-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree_decomposition.py
181 lines (142 loc) · 4.7 KB
/
tree_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
__author__ = ['Salvador Aguinaga', 'Rodrigo Palacios', 'David Chaing', 'Tim Weninger']
from collections import defaultdict
def make_clique(graph, nodes):
for v1 in nodes:
for v2 in nodes:
if v1 != v2:
graph[v1].add(v2)
def is_clique(graph, vs):
for v1 in vs:
for v2 in vs:
if v1 != v2 and v2 not in graph[v1]:
return False
return True
def simplicial(graph, v):
return is_clique(graph, graph[v])
def almost_simplicial(graph, v):
for u in graph[v]:
if is_clique(graph, graph[v] - {u}):
return True
return False
def eliminate_node(graph, v):
make_clique(graph, graph[v])
delete_node(graph, v)
def delete_node(graph, v):
for u in graph[v]:
graph[u].remove(v)
del graph[v]
def copy_graph(graph):
return {u: set(graph[u]) for u in graph}
def contract_edge(graph, u, v):
"""Contract edge (u,v) by removing u"""
graph[v] = (graph[v] | graph[u]) - {u, v}
del graph[u]
for w in graph:
if u in graph[w]:
graph[w] = (graph[w] | {v}) - {u, w}
def upper_bound(graph):
"""Min-fill."""
graph = copy_graph(graph)
dmax = 0
order = []
while len(graph) > 0:
# d, u = min((len(graph[u]), u) for u in graph) # min-width
d, u = min((count_fillin(graph, graph[u]), u) for u in graph)
dmax = max(dmax, len(graph[u]))
eliminate_node(graph, u)
order.append(u)
return dmax, order
def count_fillin(graph, nodes):
"""How many edges would be needed to make v a clique."""
count = 0
for v1 in nodes:
for v2 in nodes:
if v1 != v2 and v2 not in graph[v1]:
count += 1
return count / 2
def lower_bound(graph):
"""Minor-min-width"""
graph = copy_graph(graph)
dmax = 0
while len(graph) > 0:
# pick node of minimum degree
d, u = min((len(graph[u]), u) for u in graph)
dmax = max(dmax, d)
# Gogate and Dechter: minor-min-width
nb = graph[u] - {u}
if len(nb) > 0:
_, v = min((len(graph[v] & nb), v) for v in nb)
contract_edge(graph, u, v)
else:
delete_node(graph, u)
return dmax
class Solution(object):
pass
def quickbb(graph, fast=True):
"""Gogate and Dechter, A complete anytime algorithm for treewidth. UAI
2004. http://arxiv.org/pdf/1207.4109.pdf"""
"""Given a permutation of the nodes (called an elimination ordering),
for each node, remove the node and make its neighbors into a clique.
The maximum degree of the nodes at the time of their elimination is
the width of the tree decomposition corresponding to that ordering.
The treewidth of the graph is the minimum over all possible
permutations.
"""
best = Solution() # this gets around the lack of nonlocal in Python 2
best.count = 0
def bb(graph, order, f, g):
best.count += 1
if len(graph) < 2:
if f < best.ub:
assert f == g
best.ub = f
best.order = list(order) + list(graph)
else:
vs = []
for v in graph:
# very important pruning rule
if simplicial(graph, v) or almost_simplicial(graph, v) and len(graph[v]) <= lb:
vs = [v]
break
else:
vs.append(v)
for v in vs:
graph1 = copy_graph(graph)
eliminate_node(graph1, v)
order1 = order + [v]
# treewidth for current order so far
g1 = max(g, len(graph[v]))
# lower bound given where we are
f1 = max(g, lower_bound(graph1))
if f1 < best.ub:
bb(graph1, order1, f1, g1)
return
graph = {u: set(graph[u]) for u in graph}
order = []
best.ub, best.order = upper_bound(graph)
lb = lower_bound(graph)
# This turns on the branch and bound algorithm that
# gets better treewidth results, but takes a lot
# longer to process
if not fast:
if lb < best.ub:
bb(graph, order, lb, 0)
# Build the tree decomposition
tree = defaultdict(set)
def build(order):
if len(order) < 2:
bag = frozenset(order)
tree[bag] = set()
return
v = order[0]
clique = graph[v]
eliminate_node(graph, v)
build(order[1:])
for tv in tree:
if clique.issubset(tv):
break
bag = frozenset(clique | {v})
tree[bag].add(tv)
tree[tv].add(bag)
build(best.order)
return tree