-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecord_audio.py
executable file
·172 lines (146 loc) · 5.48 KB
/
record_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from sys import byteorder
from array import array
from struct import pack
import speech_recognitio as sr
import speech_recognitio1 as sr1
import speech_recognitio2 as sr2
import speech_recognitio3 as sr3
import pyaudio
import wave
THRESHOLD = 1500
CHUNK_SIZE = 1024
FORMAT = pyaudio.paInt16
RATE = 44100
def __init__(self):
self.call_count = 0
def is_silent(snd_data):
"Returns 'True' if below the 'silent' threshold"
return max(snd_data) < THRESHOLD
def normalize(snd_data):
"Average the volume out"
MAXIMUM = 16384
times = float(MAXIMUM)/max(abs(i) for i in snd_data)
r = array('h')
for i in snd_data:
r.append(int(i*times))
return r
def trim(snd_data):
"Trim the blank spots at the start and end"
def _trim(snd_data):
snd_started = False
r = array('h')
for i in snd_data:
if not snd_started and abs(i)>THRESHOLD:
snd_started = True
r.append(i)
elif snd_started:
r.append(i)
return r
# Trim to the left
snd_data = _trim(snd_data)
# Trim to the right
snd_data.reverse()
snd_data = _trim(snd_data)
snd_data.reverse()
return snd_data
def add_silence(snd_data, seconds):
"Add silence to the start and end of 'snd_data' of length 'seconds' (float)"
r = array('h', [0 for i in xrange(int(seconds*RATE))])
r.extend(snd_data)
r.extend([0 for i in xrange(int(seconds*RATE))])
return r
def record():
"""
Record a word or words from the microphone and
return the data as an array of signed shorts.
Normalizes the audio, trims silence from the
start and end, and pads with 0.5 seconds of
blank sound to make sure VLC et al can play
it without getting chopped off.
"""
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=1, rate=RATE,
input=True, output=True,
frames_per_buffer=CHUNK_SIZE)
num_silent = 0
snd_started = False
r = array('h')
while 1:
# little endian, signed short
snd_data = array('h', stream.read(CHUNK_SIZE))
if byteorder == 'big':
snd_data.byteswap()
r.extend(snd_data)
silent = is_silent(snd_data)
if silent and snd_started:
num_silent += 1
elif not silent and not snd_started:
snd_started = True
if snd_started and num_silent > 30:
break
sample_width = p.get_sample_size(FORMAT)
stream.stop_stream()
stream.close()
p.terminate()
r = normalize(r)
r = trim(r)
r = add_silence(r, 0.5)
return sample_width, r
def record_to_file(path):
"Records from the microphone and outputs the resulting data to 'path'"
sample_width, data = record()
data = pack('<' + ('h'*len(data)), *data)
wf = wave.open(path, 'wb')
wf.setnchannels(1)
wf.setsampwidth(sample_width)
wf.setframerate(RATE)
wf.writeframes(data)
wf.close()
def main(number):
print("please speak a word into the microphone")
record_to_file('demo.wav')
print("done - result written to demo.wav")
if number<50:
r = sr.Recognizer()
with sr.WavFile("demo.wav") as source: # use "test.wav" as the audio source
audio = r.record(source) # extract audio data from the file
try:
s=r.recognize(audio);
print("Transcription: " +s )
return s # recognize speech using Google Speech Recognition
except LookupError: # speech is unintelligible
print("Could not understand audio")
return 'Could not understand audio can you please repeat it'
elif number<100:
r1 = sr1.Recognizer()
with sr1.WavFile("demo.wav") as source: # use "test.wav" as the audio source
audio = r1.record(source) # extract audio data from the file
try:
s=r1.recognize(audio);
print("Transcription: " +s )
return s # recognize speech using Google Speech Recognition
except LookupError: # speech is unintelligible
print("Could not understand audio")
return 'Could not understand audio can you please repeat it'
elif number<150:
r2 = sr2.Recognizer()
with sr2.WavFile("demo.wav") as source: # use "test.wav" as the audio source
audio = r2.record(source) # extract audio data from the file
try:
s=r2.recognize(audio);
print("Transcription: " +s )
return s # recognize speech using Google Speech Recognition
except LookupError: # speech is unintelligible
print("Could not understand audio")
return 'Could not understand audio can you please repeat it'
elif number<200:
r3 = sr3.Recognizer()
with sr3.WavFile("demo.wav") as source: # use "test.wav" as the audio source
audio = r3.record(source) # extract audio data from the file
try:
s=r3.recognize(audio);
print("Transcription: " +s )
return s # recognize speech using Google Speech Recognition
except LookupError: # speech is unintelligible
print("Could not understand audio")
return 'Could not understand audio can you please repeat it'