-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.R
1033 lines (933 loc) · 27.2 KB
/
pipeline.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pipeline.R --------------------------------------------------------------
# This script is used to run the RAP for the PCHC publication
# 1. install required packages --------------------------------------------
req_pkgs <-
c(
"dplyr",
"stringr",
"data.table",
"yaml",
"openxlsx",
"rmarkdown",
"highcharter",
"lubridate",
"dbplyr",
"tidyr",
"readxl",
"DT"
)
#utils::install.packages(req_pkgs, dependencies = TRUE)
#
# devtools::install_github("nhsbsa-data-analytics/pchcR",
# auth_token = Sys.getenv("GITHUB_PAT"))
#
#devtools::install_github("nhsbsa-data-analytics/nhsbsaR")
invisible(lapply(c(req_pkgs, "nhsbsaR", "pchcR"), library, character.only = TRUE))
# 2. set options ----------------------------------------------------------
pchc_options()
# 3. build fact table if new data available -------------------
con <- con_nhsbsa(
dsn = "FBS_8192k",
driver = "Oracle in OraClient19Home1",
"DWCP",
username = rstudioapi::showPrompt(title = "Username", message = "Username"),
password = rstudioapi::askForPassword()
)
#only run if need to build new fact table
# pchcR::create_fact(con, to = 202203L)
# 4. extract data tables from fact table -----------------------------------------
#dwh tables
table_1_dwh <- table_1_dwh(con)
table_2_dwh <- table_2_dwh(con)
table_3_dwh <- table_3_dwh(con)
table_4_dwh <- table_4_dwh(con)
table_5_dwh <- table_5_dwh(con)
table_6_dwh <- table_6_dwh(con)
table_7_dwh <- table_7_dwh(con)
table_8_dwh <- table_8_dwh(con)
# disconnect from DWH
DBI::dbDisconnect(con)
#scmd tables
scmd_icb_bnf_data <- scmd_icb_bnf_data("Y:\\Official Stats\\PCHC\\data\\ICB_BNF_2022.xlsx")
scmd_national_monthly <- read_excel("Y:\\Official Stats\\PCHC\\data\\NATIONAL_MONTHLY_2022.xlsx")
table_1_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
)
table_2_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
)
table_3_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
) |>
dplyr::mutate(
prev_year_COST = lag(COST,1 )
) |>
dplyr::mutate(
`Hospital prescribing issued within hospitals (%)` =
(COST - prev_year_COST) / prev_year_COST * 100
) |>
stats::na.omit() |>
dplyr::select(1,4)
table_4_scmd <- scmd_national_monthly |>
rename(
YEAR_MONTH = 1,
COST = 2
) |>
mutate(
YEAR_MONTH = paste0(
substr(
as.character(
YEAR_MONTH
),
1,
4
),
substr(
as.character(
YEAR_MONTH
),
6,
7
)
)
)
table_5_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR,
BNF_CHAPTER
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
)
table_6_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR,
BNF_CHAPTER,
BNF_SECTION
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
)
table_7_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR,
ICB
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
) |>
mutate(
ICB = trimws(ICB),
ICB = case_when(
ICB == "Unknown ICB" ~ "UNKNOWN ICB",
TRUE ~ ICB
)
)
table_8_scmd <- scmd_icb_bnf_data |>
group_by(
FINANCIAL_YEAR,
ICB,
BNF_CHAPTER,
BNF_SECTION
) |>
summarise(
COST = sum(COST, na.rm = T),
.groups = "drop"
) |>
