-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathocrf.html
67 lines (60 loc) · 3.21 KB
/
ocrf.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html>
<head>
<!-- <meta name="generator" content="jemdoc, see http://jemdoc.jaboc.net/" /> -->
<!-- <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" /> -->
<link rel="stylesheet" href="jemdoc.css" type="text/css" />
<title>Nicolas Goix</title>
</head>
<body>
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-23998109-2");
pageTracker._trackPageview();
} catch(err) {}
</script>
<table summary="Table for page layout." id="tlayout">
<tr valign="top">
<td id="layout-menu">
<div class="menu-category">Nicolas Goix</div>
<div class="menu-item"><a href="index.html">Home</a></div>
<div class="menu-item"><a href="biography.html">Biography</a></div>
<div class="menu-category">Research</div>
<div class="menu-item"><a href="papers.html">Papers</a></div>
<div class="menu-category">Code </div>
<div class="menu-item"><a href="sklearn.html">Scikit-Learn</a></div>
<div class="menu-item"><a href="damex.html">Damex Algorithm</a></div>
<div class="menu-item"><a href="emmv.html">Unsupervised Evaluation</a></div>
<div class="menu-item"><a href="nyu.html">Black hole Cyg-X-1</a></div>
<div class="menu-item"><a href="ocrf.html" class="current">One Class Random Forests</a></div>
<div class="menu-category">Miscellaneous</div>
<div class="menu-item"><a href="links.html">Links</a></div>
</td>
<td id="layout-content">
<div id="toptitle">
<h1>Nicolas Goix – One Class Random Forests</h1>
</div>
<!-- <h2>2011 – 2012</h2> -->
<ul>
<p>
<div class="infoblock">
Random Forests (RFs) are strong machine learning tools for classification and regression. However, they remain supervised algorithms, and no extension of RFs to the one-class setting has been proposed, except for techniques based on second-class sampling. Our <a href="https://arxiv.org/abs/1611.01971" target="_blank"> paper</a> fills this gap by proposing a natural methodology to extend standard splitting criteria to the one-class setting, structurally generalizing RFs to one-class classification. An extensive benchmark of seven state-of-the-art anomaly detection algorithms is also presented. This empirically demonstrates the relevance of our approach.
The associated code uses an adapted version of scikit-learn cython code for trees and is available <a href="https://github.com/ngoix/OCRF" target="_blank"> here</a>.
</div>
<!-- <li><p>The implementation of DAMEX is available on my local version of scikit-learn, branch 'damex': [<a href="https://github.com/ngoix/scikit-learn/tree/damex" target="_blank">Code</a>].</p></li> -->
</ul>
<!-- <div id="footer"> -->
<!-- <div id="footer-text"> -->
<!-- Page generated by <a href="http://jemdoc.jaboc.net/">jemdoc</a>. -->
<!-- </div> -->
<!-- </div> -->
</td>
</tr>
</table>
</body>
</html>