diff --git a/google-cloud-platform/aws-migration/8-vic_scripts_modeling_notParallel.R b/google-cloud-platform/aws-migration/8-vic_scripts_modeling_notParallel.R new file mode 100644 index 0000000..9a15905 --- /dev/null +++ b/google-cloud-platform/aws-migration/8-vic_scripts_modeling_notParallel.R @@ -0,0 +1,280 @@ +# 8-VIC modeling + + +# 10/31/24 + +# Dave White +start.time <- Sys.time() + +# load and install packages +required.packages <- c( "caret", "sf", "terra", "randomForest", "aqp", "foreign","doParallel", "parallel") +new.packages <- required.packages[!(required.packages %in% installed.packages()[,"Package"])] +if(length(new.packages)) install.packages(new.packages) +lapply(required.packages, require, character.only=T) +rm(required.packages, new.packages) + + + +# bring in covariate data and create a stack + +# set working directory to dem covs +setwd("~/data/8-vic/cov") + +# read in raster file names as a list +rList=list.files(getwd(), pattern="tif$", full.names = FALSE) + +# create a raster stack of dem covs +rStack <- rast(rList) +names(rStack) <- gsub(".tif", "",rList) +names(rStack) <- gsub("-", "", names(rStack)) +names(rStack) <- gsub("_", "", names(rStack)) +names(rStack) + + +# Bring in training data points +# read in shapefile +# bring in pedon data + +#set working directory to training data. +setwd("~/data/8-vic/data") + +pts <- read_sf("pedons.shp") + +# extract raster covariate values at each training point for the all.pts dataset +pts.sv <- terra::extract(rStack, pts, xy=F, bind=TRUE, na.rm=TRUE) + +# convert SpatVector to sf +all.pts <- sf::st_as_sf(pts.sv) + +names(all.pts) + +# remove unwanted cols +all.pts <- all.pts[-c(1:14)] +colnames(all.pts)[1] <- "class" +names(all.pts) +all.pts$class <- as.factor(all.pts$class) +names(all.pts) +# +levels(all.pts$class) + + +# convert sf to a dataframe +pts.all <- as.data.frame(all.pts) +names(pts.all) + +comp <- pts.all[,!(colnames(pts.all)%in% c("geometry"))] +names(comp) + + + +# remove any observations with NAs +comp <- comp[complete.cases(comp),] + +# convert Class col to a factor +#comp$Class <- as.factor(comp$Class) +is.factor(comp$class) +levels(comp$class) +summary((comp$class)) + +# There are a few classes with < 2 observations remove those classes + +nlevels(comp$class) + +comp = droplevels(comp[comp$class %in% names(table(comp$class)) [table(comp$class) >2],]) + +nlevels(comp$class) + +levels(comp$class) +summary(comp$class) + + +length(levels(comp$class)) +gc() + +#--------------------------------------------------------------------------- +# Recursive Feature Selection (RFE) + + +subsets <- seq(50, length(names(rStack)), 5) + +#set number and repeats for cross validation +number = 10 +repeats = 1 + +# set seeds to get reproducible results when running the process in parallel +set.seed(12) +seeds <- vector(mode = "list", length=(number*repeats+1)) +for(i in 1:(number*repeats)) seeds[[i]] <- sample.int(1000, length(subsets)+1) +seeds[[(number*repeats+1)]] <- sample.int(1000, 1) + + +cl <- makeCluster(detectCores()-1) # base R only recognizes 128 cores and about 5 need to be left for OS +registerDoParallel(cl) + +# set up the rfe control +ctrl.RFE <- rfeControl(functions = rfFuncs, + method = "repeatedcv", + number = number, + repeats = repeats, + seeds = seeds, + verbose = F) + +## highlight and run everything from c1 to stopCluster(c1) to run RFE +rfe <- rfe(x = comp[,-c(1)], + y = comp$class, + sizes = subsets, + rfeControl = ctrl.RFE, + allowParallel = TRUE +) +stopCluster(cl) +gc() + + +# Look at the results +rfe +plot(rfe) + + + +rfe$fit$confusion +rfe$results + +# see list of predictors +predictors(rfe) + +# the rfe function retuns the covariates with the highest accuracy for the rf model +# view the highest accuracy noted by the * +rfe + +# take the accuracy and subtract the accuracySD. look in the results of rf.RFE and find the accuracy that is > or = to this value. this is the number of covariates to use below +#predictors(rfeLand) # top number of covariates + +# look at the top number of covariates that are equal to greater than the accuracy minus the accuracySD +#predictors(rf.RFE)[c(1:9,24:26)] + +# assign this to a variable +a <- predictors(rfe)#[c(1:50)] + + +# subset the covariate stack and the data frame by the selected covariates the variable a is your selected covariates + +# subsed the raser stack to the selected covariates +rsm <- subset(rStack, a) + + +# subset the data frame points with the number of covariates selected +names(comp) +comp.sub <- (comp[,c("class", a)]) + + +names(comp.sub) +is.factor(comp.sub$class) + + + +subsets <- seq(1, length(names(rsm)), 5) + +#set number and repeats for cross validation +number = 10 +repeats = 5 + +# set seeds to get reproducible results when running the process in parallel +set.seed(12) +seeds <- vector(mode = "list", length=(number*repeats+1)) +for(i in 1:(number*repeats)) seeds[[i]] <- sample.int(1000, length(subsets)+1) +seeds[[(number*repeats+1)]] <- sample.int(1000, 1) + + +# set up the train control +fitControl <- trainControl(method = "repeatedcv", + number = number, + repeats = repeats, + p = 0.8, #30% used for test set, 70% used for training set + selectionFunction = 'best', + classProbs = T, + savePredictions = T, + returnResamp = 'final', + search = "random", + seeds = seeds) + +cl <- makeCluster(detectCores()-1) +registerDoParallel(cl) +# Random Forest - Parallel process +rfm = train(x = comp.sub[,-c(1)], + y = comp.sub$class, + "rf", + trControl = fitControl, + ntree = 500, #number of trees default is 500, which seems to work best anyway. + tuneLength=10, + metric = 'Kappa', + na.action=na.pass, + keep.forest=TRUE, # added this line and the next for partial dependence plots + importance=TRUE) +stopCluster(cl) +gc() + + +# Inspect rfFit +rfm$finalModel + + +#look at overall accuracy, kappa, and SD associated with each mtry value +print(rfm) +rfm$results + + +# Convert caret wrapper into randomforest model object for raster prediction +rfm <- rfm$finalModel + + +# make predictions +terra::predict(rsm, rfm, wopt=list(steps=100), na.rm=T, overwrite = TRUE, filename = "~/data/8-vic/results/class.tif", gdal=c("TFW=YES"),datatype='INT1U') + +r <- rast("~/data/8-vic/results/class.tif") +rat <- levels(r)[[1]] +write.dbf(rat, file='class.tif.vat.dbf') # make sure the first part of the file name is exactly the same as the predicted raster + +gc() + + +# predict probability stacks +terra::predict(rsm, rfm, wopt=list(steps=100), na.rm=T, type="prob", filename="~/data/8-vic/results/predProb.tif", overwrite=T) + + +gc() + + + +# read in prob raster +predProb <- rast("~/data/8-vic/results/predProb.tif") + +## shannon entropy keeps failing, maybe write prob rasters to disk then bring in as vrt and calc shan + +writeRaster(shannonEntropy(predProb), filename="~/data/8-vic/results/shan.tif", overwrite=T,gdal=c("TFW=YES", wopt=list(steps=100))) + + + +gc() + +#normalized shan entropy +b <- length(names(predProb)) + +writeRaster((shannonEntropy(predProb, b=b)), filename="~/data/8-vic/results/shanNorm.tif", overwrite=T,gdal=c("TFW=YES", wopt=list(steps=100))) + + + +# get confusion matrix from model +cm <- confusionMatrix(rfm$predicted, rfm$y) + + +end.time <- Sys.time() + +time.taken <- end.time - start.time + +time.taken +saveRDS(time.taken, "timeTaken.rds") + +## Transfer the script to the storage bucket: +## Copy the line below and run in the terminal +## change the name of file and path as necessary +##gsutil -m cp ~/data/8-vic/scripts/modeling_notParallel.R gs://sbs-aws-migration-s2026-8-vic/8-vic/scripts/