diff --git a/neurolib/models/wc/timeIntegration.py b/neurolib/models/wc/timeIntegration.py index 18d2675d..be57bb32 100644 --- a/neurolib/models/wc/timeIntegration.py +++ b/neurolib/models/wc/timeIntegration.py @@ -372,7 +372,7 @@ def compute_hx( V, T, dyn_vars, - dyn_vars_delay, + dyn_vars_delayed, control, sv, ): @@ -394,8 +394,8 @@ def compute_hx( :type T: int :param dyn_vars: N x V x T array containing all values of 'exc' and 'inh'. :type dyn_vars: np.ndarray - :param dyn_vars_delay: - :type dyn_vars_delay: np.ndarray + :param dyn_vars_delayed: N x V x T array containing all values of delayed 'exc' and 'inh'. + :type dyn_vars_delayed: np.ndarray :param control: N x 2 x T control inputs to 'exc' and 'inh'. :type control: np.ndarray :param sv: dictionary of state vars and respective indices @@ -405,7 +405,7 @@ def compute_hx( :rtype: np.ndarray """ hx = np.zeros((N, T, V, V)) - nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, dyn_vars_delay[:, sv["exc"], :]) + nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, dyn_vars_delayed[:, sv["exc"], :]) for n in range(N): for t in range(T): @@ -465,7 +465,7 @@ def compute_hx_nw( T, e, i, - e_delay, + e_delayed, ue, sv, ): @@ -485,14 +485,16 @@ def compute_hx_nw( :type V: int :param T: Length of simulation (time dimension). :type T: int - :param e: Value of the E-variable at specific time. - :type e: float - :param i: Value of the I-variable at specific time. - :type i: float - :param ue: N x T array of the total input received by 'exc' population in every node at any time. - :type ue: np.ndarray - :param sv: dictionary of state vars and respective indices - :type sv: dict + :param e: Value of the E-variable at specific time. + :type e: float + :param i: Value of the I-variable at specific time. + :type i: float + :param e_delayed: Value of the delayed E-variable at specific time. + :type e_delayed: float + :param ue: N x T array of the total input received by 'exc' population in every node at any time. + :type ue: np.ndarray + :param sv: dictionary of state vars and respective indices + :type sv: dict :return: Jacobians for network connectivity in all time steps. :rtype: np.ndarray of shape N x N x T x 4 x 4 @@ -513,7 +515,7 @@ def compute_hx_nw( ) = model_params hx_nw = np.zeros((N, N, T, V, V)) - nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, e_delay) + nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, e_delayed) exc_input = c_excexc * e - c_inhexc * i + nw_e + exc_ext_baseline + ue for n1 in range(N): @@ -540,7 +542,7 @@ def Duh( K_gl, cmat, dmat_ndt, - exc_delay, + exc_delayed, sv, ): """Jacobian of systems dynamics wrt. external inputs (control signals). @@ -571,8 +573,8 @@ def Duh( :type cmat: np.ndarray :param dmat_ndt: delay index matrix :type dmat_ndt: np.ndarray - :param exc_delay: N x T array containing values of 'exc' of all nodes through time incl. delay - :type exc_delay: np.ndarray + :param exc_delayed: N x T array containing values of 'exc' of all nodes through time incl. delay + :type exc_delayed: np.ndarray :param sv: dictionary of state vars and respective indices :type sv: dict @@ -594,7 +596,7 @@ def Duh( inh_ext_baseline, ) = model_params - nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, exc_delay) + nw_e = compute_nw_input(N, T, K_gl, cmat, dmat_ndt, exc_delayed) duh = np.zeros((N, V_vars, V_in, T)) for t in range(T):