-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
49 lines (40 loc) · 1.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# test
###
from flask import Flask, render_template, request
import pickle
import numpy as np
popular_df = pickle.load(open('./popular.pkl', 'rb'))
pt = pickle.load(open('./pt.pkl', 'rb'))
books = pickle.load(open('./books.pkl', 'rb'))
similarity_scores = pickle.load(open('./similarity_scores.pkl', 'rb'))
app = Flask(__name__)
@app.route('/')
def index():
return render_template("index.html",
book_name=list(popular_df['Book-Title'].values),
author=list(popular_df['Book-Author'].values),
image=list(popular_df['Image-URL-M'].values),
votes=list(popular_df['num_ratings'].values),
rating=list(popular_df['avg_ratings'].values), )
@app.route('/recommend')
def recommend_ui():
return render_template('recommend.html')
@app.route('/recommend_books', methods=['post'])
def recommend():
user_input = request.form.get('user_input')
# index fetch for that book
index = np.where(pt.index == user_input)[0][0]
# get the most similar book to bookname in sorted way
similar_items = sorted(list(enumerate(similarity_scores[index])), key=lambda x: x[1], reverse=True)[1:5]
data = []
for i in similar_items:
item = []
temp_df = books[books['Book-Title'] == pt.index[i[0]]]
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Title'].values))
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Author'].values))
item.extend(list(temp_df.drop_duplicates('Book-Title')['Image-URL-M'].values))
data.append(item)
# print(data)
return render_template('recommend.html', data=data)
if __name__ == '__main__':
app.run(debug=True)