-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_mali.py
240 lines (202 loc) · 10.3 KB
/
benchmark_mali.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import mxnet as mx
import nnvm
import tvm
import numpy as np
from PIL import Image
from tvm.contrib import graph_runtime
import nnvm.compiler
import cv2
import topi
import time
import math
from nnvm import testing
ssd_model='/home/firefly/AVC/deploy_ssd_mobilenet_300_fromcaffe_no_prior_detection'
shape=300
checkpoint=0
num_anchor=1917
target=tvm.target.mali()
#target='opencl'
ctx = tvm.cl(0)
dshape = (1, 3, shape, shape)
dtype = 'float32'
threshold=0.25
class_names = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"]
def display(img, out, thresh=0.5):
import random
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['figure.figsize'] = (10,10)
pens = dict()
plt.clf()
plt.imshow(img)
for det in out:
cid = int(det[0])
if cid < 0:
continue
score = det[1]
if score < thresh:
continue
if cid not in pens:
pens[cid] = (random.random(), random.random(), random.random())
scales = [img.shape[1], img.shape[0]] * 2
xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)]
rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False,
edgecolor=pens[cid], linewidth=3)
plt.gca().add_patch(rect)
text = class_names[cid]
plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score),
bbox=dict(facecolor=pens[cid], alpha=0.5),
fontsize=12, color='white')
#print(str(text)+", Score: "+str(score))
plt.show()
def get_multibox_detection_output_tvm(np_cls_prob, np_loc_preds, np_anchors, batch_size, num_anchors, num_classes):
target_cpu = 'llvm'
ctx = tvm.cpu()
cls_prob = tvm.placeholder((1, 21, num_anchors), name="cls_prob")
loc_preds = tvm.placeholder((1, num_anchors * 4), name="loc_preds")
anchors = tvm.placeholder((1, num_anchors, 4), name="anchors")
tvm_cls_prob = tvm.nd.array(np_cls_prob.asnumpy().astype(cls_prob.dtype), ctx)
tvm_loc_preds = tvm.nd.array(np_loc_preds.asnumpy().astype(loc_preds.dtype), ctx)
tvm_anchors = tvm.nd.array(np_anchors.astype(anchors.dtype), ctx)
import topi
with tvm.target.create(target_cpu):
out = topi.vision.ssd.multibox_detection(cls_prob, loc_preds, anchors, clip=False, threshold=0.01,
nms_threshold=0.45,
force_suppress=False, variances=(0.1, 0.1, 0.2, 0.2), nms_topk=400)
s = topi.generic.schedule_multibox_detection(out)
tvm_out = tvm.nd.array(np.zeros((1, num_anchors, 6)).astype(out.dtype), ctx)
f = tvm.build(s, [cls_prob, loc_preds, anchors, out], 'llvm')
f(tvm_cls_prob, tvm_loc_preds, tvm_anchors, tvm_out)
return tvm_out
def get_multibox_prior_tvm(priorBox_1,priorBox_2,priorBox_3,priorBox_4,priorBox_5,priorBox_6):
output_priorBox_1 = get_prior_output(priorBox_1, sizes=(0.2,), ratios=(1.0, 2.0, 0.5), steps=(-0.003333, -0.003333))
output_priorBox_2 = get_prior_output(priorBox_2, sizes=(0.35, 0.41833), ratios=(1.0, 2.0, 0.5, 3.0, 0.333333333333), steps=(-0.003333, -0.003333))
output_priorBox_3 = get_prior_output(priorBox_3, sizes=(0.5, 0.570088), ratios=(1.0, 2.0, 0.5, 3.0, 0.333333333333), steps=(-0.003333, -0.003333))
