-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
405 lines (350 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
os.environ["JAX_PLATFORMS"] = "cpu"
from fasthtml.common import fast_app, serve
from fasthtml.common import FileResponse, JSONResponse
from fasthtml.common import (
Img, Div, Card, P, Table, Tbody, Tr, Td, A, H1, H2, Br,
Form, Button, Input)
from src.fae.vae import FluxVAE
from src.fae.sae_common import SAEConfig, nf4
from src.fae.scored_storage import ScoredStorage
import numpy as np
from pathlib import Path
import shutil
import requests
from fh_plotly import plotly_headers, plotly2fasthtml
import plotly.express as px
import traceback
import time
CACHE_DIRECTORY = "somewhere/maxacts_double_l18_img"
HEIGHT, WIDTH = 16, 16
vae = FluxVAE("somewhere/taef1/taef1_encoder.onnx", "somewhere/taef1/taef1_decoder.onnx")
cache_dir = Path(CACHE_DIRECTORY)
image_activations_dir = cache_dir / "image_activations"
image_cache_dir = Path("somewhere/img_cache")
if image_cache_dir.exists():
shutil.rmtree(image_cache_dir)
image_cache_dir.mkdir(parents=True, exist_ok=True)
if os.path.exists(cache_dir / "feature_acts.db") or True:
while True:
try:
scored_storage = ScoredStorage(
cache_dir / "feature_acts.db",
3, SAEConfig.top_k_activations,
mode="r", use_backup=True
)
except (ValueError, EOFError):
traceback.print_exc()
time.sleep(0.01)
continue
break
app, rt = fast_app(hdrs=plotly_headers)
# Add a function to compute spatial metrics for a feature
def compute_spatial_metrics(feature_id):
"""Compute spatial metrics for a specific feature."""
rows = scored_storage.get_rows(feature_id)
# Group rows by idx
metrics_by_image = {}
for (idx, h, w), score in rows:
key = idx
if key not in metrics_by_image:
# Create activation grid for this image
grid = np.zeros((HEIGHT, WIDTH), dtype=float)
metrics_by_image[key] = {"grid": grid, "activations": []}
# Add score to the grid
metrics_by_image[key]["grid"][h, w] = score
metrics_by_image[key]["activations"].append((h, w, score))
# Compute metrics for each image
results = {}
for idx, data in metrics_by_image.items():
grid = data["grid"]
# Skip if no activations
if grid.sum() == 0:
continue
# Get positions where activation occurs
active_positions = np.where(grid > 0)
if len(active_positions[0]) == 0:
continue
# Compute center of mass
h_indices, w_indices = np.indices((HEIGHT, WIDTH))
total_activation = grid.sum()
center_h = np.sum(h_indices * grid) / total_activation if total_activation > 0 else 0
center_w = np.sum(w_indices * grid) / total_activation if total_activation > 0 else 0
# Compute average distance from center of mass (spatial spread)
distances = np.sqrt((h_indices - center_h)**2 + (w_indices - center_w)**2)
avg_distance = np.sum(distances * grid) / total_activation if total_activation > 0 else 0
# Compute concentration ratio: what percentage of total activation is in the top 25% of active pixels
active_values = grid[active_positions]
sorted_values = np.sort(active_values)[::-1] # Sort in descending order
quarter_point = max(1, len(sorted_values) // 4)
concentration_ratio = np.sum(sorted_values[:quarter_point]) / total_activation if total_activation > 0 else 0
# Compute activation area: percentage of image area that has activations
activation_area = len(active_positions[0]) / (HEIGHT * WIDTH)
# Store metrics
results[idx] = {
"spatial_spread": float(avg_distance),
"concentration_ratio": float(concentration_ratio),
"activation_area": float(activation_area),
"max_activation": float(grid.max()),
"center": (float(center_h), float(center_w))
}
# Aggregate metrics across images
if results:
avg_metrics = {
"spatial_spread": float(np.mean([m["spatial_spread"] for m in results.values()])),
"concentration_ratio": float(np.mean([m["concentration_ratio"] for m in results.values()])),
"activation_area": float(np.mean([m["activation_area"] for m in results.values()])),
"num_images": len(results)
}
return avg_metrics
return None
# Cache for spatial metrics to avoid recomputation
spatial_metrics_cache = {}
@rt("/cached_image/{image_id}")
def cached_image(image_id: int):
img_path = image_cache_dir / f"{image_id}.jpg"
if not img_path.exists():
imgs_path = cache_dir / "images" / f"{image_id}.npz"
if not imgs_path.exists():
return {"error": "Image not found"}, 404
img = np.load(imgs_path)["arr_0"][None]
img = np.stack((img & 0x0F, (img & 0xF0) >> 4), -1).reshape(*img.shape[:-1], -1)
