-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmodel_validation.py
142 lines (112 loc) · 4.52 KB
/
model_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import matplotlib
import neptune
import neptune.integrations.sklearn as npt_utils
from neptune.exceptions import ModelNotFound, ModelVersionNotFound
from neptune.types import File
from sklearn.metrics import ConfusionMatrixDisplay, classification_report
from utils import *
matplotlib.use("Agg")
run = neptune.init_run(
monitoring_namespace="monitoring/validation",
)
model_name = "pickled_model"
dataset_name = "features"
nrows = 1000
# (Neptune) Get dataset features from preprocessing stage
run["preprocessing/dataset"][dataset_name].download()
# (Neptune) Get latest model from training stage
model_key = "PIPELINES"
project_key = run["sys/id"].fetch().split("-")[0]
try:
# (Neptune) Resume model
model = neptune.init_model(
with_id=f"{project_key}-{model_key}", # Your model ID here
)
latest_model_version_id = model.fetch_model_versions_table().to_pandas()["sys/id"][0]
except ModelNotFound:
print(
f"The model with the provided key `{model_key}` doesn't exist in the `{project_key}` project."
)
try:
# (Neptune) Resume model version created in the training stage
model_version = neptune.init_model_version(with_id=latest_model_version_id)
except ModelVersionNotFound:
print(
f"The model version with the ID `{latest_model_version_id}` doesn't exist in the `{project_key}-{model_key}` model."
)
# (Neptune) Get model weights from training stage
model_version["model"][model_name].download()
# Load model and dataset
clf = load_model(f"{model_name}.pkl")
eval_data = load_dataset(f"{dataset_name}.npz")
# Get dataset details
target_names = eval(np.array_str(eval_data["target_names"]))
h = eval_data["h"]
w = eval_data["w"]
# Get train set features
X_train_pca = eval_data["x_train_pca"]
y_train = eval_data["y_train"]
# Get test set features
X_test = eval_data["x_test"]
y_test = eval_data["y_test"]
X_test_pca = eval_data["x_test_pca"]
eigen_faces = eval_data["eigen_faces"]
# Predict on test set
y_pred = clf.predict(X_test_pca)
# Get predicted prediction titles
prediction_titles = [get_titles(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])]
# Get eigenface titles
eigenface_titles = ["eigenface %d" % i for i in range(eigen_faces.shape[0])]
# (Neptune) Set up "validation" namespace inside the run.
# This will be the base namespace where all the validation metadata is logged.
validation_handler = run["validation"]
for i, image in enumerate(X_test):
fig = plt.figure()
img = plt.imshow(image.reshape((h, w)), cmap=plt.cm.gray)
plt.xticks(())
plt.yticks(())
# (Neptune) Log predicted images
validation_handler["images/predicted_images"].append(fig, description=prediction_titles[i])
plt.close()
for i, image in enumerate(eigen_faces):
fig = plt.figure()
img = plt.imshow(image.reshape((h, w)), cmap=plt.cm.gray)
plt.xticks(())
plt.yticks(())
# (Neptune) Log eigen face images
validation_handler["images/eigen_faces"].append(fig, description=eigenface_titles[i])
plt.close()
# Confusion matrix
print(classification_report(y_test, y_pred, target_names=target_names))
confusion_matrix = ConfusionMatrixDisplay.from_estimator(
clf, X_test_pca, y_test, display_labels=target_names, xticks_rotation="vertical"
)
confusion_matrix_filename = "confusion_matrix"
confusion_matrix.figure_.savefig(confusion_matrix_filename)
# (Neptune) Log validation scores
validation_handler["metrics"] = {
"preds": npt_utils.get_test_preds(clf, X_test_pca, y_test, y_pred=y_pred, nrows=nrows),
"preds_proba": npt_utils.get_test_preds_proba(clf, X_test_pca, nrows=nrows),
"scores": npt_utils.get_scores(clf, X_test_pca, y_test, y_pred=y_pred),
}
# (Neptune) Log validation diagnostics charts
validation_handler["metrics/diagnostics_charts"] = {
"confusion_matrix": File(f"{confusion_matrix_filename}.png"),
"classification_report": npt_utils.create_classification_report_chart(
clf, X_train_pca, X_test_pca, y_train, y_test
),
"ROC_AUC": npt_utils.create_roc_auc_chart(clf, X_train_pca, X_test_pca, y_train, y_test),
"class_prediction_error": npt_utils.create_class_prediction_error_chart(
clf, X_train_pca, X_test_pca, y_train, y_test
),
}
# (Neptune) Log metrics to model registry
run.wait()
model_score = validation_handler["metrics/scores"].fetch()
model_version["metrics/validation/scores"] = model_score
# (Neptune) Move model to staging
SCORE_THRESHOLD = 0.50
if model_score["class_0"]["fbeta_score"] > SCORE_THRESHOLD:
model_version.change_stage("staging")
else:
model_version.change_stage("archived")