output_priorBox_4 = get_prior_output(priorBox_4, sizes=(0.65, 0.72111), ratios=(1.0, 2.0, 0.5, 3.0, 0.333333333333), steps=(-0.003333, -0.003333))
output_priorBox_5 = get_prior_output(priorBox_5, sizes=(0.8, 0.87178), ratios=(1.0, 2.0, 0.5, 3.0, 0.333333333333), steps=(-0.003333, -0.003333))
output_priorBox_6 = get_prior_output(priorBox_6, sizes=(0.95, 0.974679), ratios=(1.0, 2.0, 0.5, 3.0, 0.333333333333), steps=(-0.003333, -0.003333))
flatten1=output_priorBox_1.asnumpy().reshape(1,output_priorBox_1.shape[1]*output_priorBox_1.shape[2])
flatten2=output_priorBox_2.asnumpy().reshape(1,output_priorBox_2.shape[1]*output_priorBox_2.shape[2])
flatten3=output_priorBox_3.asnumpy().reshape(1,output_priorBox_3.shape[1]*output_priorBox_3.shape[2])
flatten4=output_priorBox_4.asnumpy().reshape(1,output_priorBox_4.shape[1]*output_priorBox_4.shape[2])
flatten5=output_priorBox_5.asnumpy().reshape(1,output_priorBox_5.shape[1]*output_priorBox_5.shape[2])
flatten6=output_priorBox_6.asnumpy().reshape(1,output_priorBox_6.shape[1]*output_priorBox_6.shape[2])
concat=np.concatenate((flatten1,flatten2,flatten3,flatten4,flatten5,flatten6),axis=1)
multibox_prior=concat.reshape(1,1917,4)
return multibox_prior
def get_prior_output(input_data, sizes=(1,), ratios=(1,), steps=(-1, -1), offsets=(0.5, 0.5), clip=False):
target_cpu = 'llvm'
ctx = tvm.cpu()
dshape=input_data.shape
data = tvm.placeholder(dshape, name="data")
dtype = data.dtype
in_height = data.shape[2].value
in_width = data.shape[3].value
num_sizes = len(sizes)
num_ratios = len(ratios)
size_ratio_concat = sizes + ratios
steps_h = steps[0] if steps[0] > 0 else 1.0 / in_height
steps_w = steps[1] if steps[1] > 0 else 1.0 / in_width
offset_h = offsets[0]
offset_w = offsets[1]
oshape = (1, in_height * in_width * (num_sizes + num_ratios - 1), 4)
np_out = np.zeros(oshape).astype(dtype)
for i in range(in_height):
center_h = (i + offset_h) * steps_h
for j in range(in_width):
center_w = (j + offset_w) * steps_w
for k in range(num_sizes + num_ratios - 1):
w = size_ratio_concat[k] * in_height / in_width / 2.0 if k < num_sizes else \
size_ratio_concat[0] * in_height / in_width * math.sqrt(size_ratio_concat[k + 1]) / 2.0
h = size_ratio_concat[k] / 2.0 if k < num_sizes else \
size_ratio_concat[0] / math.sqrt(size_ratio_concat[k + 1]) / 2.0
count = i * in_width * (num_sizes + num_ratios - 1) + j * (num_sizes + num_ratios - 1) + k
np_out[0][count][0] = center_w - w
np_out[0][count][1] = center_h - h
np_out[0][count][2] = center_w + w
np_out[0][count][3] = center_h + h
if clip:
np_out = np.clip(np_out, 0, 1)
with tvm.target.create(target_cpu):
out = topi.vision.ssd.multibox_prior(data, sizes, ratios, steps, offsets, clip)
s = topi.generic.schedule_multibox_prior(out)
tvm_input_data = tvm.nd.array(input_data, ctx)
tvm_out = tvm.nd.array(np.zeros(oshape, dtype=dtype), ctx)
f = tvm.build(s, [data, out], target_cpu)
f(tvm_input_data, tvm_out)
return tvm_out
def build_network(model):
shape=224
dshape=(1, 3,224,224)
if model == 'vgg16':
net, params = testing.vgg.get_workload(num_layers=16,
batch_size=1, image_shape=(3, 224, 224), dtype=dtype)
elif model == 'resnet18':
net, params = testing.resnet.get_workload(num_layers=18,
