MTMAUNet: Multi-Task Multi-axis Attention UNet
pytorch>=1.6
monai>=1.0.0
accelerate>=0.5.0
Configure configs/Config.yaml
dataset:
test: ./test.csv # your infer csv path
val_model: ./checkpoint.pth.tar # weight file
test.csv file example, It is better to use absolute position
/dataset/img/img_001.nii.gz
/dataset/img/img_002.nii.gz
Run command
python infer.py
Configure configs/Config.yaml
dataset:
root: ./dataset_dir # your dataset path
cv:
dir_name: cv # your fold csv dir
fold: 0 # your fold k
split:
train: train.csv # your train csv name
val: val.csv # your val csv name
train.csv or val.csv file example, use a relative location to dataset.root
img_001.nii.gz, seg_001.nii.gz, 0
img_002.nii.gz, seg_002.nii.gz, 1
Run command
python train.py # train
python val.py # val
Code based on DynUNet in monai.
Code based on 3D-MaxViT-pytorch in 3D-MaxViT-pytorch.