diff --git a/articles/Introduction-to-SoilProfileCollection-Objects.html b/articles/Introduction-to-SoilProfileCollection-Objects.html index 9c051943b..a47a6d460 100644 --- a/articles/Introduction-to-SoilProfileCollection-Objects.html +++ b/articles/Introduction-to-SoilProfileCollection-Objects.html @@ -364,8 +364,8 @@
#> [1] 21 27 32 55 25 34 3 15 27 32 25 31 33 13 21 23 15 17 12 19 14 14 22 25 40 51 67 24 25 32
sp4$elevation # vector of simulated elevation (site data)
#> [1] 830.0149 1124.7319 848.3082 1015.3434 1130.2003 1008.9701 1119.7961 829.7048 1158.2654
-#> [10] 1003.3094
+#> [1] 843.0698 1366.8370 1028.9023 1233.5746 1027.0144 658.0877 912.6135 1086.5831 1143.6326
+#> [10] 1015.9048
# unit-length value explicitly targeting site data
site(sp4)$collection_id <- 1
@@ -421,12 +421,12 @@ Horizon and Site Data#>
#> ----- Sites (6 / 10 rows | 5 / 5 columns) -----
#> id elevation collection_id constant group
-#> colusa 830.0149 1 1 A
-#> glenn 1124.7319 1 1 B
-#> kings 848.3082 1 1 A
-#> mariposa 1015.3434 1 1 B
-#> mendocino 1130.2003 1 1 A
-#> napa 1008.9701 1 1 B
+#> colusa 843.0698 1 1 A
+#> glenn 1366.8370 1 1 B
+#> kings 1028.9023 1 1 A
+#> mariposa 1233.5746 1 1 B
+#> mendocino 1027.0144 1 1 A
+#> napa 658.0877 1 1 B
#> [... more sites ...]
#>
#> Spatial Data:
@@ -585,16 +585,16 @@ Spatial Data# extract coordinates as matrix
getSpatial(sp4)
#> x y
-#> [1,] 354003.8 4109532
-#> [2,] 353916.5 4109568
-#> [3,] 353994.6 4109701
-#> [4,] 354071.6 4109515
-#> [5,] 353982.5 4109556
-#> [6,] 354001.0 4109376
-#> [7,] 353960.5 4109499
-#> [8,] 353851.0 4109545
-#> [9,] 354029.5 4109726
-#> [10,] 353765.9 4109405
+#> [1,] 353964.9 4109637
+#> [2,] 353988.5 4109419
+#> [3,] 353709.3 4109539
+#> [4,] 353838.6 4109561
+#> [5,] 353981.3 4109532
+#> [6,] 354012.4 4109571
+#> [7,] 353877.3 4109368
+#> [8,] 354085.6 4109540
+#> [9,] 353961.5 4109429
+#> [10,] 353899.8 4109452
# get/set spatial reference system using prj()<-
prj(sp4) <- '+proj=utm +zone=11 +datum=NAD83'
@@ -1639,14 +1639,14 @@ Aggregation over “slabs”# note: result is in long-format
# note: horizon names are lost due to aggregation
head(d.gsm, 7)
#> variable id value contributing_fraction top bottom
-#> 1 p1 1 15.47330 1.0000000 0 5
-#> 2 p1 1 15.47330 1.0000000 5 15
-#> 3 p1 1 15.59412 1.0000000 15 30
-#> 4 p1 1 17.87448 1.0000000 30 60
-#> 5 p1 1 19.11642 1.0000000 60 100
-#> 6 p1 1 17.85257 0.3880597 100 200
-#> 7 p1 2 21.90625 1.0000000 0 5
+#> variable id value contributing_fraction top bottom
+#> 1 p1 1 11.904899 1.0000000 0 5
+#> 2 p1 1 11.907170 1.0000000 5 15
+#> 3 p1 1 11.910578 1.0000000 15 30
+#> 4 p1 1 14.993850 1.0000000 30 60
+#> 5 p1 1 17.402573 1.0000000 60 100
+#> 6 p1 1 14.966393 0.7090909 100 200
+#> 7 p1 2 6.125664 1.0000000 0 5
A simple graphical comparison of the original and re-aligned soil
profile data, after converting slab()
result from long
-> wide format with {data.table} dcast()
:
col2Munsell()
generalizes and replaces rgb2munsell()
(thanks Shawn Salley for the suggestion)warpHorizons()
for warping horizon thickness (inflate/deflate) (thanks Shawn Salley for idea / inspiration)plotColorMixture()
when final mixed color does not exist in spectral librarythe name of color space or color distance metric to use for conversion of aggregate colors to Munsell; either CIE2000 (color distance metric), LAB, or sRGB. Default = 'CIE2000'
(now deprecated, removed in aqp 2.1) 'CIE2000' used for all cases