diff --git a/nimare/annotate/gclda.py b/nimare/annotate/gclda.py index 4668f8b6b..51b1cec6e 100755 --- a/nimare/annotate/gclda.py +++ b/nimare/annotate/gclda.py @@ -353,7 +353,7 @@ def __init__( self.topics["total_n_word_tokens_by_topic"][0, topic] += 1 self.topics["n_word_tokens_doc_by_topic"][doc, topic] += 1 - def fit(self, n_iters=10000, loglikely_freq=10): + def fit(self, n_iters=5000, loglikely_freq=10): """Run multiple iterations. .. versionchanged:: 0.0.8 diff --git a/nimare/meta/cbma/ale.py b/nimare/meta/cbma/ale.py index b57c260bc..288cf9886 100755 --- a/nimare/meta/cbma/ale.py +++ b/nimare/meta/cbma/ale.py @@ -156,7 +156,7 @@ def __init__( **kwargs, ) self.null_method = null_method - self.n_iters = None if null_method == "approximate" else n_iters or 10000 + self.n_iters = None if null_method == "approximate" else n_iters or 5000 self.n_cores = _check_ncores(n_cores) self.dataset = None @@ -403,7 +403,7 @@ class ALESubtraction(PairwiseCBMAEstimator): def __init__( self, kernel_transformer=ALEKernel, - n_iters=10000, + n_iters=5000, memory=Memory(location=None, verbose=0), memory_level=0, n_cores=1, @@ -698,7 +698,7 @@ class SCALE(CBMAEstimator): def __init__( self, xyz, - n_iters=10000, + n_iters=5000, n_cores=1, kernel_transformer=ALEKernel, memory=Memory(location=None, verbose=0), diff --git a/nimare/meta/cbma/mkda.py b/nimare/meta/cbma/mkda.py index aada0982f..7cf9bdea9 100644 --- a/nimare/meta/cbma/mkda.py +++ b/nimare/meta/cbma/mkda.py @@ -1196,7 +1196,7 @@ def __init__( **kwargs, ) self.null_method = null_method - self.n_iters = None if null_method == "approximate" else n_iters or 10000 + self.n_iters = None if null_method == "approximate" else n_iters or 5000 self.n_cores = _check_ncores(n_cores) self.dataset = None