 4 p1 1 21.41035 1.0 30 60
+#> 5 p1 1 23.46578 0.7 60 100
+#> 6 p1 1 NaN 0.0 100 200
+#> 7 p1 2 24.10446 1.0 0 5
A simple graphical comparison of the original and re-aligned soil
profile data, after converting slab()
result from long
-> wide format with {data.table} dcast()
:
logical vector with length (and order) matching the horizons of x
Horizons with NA
depths can be flagged as overlapping. Consider finding these horizons with checkHzDepthLogic(byhz=TRUE)
and removing or fixing them.