forked from Psy-Fer/SquiggleKit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfast5_fetcher_multi.py
729 lines (663 loc) · 26.2 KB
/
fast5_fetcher_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import os
import sys
import gzip
import subprocess
import traceback
import argparse
import platform
for i in sys.argv:
if i == '-m':
from ont_fast5_api.conversion_tools import multi_to_single_fast5
from ont_fast5_api.conversion_tools.multi_to_single_fast5 import create_single_f5
from ont_fast5_api.multi_fast5 import MultiFast5File
'''
James M. Ferguson ([email protected])
Genomic Technologies
Garvan Institute
Copyright 2018
fast5_fetcher is designed to help manage fast5 file data storage and organisation.
It takes as input: fastq/paf/flat, sequencing_summary, (index)
----------------------------------------------------------------------------
version 0.0 - initial
version 0.2 - added argparser and buffered gz streams
version 0.3 - added paf input
version 0.4 - added read id flat file input
version 0.5 - pppp print output instead of extracting
version 0.6 - did a dumb. changed x in s to set/dic entries O(n) vs O(1)
version 0.7 - cleaned up a bit to share and removed some hot and steamy features
version 0.8 - Added functionality for un-tarred file structures and seq_sum only
version 1.0 - First release
version 1.1 - refactor with dicswitch and batch_tater updates
version 1.1.1 - Bug fix on --transform method, added OS detection
version 1.2.0 - Added file trimming to fully segment selection
version 1.2.1 - Added to SquiggleKit - Adopting its versioning
version 1.3.0 - Added Multifast5 and python3 support
----------------------------------------------------------------------------
TODO:
- autodetect file structures
- autobuild index file - make it a sub script as well - multifast5 negates this
- Consider using csv.DictReader() instead of wheel building
- options to build new index of fetched fast5s
- Add sam file compatibility for filtering - flat file minus headers
- Do extra checks for \r with mac/windows files
- Memory reduction using hashed binary indexes of larger files
- individual file flag
- multiprocessing
- header using # with autodetect for metadata
- reslease a 2.0.0 with major re-write and cleanup with multiprocessing
----------------------------------------------------------------------------
MIT License
Copyright (c) 2017 James Ferguson
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
def main():
'''
Main function to control each major control function.
'''
VERSION = "1.3.0"
parser = MyParser(
description="fast_fetcher - extraction of specific nanopore fast5 files")
inputs = parser.add_mutually_exclusive_group()
index = parser.add_mutually_exclusive_group()
trim = parser.add_mutually_exclusive_group()
inputs.add_argument("-q", "--fastq",
help="fastq for read ids")
inputs.add_argument("-p", "--paf",
help="paf alignment file for read ids")
inputs.add_argument("-f", "--flat",
help="flat file of read ids")
parser.add_argument("-s", "--seq_sum", required=True,
help="sequencing_summary.txt.gz file")
index.add_argument("-i", "--index",
help="index.gz file mapping fast5 files in tar archives")
index.add_argument("-m", "--multi_f5",
help="path to multi-fast5 files")
parser.add_argument("-c", "--f5_format", default="ms", choices=["mm", "ms", "sm"],
help="fast5 file format output - mm=multi->multi, ms=multi->single, etc...")
