From cc1e43a2cffcf5be80613c4907fdf4a42b68fe95 Mon Sep 17 00:00:00 2001 From: Conroy Cheers Date: Wed, 27 Nov 2024 05:26:28 +1100 Subject: [PATCH] [Hardware][NVIDIA] Add non-NVML CUDA mode for Jetson (#9735) Signed-off-by: Conroy Cheers Signed-off-by: Andrew Feldman --- CMakeLists.txt | 10 +- vllm/platforms/__init__.py | 10 +- vllm/platforms/cuda.py | 222 +++++++++++++++++++++++-------------- 3 files changed, 155 insertions(+), 87 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ff34225537cdd..882d4412632a5 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -34,7 +34,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS) set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12") # Supported NVIDIA architectures. -set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0") +set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0") # Supported AMD GPU architectures. set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101") @@ -249,7 +249,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") # Only build Marlin kernels if we are building for at least some compatible archs. # Keep building Marlin for 9.0 as there are some group sizes and shapes that # are not supported by Machete yet. - cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.9;9.0" ${CUDA_ARCHS}) + cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0" ${CUDA_ARCHS}) if (MARLIN_ARCHS) set(MARLIN_SRCS "csrc/quantization/fp8/fp8_marlin.cu" @@ -300,8 +300,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") # # For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x) # kernels for the remaining archs that are not already built for 3x. - cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS - "7.5;8.0;8.6;8.9;9.0" "${CUDA_ARCHS}") + cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS + "7.5;8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}") # subtract out the archs that are already built for 3x list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS}) if (SCALED_MM_2X_ARCHS) @@ -427,7 +427,7 @@ set_gencode_flags_for_srcs( CUDA_ARCHS "${CUDA_ARCHS}") if(VLLM_GPU_LANG STREQUAL "CUDA") - cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.9;9.0" "${CUDA_ARCHS}") + cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}") if (MARLIN_MOE_ARCHS) set(MARLIN_MOE_SRC "csrc/moe/marlin_kernels/marlin_moe_kernel.h" diff --git a/vllm/platforms/__init__.py b/vllm/platforms/__init__.py index 1f68fc2e25df3..7cb8ac4b0a1e0 100644 --- a/vllm/platforms/__init__.py +++ b/vllm/platforms/__init__.py @@ -28,7 +28,15 @@ finally: pynvml.nvmlShutdown() except Exception: - pass + # CUDA is supported on Jetson, but NVML may not be. + import os + + def cuda_is_jetson() -> bool: + return os.path.isfile("/etc/nv_tegra_release") \ + or os.path.exists("/sys/class/tegra-firmware") + + if cuda_is_jetson(): + is_cuda = True is_rocm = False diff --git a/vllm/platforms/cuda.py b/vllm/platforms/cuda.py index 70724b8be4c45..0d07050fd1b6a 100644 --- a/vllm/platforms/cuda.py +++ b/vllm/platforms/cuda.py @@ -4,7 +4,7 @@ import os from functools import lru_cache, wraps -from typing import TYPE_CHECKING, Callable, List, Tuple, TypeVar +from typing import TYPE_CHECKING, Callable, List, TypeVar import pynvml import torch @@ -38,10 +38,23 @@ # see https://github.com/huggingface/diffusers/issues/9704 for details torch.backends.cuda.enable_cudnn_sdp(False) -# NVML utils -# Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`, -# all the related functions work on real physical device ids. -# the major benefit of using NVML is that it will not initialize CUDA + +def device_id_to_physical_device_id(device_id: int) -> int: + if "CUDA_VISIBLE_DEVICES" in os.environ: + device_ids = os.environ["CUDA_VISIBLE_DEVICES"].split(",") + if device_ids == [""]: + msg = ( + "CUDA_VISIBLE_DEVICES is set to empty string, which means" + " GPU support is disabled. If you are using ray, please unset" + " the environment variable `CUDA_VISIBLE_DEVICES` inside the" + " worker/actor. " + "Check https://github.com/vllm-project/vllm/issues/8402 