mutate(
ICB = trimws(ICB),
ICB = case_when(
ICB == "Unknown ICB" ~ "UNKNOWN ICB",
TRUE ~ ICB
)
)
# 5. data manipulation ----------------------------------------------------
#table 1
table_1 <- table_1_dwh |>
left_join(
table_1_scmd,
by = c("Financial Year" = "FINANCIAL_YEAR")
) |>
select(
1, 5, 3, 4, 2
) |>
rename(
"Hospital prescribing issued within hospitals (GBP)" = 2
) |>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
)
#table 2
table_2 <- table_2_dwh |>
left_join(
table_2_scmd,
by = c("Financial Year" = "FINANCIAL_YEAR")
) |>
select(
1, 5, 3, 4, 2
) |>
rename(
"Hospital prescribing issued within hospitals (GBP)" = 2
) |>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
)
#table 3
table_3 <- table_3_dwh |>
left_join(
table_3_scmd,
by = c("FINANCIAL_YEAR" = "FINANCIAL_YEAR")
) |>
select(
1, 5, 3, 4, 2
) |>
rename(
"Financial Year" = 1
)
#table 4
table_4 <- table_4_dwh |>
mutate(
`Year Month` = as.character(`Year Month`)
) |>
left_join(
table_4_scmd,
by = c("Year Month" = "YEAR_MONTH")
) |>
select(
1, 5, 3, 4, 2
) |>
rename(
"Hospital prescribing issued within hospitals (GBP)" = 2
) |>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
)
#table 5
table_5 <- table_5_scmd |>
left_join(
table_5_dwh,
by = c(
"FINANCIAL_YEAR" = "Financial Year",
"BNF_CHAPTER" = "BNF Chapter Code"
)
) |>
select(
1,2,4,3,6,7,5
) |>
mutate(
BNF_CHAPTER = case_when(
BNF_CHAPTER == "-None-" ~ "Undefined",
TRUE ~ BNF_CHAPTER
),
`BNF Chapter Name` = case_when(
is.na(`BNF Chapter Name`) ~ "Undefined",
TRUE ~ `BNF Chapter Name`
)
) |>
arrange(
FINANCIAL_YEAR,
BNF_CHAPTER == "Undefined"
) |>
rename(
"Financial Year" = 1,
"BNF Chapter Code" = 2,
"Hospital prescribing issued within hospitals (GBP)" = 4
) |>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
)
table_5[is.na(table_5)] = 0
#table 6
table_6 <- table_6_scmd |>
full_join(
table_6_dwh,
by = c(
"FINANCIAL_YEAR" = "Financial Year",
"BNF_SECTION" = "BNF Section Code"
)
)
scmd_section_lookup <- scmd_icb_bnf_data |>
select(
BNF,
BNF_SECTION
) |>
distinct() |>
mutate(BNF = gsub(".*- ", "", BNF))
bnf_chapter_lookup <- table_6 |>
select(
`BNF Chapter Code`,
`BNF Chapter Name`
) |>
distinct()
table_6_na <- table_6 |>
filter(
is.na(
`BNF Chapter Code`
)
) |>
select(
1,2,3,4,8,9,10
) |>
left_join(
scmd_section_lookup,
by = c(
"BNF_SECTION" = "BNF_SECTION"
)
) |>
left_join(
bnf_chapter_lookup,
by = c(
"BNF_CHAPTER" = "BNF Chapter Code"
)
) |>
select(
1, 2, 9, 3, 8, 4, 6, 7, 5
) |>
rename(
"Financial Year" = 1,
"BNF Chapter Code" = 2,
"BNF Chapter Name" = 3,
"BNF Section Code" = 4,
"BNF Section Name" = 5,
"Hospital prescribing issued within hospitals (GBP)" = 6,
"Dental prescribing dispensed in the community (GBP)" = 7,
"Hospital prescribing dispensed in the community (GBP)" = 8,
"Primary care prescribing dispensed in the community (GBP)" = 9
)
table_6_non_na <- table_6 |>
filter(
!is.na(
`BNF Chapter Code`
)
) |>
select(
1, 2, 6, 3, 7, 4, 9, 10, 8
) |>
rename(
"Financial Year" = 1,
"BNF Chapter Code" = 2,
"BNF Chapter Name" = 3,
"BNF Section Code" = 4,
"BNF Section Name" = 5,
"Hospital prescribing issued within hospitals (GBP)" = 6,
