diff --git a/neurolib/models/ww/timeIntegration.py b/neurolib/models/ww/timeIntegration.py index 64fd9859..bf4f395a 100644 --- a/neurolib/models/ww/timeIntegration.py +++ b/neurolib/models/ww/timeIntegration.py @@ -408,7 +408,7 @@ def compute_hx( V, T, dyn_vars, - dyn_vars_delay, + dyn_vars_delayed, control, sv, ): @@ -430,8 +430,8 @@ def compute_hx( :type T: int :param dyn_vars: N x V x T array containing all values of 'exc' and 'inh'. :type dyn_vars: np.ndarray - :param dyn_vars_delay: - :type dyn_vars_delay: np.ndarray + :param dyn_vars_delayed: N x V x T array containing all delayed values of 'exc' and 'inh'. + :type dyn_vars_delayed: np.ndarray :param control: N x 2 x T control inputs to 'exc' and 'inh'. :type control: np.ndarray :param sv: dictionary of state vars and respective indices @@ -441,7 +441,7 @@ def compute_hx( :rtype: np.ndarray """ hx = np.zeros((N, T, V, V)) - nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, dyn_vars_delay[:, sv["se"], :]) + nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, dyn_vars_delayed[:, sv["se"], :]) for n in range(N): for t in range(T): @@ -591,7 +591,7 @@ def compute_hx_nw( T, se, si, - se_delay, + se_delayed, ue, sv, ): @@ -615,8 +615,8 @@ def compute_hx_nw( :type se: np.ndarray :param si: Array of the se-variable. :type si: np.ndarray - :param se_delay: Value of delayed se-variable. - :type se_delay: np.ndarray + :param se_delayed: Value of delayed se-variable. + :type se_delayed: np.ndarray :param ue: N x T array of the total input received by 'exc' population in every node at any time. :type ue: np.ndarray :param sv: dictionary of state vars and respective indices @@ -645,7 +645,7 @@ def compute_hx_nw( ) = model_params hx_nw = np.zeros((N, N, T, V, V)) - nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, se_delay) + nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, se_delayed) IE = w_exc * (exc_current_baseline + ue) + w_ee * J_NMDA * se - J_I * si + J_NMDA * nw_e for n1 in range(N): @@ -672,7 +672,7 @@ def Duh( K_gl, cmat, dmat_ndt, - se_delay, + se_delayed, sv, ): """Jacobian of systems dynamics wrt. external inputs (control signals). @@ -703,8 +703,8 @@ def Duh( :type cmat: np.ndarray :param dmat_ndt: delay index matrix :type dmat_ndt: np.ndarray - :param se_delay: N x T array containing values of 'exc' of all nodes through time. - :type se_delay: np.ndarray + :param se_delayed: N x T array containing values of 'exc' of all nodes through time. + :type se_delayed: np.ndarray :param sv: dictionary of state vars and respective indices :type sv: dict @@ -730,7 +730,7 @@ def Duh( w_ee, ) = model_params - nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, se_delay) + nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, se_delayed) duh = np.zeros((N, V_vars, V_in, T)) for t in range(T):