forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lane_det.cpp
416 lines (361 loc) · 15.7 KB
/
lane_det.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#include <iostream>
#include <chrono>
#include <string>
#include <sstream>
#include "cuda_runtime_api.h"
#include "logging.h"
#include "common.hpp"
#define USE_FP16 // comment out this if want to use FP32
#define DEVICE 0 // GPU id
#define BATCH_SIZE 1
static const int INPUT_C = 3;
static const int INPUT_H = 288;
static const int INPUT_W = 800;
static const int OUTPUT_C = 101;
static const int OUTPUT_H = 56;
static const int OUTPUT_W = 4;
static const int OUTPUT_SIZE = OUTPUT_C * OUTPUT_H * OUTPUT_W;
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder,IBuilderConfig* builderConfig, DataType dt) {
INetworkDefinition* network = builder->createNetworkV2(0U);
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{INPUT_C, INPUT_H, INPUT_W });
assert(data);
std::map<std::string, Weights> weightMap = loadWeights("../lane.wts");
#if 0
/* print layer names */
for(std::map<std::string, Weights>::iterator iter = weightMap.begin(); iter != weightMap.end() ; iter++)
{
std::cout << iter->first << std::endl;
}
#endif
auto conv1 = network->addConvolution(*data, 64, DimsHW{ 7, 7 }, weightMap["model.conv1.weight"], emptywts);
assert(conv1);
conv1->setStride(DimsHW{2, 2});
conv1->setPadding(DimsHW{3, 3});
conv1->setNbGroups(1);
auto bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "model.bn1", 1e-5);
auto relu0 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
IPoolingLayer* pool0 = network->addPooling(*relu0->getOutput(0), PoolingType::kMAX, DimsHW{ 3, 3 });
pool0->setStride( DimsHW{ 2, 2 } );
pool0->setPadding( DimsHW{ 1, 1 } );
assert(pool0);
auto basic0 = basicBlock(network, weightMap, *pool0->getOutput(0), 64, 64, 1, "model.layer1.0.");
auto basic1 = basicBlock(network, weightMap, *basic0->getOutput(0), 64, 64, 1, "model.layer1.1.");
auto basic2_0 = basicBlock(network, weightMap, *basic1->getOutput(0), 64, 128, 2, "model.layer2.0.");
auto basic2_1 = basicBlock(network, weightMap, *basic2_0->getOutput(0), 128, 128, 1, "model.layer2.1.");
auto basic3_0 = basicBlock(network, weightMap, *basic2_1->getOutput(0), 128, 256, 2, "model.layer3.0.");
auto basic3_1 = basicBlock(network, weightMap, *basic3_0->getOutput(0), 256, 256, 1, "model.layer3.1.");
auto basic4_0 = basicBlock(network, weightMap, *basic3_1->getOutput(0), 256, 512, 2, "model.layer4.0.");
auto basic4_1 = basicBlock(network, weightMap, *basic4_0->getOutput(0), 512, 512, 1, "model.layer4.1.");
#if 0
/* just for debug */
Dims dims1 = basic4_1->getOutput(0)->getDimensions();
for (int i = 0; i < dims1.nbDims; i++)
{
std::cout << dims1.d[i] << "-" << (int)dims1.type[i] << " ";
}
std::cout << std::endl;
#endif
auto conv2 = network->addConvolution(*basic4_1->getOutput(0), 8, DimsHW{ 1, 1 }, weightMap["pool.weight"], weightMap["pool.bias"]);
assert(conv2);
conv2->setStride(DimsHW{1, 1});
conv2->setPadding(DimsHW{0, 0});
conv2->setNbGroups(1);
IShuffleLayer* permute0 = network->addShuffle(*conv2->getOutput(0));
assert(permute0);
permute0->setReshapeDimensions( Dims2{1, 1800});
auto fcwts0 = network->addConstant(nvinfer1::Dims2(2048, 1800), weightMap["cls.0.weight"]);
auto matrixMultLayer0 = network->addMatrixMultiply(*permute0->getOutput(0), MatrixOperation::kNONE, *fcwts0->getOutput(0), MatrixOperation::kTRANSPOSE);
assert(matrixMultLayer0 != nullptr);
// Add elementwise layer for adding bias
auto fcbias0 = network->addConstant(nvinfer1::Dims2(1, 2048), weightMap["cls.0.bias"]);
auto addBiasLayer0 = network->addElementWise(*matrixMultLayer0->getOutput(0), *fcbias0->getOutput(0), nvinfer1::ElementWiseOperation::kSUM);
assert(addBiasLayer0 != nullptr);
auto relu = network->addActivation(*addBiasLayer0->getOutput(0), ActivationType::kRELU);