"Dental prescribing dispensed in the community (GBP)" = 7,
"Hospital prescribing dispensed in the community (GBP)" = 8,
"Primary care prescribing dispensed in the community (GBP)" = 9
)
table_6 <- table_6_non_na |>
bind_rows(
table_6_na
) |>
mutate(
`BNF Chapter Code` = case_when(
`BNF Chapter Code` == "-None-" ~ "Undefined",
TRUE ~ `BNF Chapter Code`
),
`BNF Chapter Name` = case_when(
is.na(`BNF Chapter Name`) ~ "Undefined",
TRUE ~ `BNF Chapter Name`
),
`BNF Section Code` = case_when(
`BNF Section Code` == "-None-character(0)" ~ "Undefined",
TRUE ~ `BNF Section Code`
),
`BNF Section Name` = case_when(
`BNF Section Name` == "-None-" ~ "Undefined",
TRUE ~ `BNF Section Name`
),
`BNF Chapter Code` = case_when(
`BNF Chapter Code` != "Undefined" ~ substr(`BNF Section Code`, 1, 2),
is.na(`BNF Chapter Code`) ~ substr(`BNF Section Code`, 1, 2),
TRUE ~ `BNF Chapter Code`
)
)|>
arrange(
`Financial Year`,
`BNF Chapter Code`,
`BNF Section Code`
) |>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
)
table_6[is.na(table_6)] = 0
#table 7
table_7 <- table_7_dwh |>
left_join(
table_7_scmd,
by = c(
"Financial Year" = "FINANCIAL_YEAR",
"ICB" = "ICB"
)
) |>
select(
1,2,3,7,5,6,4
) |>
rename(
"Hospital prescribing issued within hospitals (GBP)" = 4
) |>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
)
table_7[is.na(table_7)] = 0
# get stp population
ons_stp_pop <- function() {
#create temp file to download xlsx file into
temp <- tempfile()
stp_url <- utils::download.file(url = "https://www.ons.gov.uk/file?uri=%2fpeoplepopulationandcommunity%2fpopulationandmigration%2fpopulationestimates%2fdatasets%2fclinicalcommissioninggroupmidyearpopulationestimates%2fmid2020sape23dt6a/sape23dt6amid2020ccg2021estimatesunformatted.xlsx",
temp,
mode = "wb")
#read xlsx population file
stp_pop <- readxl::read_xlsx(temp,
sheet = 4,
range = "A9:G114",
col_names = c("CCG_CD","CCG_NM","STP21_CD","STP21_NM",
"REGION_CD","REGION_NM","POP"),
skip = 8)
ods_lookup = "https://opendata.arcgis.com/api/v3/datasets/a458c272484743aa9caa25619ccbe1ac_0/downloads/data?format=csv&spatialRefId=4326"
ods <- data.table::fread(ods_lookup)
#join population data to ods lookup
df <- stp_pop |>
dplyr::left_join(select(ods,CCG21CD,STP21CDH,STP21NM), by = c("CCG_CD" = "CCG21CD")) |>
dplyr::group_by(STP21_NM,STP21CDH,STP21_CD) |>
dplyr::summarise(POP = sum(POP)) |>
ungroup()
return(df)
}
stp_pop <- ons_stp_pop() |>
select(
STP21CDH, POP
)
table_7 <- table_7 |>
left_join(
stp_pop,
by = c(
"ICB Code" = "STP21CDH"
)
) |>
rename(
"Population" = 9
) |>
mutate(
`Average Cost Per Capita (GBP)` = `Total (GBP)` / Population
)
#table 8
table_8_raw <- table_8_scmd |>
full_join(
table_8_dwh,
by = c(
"FINANCIAL_YEAR" = "Financial Year",
"BNF_SECTION" = "BNF Section Code",
"ICB" = "ICB"
)
) |>
select(
-`BNF Chapter Name`
) |>
left_join(
bnf_chapter_lookup,
by = c(
"BNF_CHAPTER" = "BNF Chapter Code"
)
) |>
mutate(
BNF_CHAPTER = case_when(
is.na(BNF_CHAPTER) ~ `BNF Chapter Code`,
TRUE ~ BNF_CHAPTER
)
) |>
select(
1, 3, 12, 4, 7, 8, 2, 5, 10, 11, 9
) |>
mutate(
BNF_CHAPTER = case_when(
BNF_CHAPTER == "-None-" ~ "Undefined",
TRUE ~ BNF_CHAPTER