for" + " more information.") + raise RuntimeError(msg) + physical_device_id = device_ids[device_id] + return int(physical_device_id) + else: + return device_id def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]: @@ -57,87 +70,75 @@ def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R: return wrapper -@lru_cache(maxsize=8) -@with_nvml_context -def get_physical_device_capability(device_id: int = 0) -> Tuple[int, int]: - handle = pynvml.nvmlDeviceGetHandleByIndex(device_id) - return pynvml.nvmlDeviceGetCudaComputeCapability(handle) - - -@lru_cache(maxsize=8) -@with_nvml_context -def get_physical_device_name(device_id: int = 0) -> str: - handle = pynvml.nvmlDeviceGetHandleByIndex(device_id) - return pynvml.nvmlDeviceGetName(handle) - - -@lru_cache(maxsize=8) -@with_nvml_context -def get_physical_device_total_memory(device_id: int = 0) -> int: - handle = pynvml.nvmlDeviceGetHandleByIndex(device_id) - return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total) - +class CudaPlatformBase(Platform): + _enum = PlatformEnum.CUDA + device_type: str = "cuda" + dispatch_key: str = "CUDA" -@with_nvml_context -def warn_if_different_devices(): - device_ids: int = pynvml.nvmlDeviceGetCount() - if device_ids > 1: - device_names = [get_physical_device_name(i) for i in range(device_ids)] - if len(set(device_names)) > 1 and os.environ.get( - "CUDA_DEVICE_ORDER") != "PCI_BUS_ID": - logger.warning( - "Detected different devices in the system: \n%s\nPlease" - " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to " - "avoid unexpected behavior.", "\n".join(device_names)) + @classmethod + def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: + raise NotImplementedError + @classmethod + def get_device_name(cls, device_id: int = 0) -> str: + raise NotImplementedError -try: - from sphinx.ext.autodoc.mock import _MockModule + @classmethod + def get_device_total_memory(cls, device_id: int = 0) -> int: + raise NotImplementedError - if not isinstance(pynvml, _MockModule): - warn_if_different_devices() -except ModuleNotFoundError: - warn_if_different_devices() + @classmethod + def is_full_nvlink(cls, device_ids: List[int]) -> bool: + raise NotImplementedError + @classmethod + def log_warnings(cls): + pass -def device_id_to_physical_device_id(device_id: int) -> int: - if "CUDA_VISIBLE_DEVICES" in os.environ: - device_ids = os.environ["CUDA_VISIBLE_DEVICES"].split(",") - if device_ids == [""]: - msg = ( - "CUDA_VISIBLE_DEVICES is set to empty string, which means" - " GPU support is disabled. If you are using ray, please unset" - " the environment variable `CUDA_VISIBLE_DEVICES` inside the" - " worker/actor. " - "Check https://github.com/vllm-project/vllm/issues/8402 for" - " more information.") - raise RuntimeError(msg) - physical_device_id = device_ids[device_id] - return int(physical_device_id) - else: - return device_id + @classmethod + def check_and_update_config(cls, vllm_config: VllmConfig) -> None: + parallel_config = vllm_config.parallel_config + scheduler_config = vllm_config.scheduler_config + if parallel_config.worker_cls == "auto": + if scheduler_config.is_multi_step: + parallel_config.worker_cls = \ + "vllm.worker.multi_step_worker.MultiStepWorker" + elif vllm_config.speculative_config: + parallel_config.worker_cls = \ + "vllm.spec_decode.spec_decode_worker.create_spec_worker" + else: + parallel_config.worker_cls = "vllm.worker.worker.Worker" -class CudaPlatform(Platform): - _enum = PlatformEnum.CUDA - device_type: str = "cuda" - dispatch_key: str = "CUDA" +# NVML utils +# Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`, +# all the related functions work on real physical device ids. +# the major benefit of using NVML is that it will not initialize CUDA +class NvmlCudaPlatform(CudaPlatformBase): @classmethod + @lru_cache(maxsize=8) + @with_nvml_context def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: physical_device_id = device_id_to_physical_device_id(device_id) - major, minor = get_physical_device_capability(physical_device_id) + handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id) + major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle) return DeviceCapability(major=major, minor=minor) @classmethod + @lru_cache(maxsize=8) + @with_nvml_context def get_device_name(cls, device_id: int = 0) -> str: physical_device_id = device_id_to_physical_device_id(device_id) - return get_physical_device_name(physical_device_id) + return cls._get_physical_device_name(physical_device_id) @classmethod + @lru_cache(maxsize=8) + @with_nvml_context def get_device_total_memory(cls, device_id: int = 0) -> int: physical_device_id = device_id_to_physical_device_id(device_id) - return get_physical_device_total_memory(physical_device_id) + handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id) + return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total) @classmethod @with_nvml_context @@ -153,27 +154,86 @@ def is_full_nvlink(cls, physical_device_ids: List[int]) -> bool: if i < j: try: p2p_status = pynvml.nvmlDeviceGetP2PStatus( - handle, peer_handle, - pynvml.NVML_P2P_CAPS_INDEX_NVLINK) + handle, + peer_handle, + pynvml.NVML_P2P_CAPS_INDEX_NVLINK, + ) if p2p_status != pynvml.NVML_P2P_STATUS_OK: return False except pynvml.NVMLError: logger.exception( - "NVLink detection failed. This is normal if your" - " machine has no NVLink equipped.") + "NVLink detection failed. This is normal if" + " your machine has no NVLink equipped.") return False return True @classmethod - def check_and_update_config(cls, vllm_config: VllmConfig) -> None: - parallel_config = vllm_config.parallel_config - scheduler_config = vllm_config.scheduler_config - if parallel_config.worker_cls == "auto": - if scheduler_config.is_multi_step: - parallel_config.worker_cls = \ - "vllm.worker.multi_step_worker.MultiStepWorker" - elif vllm_config.speculative_config: - parallel_config.worker_cls = \ - "vllm.spec_decode.spec_decode_worker.create_spec_worker" - else: - parallel_config.worker_cls = "vllm.worker.worker.Worker" + def _get_physical_device_name(cls, device_id: int = 0) -> str: + handle = pynvml.nvmlDeviceGetHandleByIndex(device_id) + return pynvml.nvmlDeviceGetName(handle) + + @classmethod + @with_nvml_context + def log_warnings(cls): + device_ids: int = pynvml.nvmlDeviceGetCount() + if device_ids > 1: + device_names = [ + cls._get_physical_device_name(i) for i in range(device_ids) + ] + if (len(set(device_names)) > 1 + and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"): + logger.warning( + "Detected different devices in the system: \n%s\nPlease" + " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to " + "avoid unexpected behavior.", + "\n".join(device_names), + ) + + +class NonNvmlCudaPlatform(CudaPlatformBase): + + @classmethod + def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: + major, minor = torch.cuda.get_device_capability(device_id) + return DeviceCapability(major=major, minor=minor) + + @classmethod + def get_device_name(cls, device_id: int = 0) -> str: + return torch.cuda.get_device_name(device_id) + + @classmethod + def get_device_total_memory(cls, device_id: int = 0) -> int: + device_props = torch.cuda.get_device_properties(device_id) + return device_props.total_memory + + @classmethod + def is_full_nvlink(cls, physical_device_ids: List[int]) -> bool: + logger.exception( + "NVLink detection not possible, as context support was" + " not found. Assuming no NVLink available.") + return False + + +# Autodetect either NVML-enabled or non-NVML platform +# based on whether NVML is available. +nvml_available = False +try: + try: + pynvml.nvmlInit() + nvml_available = True + except Exception: + # On Jetson, NVML is not supported. + nvml_available = False +finally: + if nvml_available: + pynvml.nvmlShutdown() + +CudaPlatform = NvmlCudaPlatform if nvml_available else NonNvmlCudaPlatform + +try: + from sphinx.ext.autodoc.mock import _MockModule + + if not isinstance(pynvml, _MockModule): + CudaPlatform.log_warnings() +except ModuleNotFoundError: + CudaPlatform.log_warnings()