-
Notifications
You must be signed in to change notification settings - Fork 54
/
cifar10_lr_decay.py
69 lines (51 loc) · 2.03 KB
/
cifar10_lr_decay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import matplotlib
matplotlib.use("Agg")
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from pyimagesearch.nn.conv.minivggnet import MiniVGGNet
from keras.callbacks import LearningRateScheduler
from keras.optimizers import SGD
from keras.datasets import cifar10
import matplotlib.pyplot as plt
import numpy as np
import argparse
def step_decay(epoch):
initAlpha = 0.01
factor = 0.25
dropEvery = 5
alpha = initAlpha * (factor ** np.floor((1 + epoch) / dropEvery))
return float(alpha)
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="Path to plot")
args = vars(ap.parse_args())
print("[INFO] loading cifar10 data")
(trainX, trainY), (testX, testY)= cifar10.loadData()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
labelNames = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog",
"horse", "ship", "truck"]
callbacks = [LearningRateScheduler(step_decay)]
opt = SGD(lr=0.01, momentum=0.9, nesterov=True)
model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
model.compile(loss="categorical_crossentropy", optimizer=opt,
metrics=["accuracy"])
H = model.fit(trainX, trainY, validation_data=(testX, testY), batch_size=64,
epochs=40, callbacks=callbacks, verbose=1)
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=64)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1),
target_names=labelNames))
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 40), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 40), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 40), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 40), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on CIFAR-10")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"])