),
`BNF Chapter Name` = case_when(
is.na(`BNF Chapter Name`) ~ "Undefined",
TRUE ~ `BNF Chapter Name`
),
BNF_SECTION = case_when(
BNF_SECTION == "-None-character(0)" ~ "Undefined",
TRUE ~ BNF_SECTION
),
BNF_CHAPTER = case_when(
BNF_CHAPTER != "Undefined" ~ substr(BNF_SECTION, 1, 2),
is.na(BNF_CHAPTER) ~ substr(BNF_SECTION, 1, 2),
TRUE ~ BNF_CHAPTER
)
)
table_8_non_na <- table_8_raw |>
filter(
!is.na(`BNF Section Name`)
) |>
left_join(
bnf_chapter_lookup,
by = c(
"BNF_CHAPTER" = "BNF Chapter Code"
)
) |>
select(
1,2,12,4,5,6,7,8,9,10,11
) |>
rename(
"Financial Year" = 1,
"BNF Chapter Code" = 2,
"BNF Chapter Name" = 3,
"BNF Section Code" = 4,
"BNF Section Name" = 5,
"ICB Code" = 6,
"ICB" = 7,
"Hospital prescribing issued within hospitals (GBP)" = 8,
"Dental prescribing dispensed in the community (GBP)" = 9,
"Hospital prescribing dispensed in the community (GBP)" = 10,
"Primary care prescribing dispensed in the community (GBP)" = 11
)
icb_code_lookup <- table_7_dwh |>
select(
`ICB Code`,
ICB
) |>
distinct()
table_8_na <- table_8_raw |>
filter(
is.na(`BNF Section Name`)
) |>
left_join(
scmd_section_lookup,
by = c(
"BNF_SECTION" = "BNF_SECTION"
)
) |>
left_join(
icb_code_lookup,
by = c(
"ICB" = "ICB"
)
) %>%
select(
1,2,3,4,12,13,7,8,9,10,11
) %>%
mutate(
BNF = case_when(
is.na(BNF) ~ "Undefined",
TRUE ~ BNF
)
)|>
rename(
"Financial Year" = 1,
"BNF Chapter Code" = 2,
"BNF Chapter Name" = 3,
"BNF Section Code" = 4,
"BNF Section Name" = 5,
"ICB Code" = 6,
"ICB" = 7,
"Hospital prescribing issued within hospitals (GBP)" = 8,
"Dental prescribing dispensed in the community (GBP)" = 9,
"Hospital prescribing dispensed in the community (GBP)" = 10,
"Primary care prescribing dispensed in the community (GBP)" = 11
)
table_8 <- table_8_non_na |>
bind_rows(
table_8_na
) |>
arrange(
`Financial Year`,
`BNF Chapter Code`,
`BNF Section Code`,
`ICB Code`
) %>%
arrange(
`Financial Year`,
`BNF Chapter Code`,
`BNF Section Code`,
`ICB Code` == "-"
)|>
rowwise() |>
mutate(
`Total (GBP)` = sum(
across(
contains("GBP")
),
na.rm = T
)
) %>%
mutate(
#fix bnf section desc differences from scmd to dwh
`BNF Section Name` = case_when(
`BNF Section Code` == "1803" ~ "X-Ray contrast media",
`BNF Section Code` == "1901" ~ "Alcohol, wines and spirits",
`BNF Section Code` == "1904" ~ "Single substances",
`BNF Section Code` == "1905" ~ "Other preparations",
`BNF Section Code` == "1908" ~ "Colouring, flavouring and sweetening agents",
`BNF Section Code` == "1909" ~ "Disinfectants, preservatives and sterilising agents",
`BNF Section Code` == "1915" ~ "Other gases",
`BNF Section Code` == "2001" ~ "Absorbent Cottons",
`BNF Section Code` == "2134" ~ "Vaginal PH Correction Products",
`BNF Section Code` == "2144" ~ "Debrisoft pad 13cm x 20cm",
TRUE ~ `BNF Section Name`
)
)
table_8[is.na(table_8)] = 0
# 6. write data to .xlsx --------------------------------------------------
# FY Excel
# create wb object
# create list of sheetnames needed (overview and metadata created automatically)
sheetNames <- c(
"Table_1",
"Table_2",
"Table_3",
"Table_4",
"Table_5",
"Table_6",
"Table_7",
"Table_8"
)
wb <- create_wb(sheetNames)
