diff --git a/articles/wcs-ssurgo.html b/articles/wcs-ssurgo.html index fc091691..85cb6e03 100644 --- a/articles/wcs-ssurgo.html +++ b/articles/wcs-ssurgo.html @@ -311,6 +311,7 @@
(statsgo <- mukey.wcs(a, db = 'statsgo', res = 300))
+#> class : SpatRaster
+#> dimensions : 27, 20, 1 (nrow, ncol, nlyr)
+#> resolution : 300, 300 (x, y)
+#> extent : 1129000, 1135000, 1403000, 1411100 (xmin, xmax, ymin, ymax)
+#> coord. ref. : NAD83 / Conus Albers (EPSG:5070)
+#> source(s) : memory
+#> categories : mukey
+#> name : mukey
+#> min value : 659074
+#> max value : 664845
# graphical comparison
par(mfcol = c(1, 2))
@@ -550,6 +606,7 @@ STATSGO= FALSE,
main = attr(statsgo, 'layer name')
)
From above graph we can see that the different suitability rating
classes class_ENGConstructionMaterialsRoadfill
each
correspond to a range of fuzzy values
@@ -753,6 +897,7 @@
Another example is thematic mapping of the “simplified component parent material group”. First, set up a new AOI for the following examples:
@@ -813,6 +959,7 @@We use get_SDA_pmgroupname()
to obtain the tabular
parent material information to relate to map unit keys:
@@ -833,6 +980,7 @@Component-level PropertiesactiveCat(mu2) <- 'pmgroupname' plot(mu2, legend = "topleft", axes = FALSE)
We can also inspect a mapunit-level hydric rating derived from the
default aggregation method in get_SDA_hydric()
.
@@ -850,6 +998,7 @@Component-level Properties# set active category activeCat(mu2) <- 'HYDRIC_RATING' plot(mu2, legend = "topleft", axes = FALSE)
Plot aggregate soil properties.
plot(mu2[['dbthirdbar_r']], cex.main = 0.7,
- main = '1/3 Bar Bulk Density (g/cm^3)\nDominant Component\n0-25cm')
-
+ main = '1/3 Bar Bulk Density (g/cm^3)\nDominant Component\n0-25cm')
+
plot(mu2[['awc_r']], cex.main = 0.7,
- main = 'AWC (cm/cm)\nDominant Component\n0-25cm')
-
+ main = 'AWC (cm/cm)\nDominant Component\n0-25cm')
+
plot(mu2[['ph1to1h2o_r']], cex.main = 0.7,
main = 'pH 1:1 H2O\nDominant Component\n0-25cm')
First, we setup BBOX and query map unit key WCS.
-++# extract a BBOX like this from SoilWeb by pressing "b" bb <- '-91.6853 36.4617,-91.6853 36.5281,-91.5475 36.5281,-91.5475 36.4617,-91.6853 36.4617' wkt <- sprintf('POLYGON((%s))', bb) @@ -927,11 +1097,12 @@
Sand, Silt, and Clay # note SSA boundary plot(mu, legend = FALSE, axes = FALSE)
Then we derive aggregate sand, silt, clay (RV) values from the largest component, taking the weighted mean over 25-50cm depth interval. We also will take the sand and clay values to calculate the surface texture class for comparison.
-++# extract RAT for thematic mapping rat <- cats(mu)[[1]] @@ -950,6 +1121,20 @@
Sand, Silt, and Clay # check head(tab) +#> areasymbol musym muname mukey +#> 1 MO091 73306 Gressy-Gatewood complex, 3 to 8 percent slopes, rocky 691980 +#> 2 MO149 73321 Alred-Gatewood complex, 1 to 8 percent slopes 2502332 +#> 3 MO149 73322 Alred-Gatewood complex, 8 to 15 percent slopes 2502334 +#> 4 MO149 76002 Batcave-Farewell complex, 1 to 3 percent slopes, frequently flooded 2503322 +#> 5 MO149 76046 Secesh silt loam, 1 to 3 percent slopes, rarely flooded 2503473 +#> 6 MO149 76047 Secesh-Tilk complex, 1 to 3 percent slopes, occasionally flooded 2503476 +#> sandtotal_r silttotal_r claytotal_r +#> 1 23.00 59.00 18.00 +#> 2 28.69 51.11 20.20 +#> 3 28.69 51.11 20.20 +#> 4 40.00 40.00 20.00 +#> 5 25.65 49.00 25.35 +#> 6 26.91 48.08 25.02 # set raster categories levels(mu) <- tab[, c('mukey', vars)] @@ -977,6 +1162,7 @@
Sand, Silt, and Clay cex.main = 0.7, main = paste0(names(r), " - 25-50cm\nDominant Component") )