diff --git a/articles/Introduction-to-SoilProfileCollection-Objects.html b/articles/Introduction-to-SoilProfileCollection-Objects.html index a47a6d460..4ecf24c76 100644 --- a/articles/Introduction-to-SoilProfileCollection-Objects.html +++ b/articles/Introduction-to-SoilProfileCollection-Objects.html @@ -364,8 +364,8 @@
#> [1] 21 27 32 55 25 34 3 15 27 32 25 31 33 13 21 23 15 17 12 19 14 14 22 25 40 51 67 24 25 32
sp4$elevation # vector of simulated elevation (site data)
#> [1] 843.0698 1366.8370 1028.9023 1233.5746 1027.0144 658.0877 912.6135 1086.5831 1143.6326
-#> [10] 1015.9048
+#> [1] 1047.3747 743.3900 1162.8973 1035.2875 891.4111 1130.0727 1194.4019 1071.4525 1227.0159
+#> [10] 1185.8546
# unit-length value explicitly targeting site data
site(sp4)$collection_id <- 1
@@ -421,12 +421,12 @@ Horizon and Site Data#>
#> ----- Sites (6 / 10 rows | 5 / 5 columns) -----
#> id elevation collection_id constant group
-#> colusa 843.0698 1 1 A
-#> glenn 1366.8370 1 1 B
-#> kings 1028.9023 1 1 A
-#> mariposa 1233.5746 1 1 B
-#> mendocino 1027.0144 1 1 A
-#> napa 658.0877 1 1 B
+#> colusa 1047.3747 1 1 A
+#> glenn 743.3900 1 1 B
+#> kings 1162.8973 1 1 A
+#> mariposa 1035.2875 1 1 B
+#> mendocino 891.4111 1 1 A
+#> napa 1130.0727 1 1 B
#> [... more sites ...]
#>
#> Spatial Data:
@@ -585,16 +585,16 @@ Spatial Data# extract coordinates as matrix
getSpatial(sp4)
#> x y
-#> [1,] 353964.9 4109637
-#> [2,] 353988.5 4109419
-#> [3,] 353709.3 4109539
-#> [4,] 353838.6 4109561
-#> [5,] 353981.3 4109532
-#> [6,] 354012.4 4109571
-#> [7,] 353877.3 4109368
-#> [8,] 354085.6 4109540
-#> [9,] 353961.5 4109429
-#> [10,] 353899.8 4109452
+#> [1,] 353984.6 4109483
+#> [2,] 354022.5 4109556
+#> [3,] 354000.4 4109568
+#> [4,] 354056.8 4109543
+#> [5,] 354065.4 4109442
+#> [6,] 354015.1 4109489
+#> [7,] 354222.4 4109585
+#> [8,] 353970.0 4109366
+#> [9,] 354134.6 4109584
+#> [10,] 354081.8 4109438
# get/set spatial reference system using prj()<-
prj(sp4) <- '+proj=utm +zone=11 +datum=NAD83'
@@ -1639,14 +1639,14 @@ Aggregation over “slabs”# note: result is in long-format
# note: horizon names are lost due to aggregation
head(d.gsm, 7)
#> variable id value contributing_fraction top bottom
-#> 1 p1 1 11.904899 1.0000000 0 5
-#> 2 p1 1 11.907170 1.0000000 5 15
-#> 3 p1 1 11.910578 1.0000000 15 30
-#> 4 p1 1 14.993850 1.0000000 30 60
-#> 5 p1 1 17.402573 1.0000000 60 100
-#> 6 p1 1 14.966393 0.7090909 100 200
-#> 7 p1 2 6.125664 1.0000000 0 5
+#> variable id value contributing_fraction top bottom
+#> 1 p1 1 12.85900 1.000 0 5
+#> 2 p1 1 12.99266 1.000 5 15
+#> 3 p1 1 13.84828 1.000 15 30
+#> 4 p1 1 17.29098 1.000 30 60
+#> 5 p1 1 17.33966 0.425 60 100
+#> 6 p1 1 NaN 0.000 100 200
+#> 7 p1 2 14.83760 1.000 0 5
A simple graphical comparison of the original and re-aligned soil
profile data, after converting slab()
result from long
-> wide format with {data.table} dcast()
:
a data.frame
object with 3 columns: sand
, silt
, clay
and at least three rows of data within the range of 0-100 (percent). NA are automatically removed, but care should be taken to ensure that the sand/silt/clay values add to 100 percent. Simulations are based on these examples.
a data.frame
object with 3 columns: 'sand', 'silt', 'clay' and at least three rows of data within the range of 0-100 (percent). NA are automatically removed, but care should be taken to ensure that the sand/silt/clay values add to 100 percent. Simulations are based on these examples.
type of simulation: dirichlet
or normal
. See details.
type of simulation: 'dirichlet' or 'normal'. See details.
a list
containing:
samples
- data.frame
of simulated sand, silt, clay values
a list
containing:
samples
- data.frame
of simulated sand, silt, clay values
mean
- compositional mean
var
- compositional variance-covariance matrix
D.alpha
- (fitted) alpha parameters of the Dirichlet distribution, NULL
when method = 'normal'
A List containing the following elements:
- - -marginal: data.frame
containing marginal quantiles in CIELAB (D65), closest Munsell chips, and dE00
L1: L1 median CIELAB (D65) values, closest Munsell chip, and dE00
A List containing the following elements:
marginal
: data.frame
containing marginal quantiles in CIELAB (D65), closest Munsell chips, and dE00
L1
: L1 median CIELAB (D65) values, closest Munsell chip, and dE00
Convert a cross-tabulation: original, genhz to adjacency matrix.
Functions for creating and working with horizon (sequence) transition probability matrices.
-See the following tutorials for some ideas:
genhzTableToAdjMat(tab)
@@ -94,7 +101,7 @@ Arguments
x
-A SoilProfileCollection
object.
+a SoilProfileCollection
object.
name
@@ -102,8 +109,8 @@ Arguments
loopTerminalStates
-should terminal states loop back to themselves?
-This is useful when the transition probability matrix will be used to
+
should terminal states loop back to themselves?
+This is useful when the transition probability matrix will be used to
initialize a markovchain
object. See examples below.
@@ -123,37 +130,24 @@ Arguments
Value
-The function hzTransitionProbabilities
returns a square
-matrix of transition probabilities. See examples.
+A square matrix of transition probabilities. See examples.
-The function genhzTableToAdjMat
returns a square adjacency matrix.
+
The function genhzTableToAdjMat()
returns a square adjacency matrix.
See examples.
-The function mostLikelyHzSequence
returns the most likely sequence of
+
The function mostLikelyHzSequence()
returns the most likely sequence of
horizons, given a markovchain
object initialized from horizon
transition probabilities and an initial state, t0
. See examples.
See the following tutorials for some ideas:
http://ncss-tech.github.io/AQP/aqp/hz-transition-probabilities.html
http://ncss-tech.github.io/AQP/aqp/series-color-TP-graph.html
These functions are still experimental and subject to change.
Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.
-inspiration / calculations based on the work of Scott Burns: https://arxiv.org/ftp/arxiv/papers/1710/1710.06364.pdf
related discussion on Stack Overflow: https://stackoverflow.com/questions/10254022/implementing-kubelka-munk-like-krita-to-mix-colours-color-like-paint/29967630#29967630
spectral library source: https://www.munsellcolourscienceforpainters.com/MunsellResources/SpectralReflectancesOf2007MunsellBookOfColorGlossy.txt
Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.