#create metadata tab (will need to open file and auto row heights once ran)
meta_fields <- c(
"BNF Chapter Code",
"BNF Chapter Name",
"BNF Section Code",
"BNF Section Name",
"Cost",
"Dental prescribing dispensed in the community (GBP)",
"Financial Year",
"Hospital prescribing dispensed in the community (GBP)",
"Hospital prescribing issued within hospitals (GBP)",
"Population",
"Primary care prescribing dispensed in the community (GBP)",
"ICB Code",
"ICB",
"Undefined data"
)
meta_descs <-
c(
"The unique code used to refer to the British National Formulary (BNF) chapter.",
"The name given to a British National Formulary (BNF) chapter. This is the broadest grouping of the BNF therapeutical classification system.",
"The unique code used to refer to the British National Formulary (BNF) section.",
"The name given to a British National Formulary (BNF) section. This is the next broadest grouping of the BNF therapeutical classification system after chapter.",
"There are many costs incurred when a dispensing contractor fulfils a prescription. In table 1 the costs in primary care represent the actual costs. Actual cost is the cost recharged to NHS commissioners for the provision of drugs, appliances, and medical devices by dispensing contractors. In tables 2 to 8 the costs in primary care represent the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors. In secondary care they are the actual costs paid (including applicable VAT) for drugs, dressing, appliances, and medical devices which have been issued and used in NHS hospitals in England.",
"Total costs for prescriptions issued by dental practitioners that have been dispensed in the community in England, Scotland, Wales, and the Channel Islands.",
"The financial year to which the data belongs.",
"Total costs for prescriptions issued by Hospitals in England that have been dispensed in the community in England, Scotland, Wales, and the Channel Islands.",
"Actual costs (including applicable VAT) for medicines issued in hospitals in England that have been dispensed via the hospital pharmacy, homecare companies and outsourced out-patient pharmacy partnerships.",
"The population figures by ICB come from the latest ONS population by ICB dataset at https://www.ons.gov.uk/file?uri=%2fpeoplepopulationandcommunity%2fpopulationandmigration%2fpopulationestimates%2fdatasets%2fclinicalcommissioninggroupmidyearpopulationestimates%2fmid2020sape23dt6a/sape23dt6amid2020ccg2021estimatesunformatted.xlsx",
"Total costs for prescriptions issued by GP practices and community prescribers in England that have been dispensed in the community in England, Scotland, Wales, and the Channel Islands.",
"The unique code used to refer to an ICB.",
"The name give to the Integrated Care Board (ICB) that a prescribing organisation belongs to. This is based upon NHSBSA administrative records, not geographical boundaries and more closely reflect the operational organisation of practices than other geographical data sources.",
"'Undefined' is used to indicate data that costs can not be allocated to either and BNF Chapter, BNF Section or an ICB."