auto fcwts1 = network->addConstant(nvinfer1::Dims2(22624, 2048), weightMap["cls.2.weight"]);
auto matrixMultLayer1 = network->addMatrixMultiply(*relu->getOutput(0), MatrixOperation::kNONE, *fcwts1->getOutput(0), MatrixOperation::kTRANSPOSE);
assert(matrixMultLayer1 != nullptr);
// Add elementwise layer for adding bias
auto fcbias1 = network->addConstant(nvinfer1::Dims2(1, 22624), weightMap["cls.2.bias"]);
auto addBiasLayer1 = network->addElementWise(*matrixMultLayer1->getOutput(0), *fcbias1->getOutput(0), nvinfer1::ElementWiseOperation::kSUM);
assert(addBiasLayer1 != nullptr);
IShuffleLayer* permute1 = network->addShuffle(*addBiasLayer1->getOutput(0));
assert(permute1);
permute1->setReshapeDimensions( Dims3{ 101, 56, 4 });
permute1->getOutput(0)->setName(OUTPUT_BLOB_NAME);
network->markOutput(*permute1->getOutput(0));
// Build engine
builder->setMaxBatchSize(maxBatchSize);
builderConfig->setMaxWorkspaceSize(16 * (1 << 20));// 16MB
#ifdef USE_FP16
if(builder->platformHasFastFp16()) {
std::cout << "Platform supports fp16 mode and use it !!!" << std::endl;
builderConfig->setFlag(BuilderFlag::kFP16);
} else {
std::cout << "Platform doesn't support fp16 mode so you can't use it !!!" << std::endl;
}
#endif
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *builderConfig);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*)(mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* builderConfig = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = createEngine(maxBatchSize, builder, builderConfig, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
void doInference(IExecutionContext& context, float* input, float* output, int batchSize) {
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
// Create GPU buffers on device
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * INPUT_C * INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
// Create stream
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * INPUT_C * INPUT_H * INPUT_W * sizeof(float),
cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float),
cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
std::vector<float> prepareImage(cv::Mat & img)
{
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
cv::Mat resized;
cv::resize(img, resized, cv::Size(INPUT_W, INPUT_H));
cv::Mat img_float;
resized.convertTo(img_float, CV_32FC3, 1. / 255.);
// HWC TO CHW
std::vector<cv::Mat> input_channels(INPUT_C);
cv::split(img_float, input_channels);
// normalize
std::vector<float> result(INPUT_H * INPUT_W * INPUT_C);
auto data = result.data();
int channelLength = INPUT_H * INPUT_W;
static float mean[]= {0.485, 0.456, 0.406};
static float std[] = {0.229, 0.224, 0.225};
for (int i = 0; i < INPUT_C; ++i) {
cv::Mat normed_channel = (input_channels[i] - mean[i]) / std[i];
memcpy(data, normed_channel.data, channelLength * sizeof(float));
data += channelLength;
}
return result;
}
/* (101,56,4), add softmax on 101_axis and calculate Expect */
void softmax_mul(float* x, float* y, int rows, int cols, int chan)
{
for(int i = 0, wh = rows * cols; i < rows; i++)
{
for(int j = 0; j < cols; j++)
{
float sum = 0.0;
float expect = 0.0;
for(int k = 0; k < chan - 1; k++)
{
x[k * wh + i * cols + j] = exp(x[k * wh + i * cols + j]);
sum += x[k * wh + i * cols + j];
}
for(int k = 0; k < chan - 1; k++)
{
x[k * wh + i * cols + j] /= sum;
}
for(int k = 0; k < chan - 1; k++)
{
x[k * wh + i * cols + j] = x[k * wh + i * cols + j] * (k + 1);
expect += x[k * wh + i * cols + j];
}
y[i * cols + j] = expect;
}
}
}
/* (101,56,4), calculate max index on 101_axis */
void argmax(float* x, float* y, int rows, int cols, int chan)
{
for(int i = 0,wh = rows * cols; i < rows; i++)
{
for(int j = 0; j < cols; j++)
{
int max = -10000000;
int max_ind = -1;
for(int k = 0; k < chan; k++)
{
