-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining.py
245 lines (203 loc) · 10.3 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import numpy as np
import pandas as pd
import pickle
from utils import resize, normalize, load_config, save_pickle, CustomSummaryTracker
import init_training
import argparse
def train(dataset, models, training_pipeline, logging, cfg):
# Unpack
trainloader = dataset['trainloader']
example_batch = dataset['example_batch']
optimizer = models['optimizer']
compound_loss_func = training_pipeline['compound_loss_func']
forward = training_pipeline['forward']
training_loss = logging['training_loss']
training_summary = logging['training_summary']
validation_summary = logging['validation_summary']
example_output = logging['example_output']
tb_writer = logging['tensorboard_writer']
# Make dir
if not os.path.exists(cfg['save_path']):
os.makedirs(cfg['save_path'])
# Set torch deterministic (not possible on every GPU)
if cfg['use_deterministic_algorithms']:
torch.use_deterministic_algorithms(True)
else:
torch.use_deterministic_algorithms(False)
# Training loop
best_validation_performance = np.inf
not_improved_count = 0
epoch = 0
while epoch <= cfg['epochs'] and not_improved_count < cfg['early_stop_criterium']:
print(f'\nepoch {epoch}')
training_loss.reset()
for batch_idx, batch in enumerate(trainloader, 1): # range(100):
# Forward pass
model_output = forward(batch, models, cfg)
total_loss = compound_loss_func(model_output)['total']
# Backward pass
optimizer.zero_grad()
total_loss.backward(retain_graph=False)
optimizer.step()
# Track the loss summary
training_loss.update(compound_loss_func.items())
if batch_idx % (len(trainloader) // cfg['trainstats_per_epoch']) == 0:
# Get the average loss over last batches
training_performance = training_loss.get()
training_loss.reset()
# Store and print the training performance
timestamp = get_timestamp(epoch, batch_idx, total_batches_per_epoch=len(trainloader),
batch_size=cfg['batch_size'])
training_summary.update({**timestamp, **training_performance})
tb_writer.add_scalars('loss/training', training_performance, timestamp['samples'])
print(timestamp['timestamp'] + '-tr ' + ''.join(
[' {:.8}: {:.5f}'.format(k, v) for k, v in training_performance.items()]))
# Process example batch
with torch.no_grad():
model_output = forward(example_batch, models, cfg, to_cpu=True)
# Store examples in the summary trackers
example_output.update(model_output)
for key in cfg['save_output']:
shape = model_output[key].shape
if len(shape) == 4: # Image batch (N,C,H,W)
tb_writer.add_images(key,
normalize(model_output[key]), # (scale to range [0, 1])
timestamp['samples'], dataformats='NCHW')
elif len(shape) == 5: # Video batch (N, C, T, H, W)
img_batch = model_output[key][0].permute(1,0,2,3) # First video as img batch
tb_writer.add_images(key,
normalize(img_batch), # (scale to range [0, 1])
timestamp['samples'], dataformats='NCHW')
elif len(shape) == 2: # (N, P)
tb_writer.add_histogram(key, model_output[key]) # Stimulation
if batch_idx % (len(trainloader) // cfg['validations_per_epoch']) == 0:
# Run validation loop
validation_performance = validation(dataset, models, training_pipeline, logging, cfg)
# Track and print the training performance
timestamp = get_timestamp(epoch, batch_idx, total_batches_per_epoch=len(trainloader),
batch_size=cfg['batch_size'])
validation_summary.update({**timestamp, **validation_performance})
tb_writer.add_scalars('/loss/validation', validation_performance, timestamp['samples'])
print(timestamp['timestamp'] + '-val' + ''.join(
[' {:.8}: {:.5f}'.format(k, v) for k, v in validation_performance.items()]))
if validation_performance['total'] < best_validation_performance:
best_validation_performance = validation_performance['total']
print("Model has improved")
not_improved_count = 0
save_models(models, cfg, prefix='best')
else:
not_improved_count += 1
print(f"Not improved during last {not_improved_count} validations")
if not_improved_count >= cfg['early_stop_criterium']:
break
epoch += 1
print("--- Finished training ---\n")
def validation(dataset, models, training_pipeline, logging, cfg):
# Unpack
valloader = dataset['valloader']
compound_loss_func = training_pipeline['compound_loss_func']
forward = training_pipeline['forward']
validation_loss = logging['validation_loss']
