-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
167 lines (158 loc) · 5.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
"""Model training/testing pipeline."""
import argparse
import json
from config import Config
from src.models import ggcnn, unet
MODELS = {
'ggcnn': ggcnn,
'unet': unet,
}
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser()
# Model to train/test and peculiar parameters
parser.add_argument(
'--model', dest='model', help='Model to train (see main.py)',
type=str, default='ggcnn'
)
parser.add_argument(
'--model_params', dest='model_params',
help='Dictionary of params peculiar to a model',
type=str, default="{}"
)
# Dataset/task parameters
parser.add_argument(
'--dataset', dest='dataset', help='Name of dataset to use',
type=str, default='jacquard'
)
parser.add_argument(
'--net_name', dest='net_name', help='Name of trained model',
type=str, default=''
)
# Specific task parameters: data handling
parser.add_argument(
'--handle_as_ggcnn', dest='handle_as_ggcnn',
help='Handle annotations as GGCNN does',
action='store_true'
)
parser.add_argument(
'--im_size', dest='im_size',
help='Image size (always consider square images)',
type=int, default=320
)
parser.add_argument(
'--jaw_size', dest='jaw_size',
help='Jaw size during evaluation, "half" or float',
type=str, default='half'
)
parser.add_argument(
'--jaw_size_policy', dest='jaw_size_policy',
help='Jaw size during training, {"min". "max", "random"}',
type=str, default='min'
)
parser.add_argument(
'--num_of_bins', dest='num_of_bins',
help='Number of angle bins to consider when creating target maps',
type=int, default=3
)
parser.add_argument(
'--use_binary_map', dest='use_binary_map',
help='Binarize quality map',
action='store_true'
)
parser.add_argument(
'--use_rgbd_img', dest='use_rgbd_img',
help='Use RGB-D image as input',
action='store_true'
)
# Specific task parameters: loss function
parser.add_argument(
'--use_angle_loss', dest='use_angle_loss',
help='Force trigonometric constraints',
action='store_true'
)
parser.add_argument(
'--use_bin_loss', dest='use_bin_loss',
help='Use a bin classification loss',
action='store_true'
)
parser.add_argument(
'--use_bin_attention_loss', dest='use_bin_attention_loss',
help='Supervise bin_cls * pos_map',
action='store_true'
)
parser.add_argument(
'--use_graspness_loss', dest='use_graspness_loss',
help='Solve a binary graspness task',
action='store_true'
)
# Training parameters
parser.add_argument(
'--batch_size', dest='batch_size',
help='Batch size in terms of images',
type=int, default=8
)
parser.add_argument(
'--learning_rate', dest='learning_rate',
help='Learning of classification layers (not backbone)',
type=float, default=0.002
)
parser.add_argument(
'--weight_decay', dest='weight_decay',
help='Weight decay of optimizer',
type=float, default=0.0
)
# Learning rate policy
parser.add_argument(
'--not_use_early_stopping', dest='not_use_early_stopping',
help='Do not use early stopping learning rate policy',
action='store_true'
)
parser.add_argument(
'--not_restore_on_plateau', dest='not_restore_on_plateau',
help='Do not restore best model on validation plateau',
action='store_true'
)
parser.add_argument(
'--patience', dest='patience',
help='Number of epochs to consider a validation plateu',
type=int, default=1
)
# Other data loader parameters
parser.add_argument(
'--num_workers', dest='num_workers',
help='Number of workers employed by data loader',
type=int, default=2
)
return parser.parse_args()
def main():
"""Train and test a network pipeline."""
args = parse_args()
model = MODELS[args.model]
cfg = Config(
dataset=args.dataset,
net_name=args.net_name if args.net_name else args.model,
handle_as_ggcnn=args.handle_as_ggcnn,
im_size=args.im_size,
jaw_size=args.jaw_size,
jaw_size_policy=args.jaw_size_policy,
num_of_bins=args.num_of_bins,
use_binary_map=args.use_binary_map,
use_rgbd_img=args.use_rgbd_img,
use_angle_loss=args.use_angle_loss,
use_bin_loss=args.use_bin_loss,
use_bin_attention_loss=args.use_bin_attention_loss,
use_graspness_loss=args.use_graspness_loss,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
use_early_stopping=not args.not_use_early_stopping,
restore_on_plateau=not args.not_restore_on_plateau,
patience=args.patience,
num_workers=args.num_workers
)
model_params = eval(json.loads('"' + args.model_params + '"'))
model.train_test(cfg, model_params)
if __name__ == "__main__":
main()