img = nf4[img]
img = img * SAEConfig.image_max
img = vae.deprocess(vae.decode(img))
img.save(img_path)
return FileResponse(img_path)
@rt("/top_features")
def top_features():
counts = scored_storage.key_counts()
maxima = scored_storage.key_maxima()
frequencies = counts.astype(np.float64) / counts.sum()
# expected_frequency = 4 / counts.size
# metric = np.abs(frequencies - expected_frequency)
# metric[maxima < 5] = np.inf
# correct_order = np.argsort(metric)
# matches = np.arange(len(scored_storage))[maxima > 3.5]
cond = maxima > 4 # 4 for single/18, 3 for double/18
# cond = maxima > 2
# cond = frequencies > 5e-5
# cond &= frequencies < 0.0031
matches = np.arange(len(scored_storage))[cond]
correct_order = np.random.permutation(matches)
top_few = correct_order[:256].tolist()
return Div(
H1(f"Top features ({len(matches)}/{len(matches) / len(scored_storage) * 100:.2f}% match criteria)"),
Br(),
H1(f"Spatial sparsity: {spatial_sparsity():.3f}"),
Br(),
P(A("View Spatial Metrics", href="/spatial_metrics")),
Br(),
*[Card(
P(f"Feature {i}, Frequency: {frequencies[i]:.5f}, Max: {maxima[i]}"),
A("View Max Acts", href=f"/maxacts/{i}")
) for i in top_few],
style="display: flex; flex-wrap: wrap; gap: 20px; justify-content: center; padding: 20px;"
)
@rt("/spatial_sparsity")
def spatial_sparsity():
non_sparse_features = np.zeros(len(scored_storage), dtype=bool)
img_list = list(image_activations_dir.glob("*.npz"))
for img in img_list:
saved = np.load(img)
ind, wei = saved["arr_0"].ravel(), saved["arr_1"].ravel()
feature_counts = np.bincount(ind[wei > 0.0], minlength=len(scored_storage))
non_sparse_features |= feature_counts > 6
return 1 - non_sparse_features.mean()
@rt("/feature_counts")
def feature_counts():
counts = scored_storage.key_counts()
counts = {key: int(val) for key, val in enumerate(counts)}
return JSONResponse(counts)
@rt("/fry_plot")
def fry_plot():
counts = scored_storage.key_counts()
maxima = scored_storage.key_maxima()
img_list = list(image_activations_dir.glob("*.npz"))
batch_numbers = [int(img.stem.partition("_")[0]) for img in img_list]
seq_numbers = [int(img.stem.split("_")[1]) for img in img_list]
frequencies = counts.astype(np.float64) / (max(batch_numbers) * (max(seq_numbers) + 1))
return plotly2fasthtml(px.scatter(
x=frequencies,
y=maxima,
labels={"x": "Frequency", "y": "Max Activation"},
title="Fry Plot"
))
@rt("/maxacts/{feature_id}")
def maxacts(feature_id: int):
rows = scored_storage.get_rows(feature_id)
# Group rows by idx
grouped_rows = {}
for (idx, h, w), score in rows:
key = idx
if key not in grouped_rows:
grouped_rows[key] = np.zeros((HEIGHT, WIDTH), dtype=float)
# Add score to the corresponding location in the grid
grouped_rows[key][h, w] = score
# Compute spatial metrics for this feature if not already cached
if feature_id not in spatial_metrics_cache:
spatial_metrics_cache[feature_id] = compute_spatial_metrics(feature_id)
metrics = spatial_metrics_cache[feature_id]
metrics_display = ""
if metrics:
metrics_display = f"Spatial Spread: {metrics['spatial_spread']:.3f}, Concentration: {metrics['concentration_ratio']:.3f}, Active Area: {metrics['activation_area']:.3f}"
# Prepare images and cards
imgs = []
for idx, grid in sorted(grouped_rows.items(), key=lambda x: x[1].max(), reverse=True)[:20]:
full_activations = np.load(image_activations_dir / f"{idx}.npz")
gravel = grid.ravel()
k = full_activations["arr_0"].shape[1]
for i, (f, w) in enumerate(zip(full_activations["arr_0"].ravel(), full_activations["arr_1"].ravel())):
if f == feature_id:
gravel[i // k] = w
# Normalize the grid for color intensity
normalized_grid = (grid - grid.min()) / (grid.max() - grid.min()) if grid.max() > grid.min() else grid
# Create a heatmap table
heatmap_rows = []
for row in range(grid.shape[0]):
td_cells = []
for col in range(grid.shape[1]):
score = grid[row, col]
norm_value = normalized_grid[row, col]
# Calculate color intensity (semi-transparent blue)
blue_intensity = int(255 * norm_value)
color = f"rgba(0, 0, 255, {0.5 * norm_value})"
# Create cell with background color and score
# cell_content = f"{score:.2f}"
cell_content = ""
td_cell = Td(cell_content,
style=f"background-color: {color}; text-align: center; padding: 1px; color: white; font-size: 1px;")
td_cells.append(td_cell)
heatmap_row = Tr(*td_cells)
heatmap_rows.append(heatmap_row)