if(x[k * wh + i * cols + j] > max)
{
max = x[k * wh + i * cols + j];
max_ind = k;
}
}
y[i * cols + j] = max_ind;
}
}
}
int main(int argc, char** argv)
{
cudaSetDevice(DEVICE);
// create a model using the API directly and serialize it to a stream
char *trtModelStream{ nullptr };
size_t size{ 0 };
if (argc == 2 && std::string(argv[1]) == "-s")
{
IHostMemory* modelStream{ nullptr };
APIToModel(BATCH_SIZE, &modelStream);
assert(modelStream != nullptr);
std::ofstream p("lane_det.engine", std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
}
else if (argc == 3 && std::string(argv[1]) == "-d")
{
std::ifstream file("lane_det.engine", std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
}
else
{
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./crnn -s // serialize model to plan file" << std::endl;
std::cerr << "./crnn -d ../samples // deserialize plan file and run inference" << std::endl;
return -1;
}
/* prepare input data */
static float data[BATCH_SIZE * INPUT_C * INPUT_H * INPUT_W];
static float prob[BATCH_SIZE * OUTPUT_SIZE];
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
delete[] trtModelStream;
std::vector<std::string> file_names;
if (read_files_in_dir(argv[2], file_names) < 0) {
std::cout << "read_files_in_dir failed." << std::endl;
return -1;
}
int fcount = 0;
int vis_h = 720;
int vis_w = 1280;
int col_sample_w = 8;
for (int f = 0; f < (int)file_names.size(); f++)
{
cv::Mat vis;
fcount++;
if (fcount < BATCH_SIZE && f + 1 != (int)file_names.size()) continue;
for (int b = 0; b < fcount; b++)
{
cv::Mat img = cv::imread(std::string(argv[2]) + "/" + file_names[f - fcount + 1 + b], 1);
if (img.empty()) continue;
cv::resize(img, vis, cv::Size(vis_w, vis_h));
std::vector<float> result(INPUT_C * INPUT_W * INPUT_H);
result = prepareImage(img);
memcpy(data, &result[0], INPUT_C * INPUT_W * INPUT_H * sizeof(float));
}
// Run inference
auto start = std::chrono::system_clock::now();
doInference(*context, data, prob, BATCH_SIZE); //prob: size (101, 56, 4)
auto end = std::chrono::system_clock::now();
std::cout << "inference time is "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< " ms" << std::endl;
std::vector<int> tusimple_row_anchor
{ 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112,
116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164,
168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216,
220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268,
272, 276, 280, 284 };
float max_ind[BATCH_SIZE * OUTPUT_H * OUTPUT_W];
float prob_reverse[BATCH_SIZE * OUTPUT_SIZE];
/* do out_j = out_j[:, ::-1, :] in python list*/
float expect[BATCH_SIZE * OUTPUT_H * OUTPUT_W];
for (int k = 0, wh = OUTPUT_W * OUTPUT_H; k < OUTPUT_C; k++)
{
for(int j = 0; j < OUTPUT_H; j ++)
{
for(int l = 0; l < OUTPUT_W; l++)
{
prob_reverse[k * wh + (OUTPUT_H - 1 - j) * OUTPUT_W + l] =
prob[k * wh + j * OUTPUT_W + l];
}
}
}
argmax(prob_reverse, max_ind, OUTPUT_H, OUTPUT_W, OUTPUT_C);
/* calculate softmax and Expect */
softmax_mul(prob_reverse, expect, OUTPUT_H, OUTPUT_W, OUTPUT_C);
for(int k = 0; k < OUTPUT_H; k++) {
for(int j = 0; j < OUTPUT_W; j++) {
max_ind[k * OUTPUT_W + j] == 100 ? expect[k * OUTPUT_W + j] = 0 :
expect[k * OUTPUT_W + j] = expect[k * OUTPUT_W + j];
}
}
std::vector<int> i_ind;
for(int k = 0; k < OUTPUT_W; k++) {
int ii = 0;
for(int g = 0; g < OUTPUT_H; g++) {
if(expect[g * OUTPUT_W + k] != 0)
ii++;
}
if(ii > 2) {
i_ind.push_back(k);
}
}
for(int k = 0; k < OUTPUT_H; k++) {
for(int ll = 0; ll < i_ind.size(); ll++) {
if(expect[OUTPUT_W * k + i_ind[ll]] > 0) {
cv::Point pp =
{ int(expect[OUTPUT_W * k + i_ind[ll]] * col_sample_w * vis_w / INPUT_W) - 1,
int( vis_h * tusimple_row_anchor[OUTPUT_H - 1 - k] / INPUT_H) - 1 };
cv::circle(vis, pp, 8, CV_RGB(0, 255 ,0), 2);
}
}
}
cv::imshow("lane_vis",vis);
cv::waitKey(0);
}
return 0;
}