# Set models to eval
for model in models.values():
if isinstance(model, torch.nn.Module):
model.eval()
# Loop over validation set and calculate validation loss
validation_loss.reset()
for batch_idx, batch in enumerate(valloader, 1): # range(100):
# Forward pass
with torch.no_grad():
model_output = forward(batch, models, cfg)
loss = compound_loss_func(model_output)
# Update running stats
validation_loss.update(compound_loss_func.items())
# Get the average loss over last batches
validation_performance = validation_loss.get()
# Reset models to training mode
for model in models.values():
if isinstance(model, torch.nn.Module):
model.train()
return validation_performance
def get_timestamp(epoch, batch_idx, total_batches_per_epoch, batch_size):
timestamp = {'timestamp': f'E{epoch:02d}-B{batch_idx:03d}',
'epochs': epoch + batch_idx / total_batches_per_epoch,
'samples': batch_size * (batch_idx + total_batches_per_epoch * epoch),}
return timestamp
def save_models(models, cfg, prefix='best'):
# Create directory if not exists
path = os.path.join(cfg['save_path'], 'checkpoints')
if not os.path.exists(path):
os.makedirs(path)
# Save model parameters
for name, model in models.items():
if isinstance(model, torch.nn.Module):
fn = os.path.join(path, f'{prefix}_{name}.pth')
torch.save(model.state_dict(), fn)
print(f"Saving parameters to {fn}")
def load_models(models, cfg, prefix='best'):
for name, model in models.items():
if isinstance(model, torch.nn.Module):
fn = os.path.join(cfg['save_path'], 'checkpoints', f'{prefix}_{name}.pth')
model.load_state_dict(torch.load(fn, map_location=cfg['device']))
def get_validation_results(dataset, models, training_pipeline, cfg):
output = CustomSummaryTracker()
performance = CustomSummaryTracker()
for batch in dataset['valloader']:
model_output = training_pipeline['forward'](batch, models, cfg, to_cpu=True)
save_output = {key: model_output[key] for key in cfg['save_output']}
output.update(save_output)
loss = training_pipeline['compound_loss_func'](model_output)
performance.update(training_pipeline['compound_loss_func'].items())
performance = pd.DataFrame(performance.get())
return output, performance
def save_validation_results(output, performance, cfg):
path = os.path.join(cfg['save_path'], 'validation_results')
print(f'Saving validation results to {path}')
if output is not None:
output = {k: torch.cat(v) for k, v in output.get().items()} # concatenate batches
save_pickle(output, path)
performance.to_csv(os.path.join(path, 'validation_performance.csv'))
performance.describe().to_csv(os.path.join(path, 'performance_summary.csv'))
def save_output_history(logging, cfg):
path = os.path.join(cfg['save_path'], 'output_history')
all_output = logging['example_output'].get()
output = {key: val for key, val in all_output.items() if key in cfg['save_output']}
save_pickle(output, path)
def save_training_summary(logging, cfg):
# Write training and validation summary
for label in ['training', 'validation']:
fn = os.path.join(cfg['save_path'], f'{label}_summary.csv')
data = pd.DataFrame(logging[f'{label}_summary'].get())
data['label'] = label
data.to_csv(fn, index=False)
def main(args):
""""Initialize components and run training"""
# Initialize training
cfg = load_config(args.config)
models = init_training.get_models(cfg)
dataset = init_training.get_dataset(cfg)
training_pipeline = init_training.get_training_pipeline(cfg)
logging = init_training.get_logging(cfg)
train(dataset, models, training_pipeline, logging, cfg)
save_models(models, cfg, prefix='final')
# Save the results
load_models(models, cfg, prefix='best')
save_output_history(logging, cfg)
save_training_summary(logging, cfg)
output, performance = get_validation_results(dataset, models, training_pipeline, cfg)
if not args.save_output:
output = None
save_validation_results(output, performance, cfg)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-c", "--config", type=str, default=None,
help="filename of config file (yaml) with the training configurations: e.g. '_config.yaml' ")
# group.add_argument("-l", "--specs-list", type=str, default=None,
# help="filename of specs file (csv) with the list of model specifications") # Todo
parser.add_argument('-s', '--save-output', action='store_true',
help="save the processed validation images after training")
args = parser.parse_args()
main(args)