# Compile the heatmap
heatmap_table = Table(
Tbody(*heatmap_rows),
style="position: absolute; top: 0; left: 0; width: 100%; height: 100%; border-collapse: collapse; pointer-events: none;"
)
# Create a container for overlaying the heatmap on the image
overlaid_image = Div(
Img(src=f"/cached_image/{idx}", style="width: 100%; height: auto; position: relative;"),
heatmap_table,
style="position: relative; width: 300px; height: 300px; overflow: hidden;"
)
# Add to images
imgs.append(Card(
Div(
P(f"Index: {idx}, Score: {grid.max()}"),
overlaid_image
)
))
return Div(
P(A("<- Go back", href="/top_features")),
H2(f"Feature {feature_id} Spatial Metrics: {metrics_display}"),
Div(*imgs, style="display: flex; flex-wrap: wrap; gap: 20px; justify-content: center"),
style="padding: 20px"
)
# Add a new endpoint to view spatial metrics for all features
@rt("/spatial_metrics")
def spatial_metrics_view():
# Get all feature IDs
counts = scored_storage.key_counts()
maxima = scored_storage.key_maxima()
# Filter features with significant activations
cond = maxima > 4
features = np.arange(len(scored_storage))[cond]
# Compute metrics for all features (with caching)
all_metrics = []
for feature_id in features:
if feature_id not in spatial_metrics_cache:
spatial_metrics_cache[feature_id] = compute_spatial_metrics(feature_id)
metrics = spatial_metrics_cache[feature_id]
if metrics:
all_metrics.append({
"feature_id": int(feature_id),
"spatial_spread": metrics["spatial_spread"],
"concentration_ratio": metrics["concentration_ratio"],
"activation_area": metrics["activation_area"],
"num_images": metrics["num_images"]
})
# Sort by activation area (from most concentrated to most dispersed)
all_metrics.sort(key=lambda x: x["activation_area"])
# Create scatter plot of concentration vs spatial spread
scatter_plot = plotly2fasthtml(px.scatter(
x=[m["activation_area"] for m in all_metrics],
y=[m["concentration_ratio"] for m in all_metrics],
hover_name=[f"Feature {m['feature_id']}" for m in all_metrics],
labels={"x": "Activation Area (% of image)", "y": "Concentration Ratio"},
title="Spatial Concentration Analysis"
))
# Create cards for features
feature_cards = [
Card(
P(f"Feature {m['feature_id']}"),
P(f"Concentration: {m['concentration_ratio']:.3f}"),
P(f"Active Area: {m['activation_area']:.3f}%"),
P(f"Spatial Spread: {m['spatial_spread']:.3f}"),
A("View Max Acts", href=f"/maxacts/{m['feature_id']}"),
style="width: 200px; margin: 10px;"
) for m in all_metrics[:50] # Show top 50 most concentrated features
]
return Div(
H1("Spatial Metrics Analysis"),
P(A("<- Go back", href="/top_features")),
Br(),
scatter_plot,
Br(),
H2("Most Concentrated Features (Lowest Activation Area)"),
Div(*feature_cards, style="display: flex; flex-wrap: wrap; justify-content: center;"),
style="padding: 20px;"
)
NUM_PROMPTS = 4
@rt("/gen_image", methods=["GET"])
def gen_image():
prompt_inputs = [
Input(type="text", name=f"prompt-{i}", placeholder=f"Enter prompt {i+1}", style="width: 100%; margin-bottom: 10px;", value="cat")
for i in range(NUM_PROMPTS)
]
return Div(
H1("Image Generation"),
H2("Enter Prompts:"),
Form(
*prompt_inputs,
Button("Generate Images", type="button", hx_post="/generate", hx_target="#image-results", hx_indicator="#loading"),
method="POST" # still needed to pass the data
),
Div(id="loading", style="display:none;", children=[P("Generating...")]),
Div(id="image-results"),
style="padding: 20px;"
)
@rt("/generate", methods=["POST"])
def generate(form: dict):
prompts = [form.get(f"prompt-{i}", "") for i in range(NUM_PROMPTS)]
prompts = [p for p in prompts if p]
images = []
error_message = None
if not prompts:
return P("At least one prompt is required.", style="color: red;")
try:
response = requests.post("http://localhost:8000/sample", json={"prompts": prompts, "sample_steps": 20})
response.raise_for_status()
data = response.json()
images = data["images"]
except requests.exceptions.RequestException as e:
return P(f"Error generating images: {e}", style="color: red;")
image_elements = [
Img(src=f"data:image/png;base64,{img}", style="max-width: 300px; max-height: 300px; margin: 10px;")
for img in images
]
return Div(*image_elements)
@rt("/")
def home():
return Div(
H1("fae"),
H2("SAE"),
P(A("Top features", href="/top_features")),
P(A("Spatial Metrics", href="/spatial_metrics")),
P(A("Generator", href="/gen_image")),
style="padding: 5em"
)
serve()