)
create_metadata(wb,
meta_fields,
meta_descs)
#### table 1
# write data to sheet
write_sheet(
wb,
"Table_1",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 1: Total costs in each setting by financial year using actual costs for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are actual costs, the cost recharged to NHS commissioners for the provision of drugs, appliances, and medical devices by dispensing contractors."
),
table_1,
18
)
#left align columns A
format_data(wb,
"Table_1",
c("A"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_1",
c("B", "C", "D", "E", "F"),
"right",
"#,##0.00")
#### table 2
# write data to sheet
write_sheet(
wb,
"Table_2",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 2: Total costs in each setting by financial year using Net Ingredient Costs (NIC) for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_2,
18
)
#left align columns A
format_data(wb,
"Table_2",
c("A"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_2",
c("B", "C", "D", "E", "F"),
"right",
"#,##0.00")
#### table 3
# write data to sheet
write_sheet(
wb,
"Table_3",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 3: Percentage change in costs in each setting by financial year using Net Ingredient Costs (NIC) for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_3,
18
)
#left align columns A
format_data(wb,
"Table_3",
c("A"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_3",
c("B", "C", "D", "E"),
"right",
"0.00")
#### table 4
# write data to sheet
write_sheet(
wb,
"Table_4",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 4: Total costs in each setting by month, April 2017 to March 2022 using Net Ingredient Costs (NIC) for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_4,
18
)
#left align columns A
format_data(wb,
"Table_4",
c("A"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_4",
c("B", "C", "D", "E", "F"),
"right",
"#,##0.00")
#### table 5
# write data to sheet
write_sheet(
wb,
"Table_5",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 5: Total costs in each setting by BNF Chapter and financial year using Net Ingredient Costs (NIC) for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_5,
18
)
#left align columns A
format_data(wb,
"Table_5",
c("A", "B", "C"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_5",
c("D", "E", "F", "G", "H"),
"right",
"#,##0.00")
#### table 6
# write data to sheet
write_sheet(
wb,
"Table_6",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 6: Total costs in each setting by BNF Section and financial year using Net Ingredient Costs (NIC) for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_6,
18
)
#left align columns A
format_data(wb,
"Table_6",
c("A", "B", "C", "D", "E"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_6",
c("F", "G", "H", "I", "J"),
"right",
"#,##0.00")
#### table 7
# write data to sheet
write_sheet(
wb,
"Table_7",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 7: Total costs in each setting by Integrated Care Board (ICB) and financial year using Net Ingredient Costs (NIC)for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_7,
18
)
#left align columns A
format_data(wb,
"Table_7",
c("A", "B", "C"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_7",
c("D", "E", "F", "G", "H", "J"),
"right",
"#,##0.00")
#right align columns and round to 2 DP
format_data(wb,
"Table_7",
c("I"),
"right",
"#,##0")
#### table 8
# write data to sheet
write_sheet(
wb,
"Table_8",
paste0(
"Prescribing Costs in Hospitals and the Community - England 2017/18 - 2021/22 - ",
"Table 8: Total costs in each setting by BNF Section, ICB and financial year using Net Ingredient Costs (NIC) for items dispensed in the community"
),
c(
"1. Field definitions can be found on the 'Metadata' tab.",
"2. Data is sourced from NHSBSA Data & Insight Data Warehouse and RX-Info Define",
"3. The costs of items dispensed in the community in this table are the basic price of the item. This is sometimes called the ‘Net Ingredient Cost’ (NIC). This also known as reimbursement of costs to dispensing contractors."
),
table_8,
18
)
#left align columns A
format_data(wb,
"Table_8",
c("A", "B", "C", "D", "E", "F", "G"),
"left",
"")
#right align columns and round to 2 DP
format_data(wb,
"Table_8",
c("H", "I", "J", "K", "L"),