batch_size=1, image_shape=(3, 224, 224), dtype=dtype)
elif model == 'mobilenet':
net, params = testing.mobilenet.get_workload(
batch_size=1, image_shape=(3, 224, 224), dtype=dtype)
elif model == 'mobilenet_v2':
net, params = testing.mobilenet_v2.get_workload(
batch_size=1, image_shape=(3, 224, 224), dtype=dtype)
elif model == 'squeezenet':
net, params = testing.squeezenet.get_workload(
batch_size=1, image_shape=(3, 224, 224), dtype=dtype)
elif model == 'mobilenet_ssd':
dshape=(1,3,300,300)
mx_sym, args, auxs = mx.model.load_checkpoint(ssd_model, checkpoint)
net, params = nnvm.frontend.from_mxnet(mx_sym, args, auxs)
else:
raise ValueError('no benchmark prepared for {}.'.format(model))
# compile
with nnvm.compiler.build_config(opt_level=2):
graph, lib, params = nnvm.compiler.build(net, target, shape={'data': dshape}, params=params)
return graph, lib, params
model='mobilenet_v2'
graph, lib, params= build_network(model)
print('model: '+model)
# Execute the portable graph on TVM
m = graph_runtime.create(graph, lib, ctx)
m.set_input(**params)
data_tvm = tvm.nd.array((np.random.uniform(size=dshape).astype('float32')))
m.set_input('data', data_tvm)
num_warmup = 10
num_test = 60
if model == 'mobilenet': # mobilenet is fast, need more runs for stable measureament
num_warmup *= 5
num_test *= 5
#perform some warm up runs
print("warm up..")
warm_up_timer = m.module.time_evaluator("run", ctx, num_warmup)
warm_up_timer()
# test
print("test..")
ftimer = m.module.time_evaluator("run", ctx, num_test)
prof_res = ftimer()
print(prof_res)
#visualize for mobilenet_ssd only
if model=='mobilenet_ssdd':
m.run()
_, outshape = nnvm.compiler.graph_util.infer_shape(graph, shape={"data": dshape})
begin2 = time.time()
tvm_output_0 = m.get_output(0, tvm.nd.empty(tuple(outshape[0]),'float32')) # shape: (1, 21, 1917)
tvm_output_1 = m.get_output(1, tvm.nd.empty(tuple(outshape[1]),'float32')) #shape: (1, 7668)
tvm_output_2 = m.get_output(2, tvm.nd.empty(tuple(outshape[2]),'float32')) # shape: (1, 1917, 4)
tvm_output_3 = m.get_output(3, tvm.nd.empty(tuple(outshape[3]), dtype)) # output of "relu7" layer, shape: (1, 1024, 19, 19)
tvm_output_4 = m.get_output(4, tvm.nd.empty(tuple(outshape[4]), dtype)) # output of "conv6_2_relu" layer, shape: (1, 512, 10, 10)
tvm_output_5 = m.get_output(5, tvm.nd.empty(tuple(outshape[5]), dtype)) # output of "conv7_2_relu" layer, shape: (1, 256, 5, 5) 178
tvm_output_6 = m.get_output(6, tvm.nd.empty(tuple(outshape[6]), dtype)) # output of "conv8_2_relu" layer, shape: (1, 256, 3, 3)
tvm_output_7 = m.get_output(7, tvm.nd.empty(tuple(outshape[7]), dtype))
end4 = time.time()
print('get_output time: '+str(end4-begin2))
begin5 = time.time()
multibox_loc_preds= get_multibox_prior_tvm(tvm_output_2,tvm_output_3,tvm_output_4,tvm_output_5,tvm_output_6,tvm_output_7)
final_output = get_multibox_detection_output_tvm(tvm_output_0, tvm_output_1, multibox_loc_preds, 1, num_anchor, 21)
end5 = time.time()
print('post-processing time: '+str(end5-begin5))
image = cv2.imread(image_file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
display(image, final_output.asnumpy()[0], thresh=threshold)