parser.add_argument("-o", "--output", required=True,
help="output directory for extracted fast5s")
trim.add_argument("-t", "--trim", action="store_true",
help="trim files as if standalone experiment, (fq, SS)")
parser.add_argument("-l", "--trim_list",
help="list of file names to trim, comma separated. fastq only needed for -p and -f modes")
parser.add_argument("-x", "--prefix", default="default",
help="trim file prefix, eg: barcode_01, output: barcode_01.fastq, barcode_01_seq_sum.txt")
trim.add_argument("-D", "--seq_sum_1D2", choices=["first", "second", "both"],
help="Sequencing summary file is from 1D^2 basecalling")
# parser.add_argument("-P", "--procs", type=int,
# help="Number of CPUs to use - Only available for Multi-fast5 files")
parser.add_argument("-z", "--pppp", action="store_true",
help="Print out tar commands in batches for further processing - advanced use/batch_tater.py")
parser.add_argument("--OSystem", default=platform.system(),
help="running operating system - leave default unless doing odd stuff")
parser.add_argument("-V", "--version", action="store_true",
help="Print version information")
parser.add_argument("-v", "--verbose", action="store_true",
help="engage higher level of verbosity for troubleshooting")
args = parser.parse_args()
# --------------------------------------------------------------------------
# print help if no arguments given
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
# print metadata
if args.version:
sys.stderr.write("SquiggleKit fast5_fetcher: {}\n".format(VERSION))
sys.exit(1)
if args.verbose:
sys.stderr.write("Verbose mode active - dumping info to stderr\n")
sys.stderr.write("SquiggleKit fast5_fetcher: {}\n".format(VERSION))
sys.stderr.write("args: {}\n".format(args))
if args.multi_f5:
if args.verbose:
sys.stderr.write("Multi-fast5 mode detected in mode: {}\n".format(args.f5_format))
if args.seq_sum_1D2:
if args.verbose:
sys.stderr.write("1D^2 sequencing summary mode on. Getting {} read(s)\n".format(args.seq_sum_1D2))
# --------------------------------------------------------------------------
# do checks on arguments
# check inputs, index, and output are present (no need for index if multi_f5)
# check it can find all the files and paths before continuing
if not args.fastq and not args.flat and not args.paf:
if not args.seq_sum:
sys.stderr.write("\nNo input detected\nPlease indicate fastq/paf/flat, or sequencing_summary file fast5 selection\n\n\n")
parser.print_help(sys.stderr)
sys.exit(1)
else:
sys.stderr.write("\nSequencing_summary file only mode detected. Extracting all files found in sequencing_summary file\n\n\n")
if not args.output:
sys.stderr.write("\nNo output detected\nPlease indicate a path to place the extracted fast5 files\n\n\n")
parser.print_help(sys.stderr)
sys.exit(1)
# --------------------------------------------------------------------------
if args.verbose:
sys.stderr.write("Checks passed!\nStarting things up!\n")
p_dic = {}
if args.pppp and args.verbose:
sys.stderr.write("PPPP state! Not extracting, exporting tar commands\n")
if args.pppp and args.multi_f5:
sys.stderr.write("PPPP state and multi_f5 not yet supported\n")
sys.exit(1)
# --------------------------------------------------------------------------
# Handles the trimmming of fastq or sequencing summary files depending on input
trim_pass = False
if args.trim:
SS = False
FQ = False
if args.trim_list:
A = args.trim_list.split(',')
for a in A:
if "fastq" in a:
FQ = a
elif "txt" in a:
SS = a
else:
sys.stderr.write("Unknown trim input. detects 'fastq' or 'txt' for files. Input: {}\n".format(a))
else:
sys.stderr.write("No extra files given. Compatible with -q fastq input only\n")
if args.fastq:
FQ = args.fastq
if args.seq_sum:
SS = args.seq_sum
# final check for trimming
if FQ and SS:
trim_pass = True
sys.stderr.write("Trim setting detected. Writing to working direcory\n")
else:
sys.stderr.write("Unable to verify both fastq and sequencing_summary files. Please check filenames and try again. Exiting...\n")
sys.exit(1)
# --------------------------------------------------------------------------
# Do the actual trimming depending on input type - non destructive, so can do it first
# get the ids
ids = []
if args.fastq:
ids = get_fq_reads(args.fastq)
if trim_pass:
trim_SS(args, ids, SS)
elif args.paf:
ids = get_paf_reads(args.paf)
if trim_pass:
trim_both(args, ids, FQ, SS)
elif args.flat:
ids = get_flat_reads(args.flat)
if trim_pass:
trim_both(args, ids, FQ, SS)
# --------------------------------------------------------------------------
# get fast5 file names using seq_sum
if not ids and trim_pass:
if args.multi_f5:
filenames, ids = get_filenames_multi_f5(args.seq_sum, ids)
trim_both(args, ids, FQ, SS)
else:
filenames, ids = get_filenames(args.seq_sum, ids)
trim_both(args, ids, FQ, SS)
else:
if args.multi_f5:
if args.verbose:
sys.stderr.write("Getting multi-fast5 info...\n")
if args.seq_sum_1D2:
#hardcoded for both right now
filenames, ids = get_1D2_filenames_multi_f5(args.seq_sum, ids)
else:
filenames, ids = get_filenames_multi_f5(args.seq_sum, ids)
else:
filenames, ids = get_filenames(args.seq_sum, ids)
# --------------------------------------------------------------------------
if not filenames:
sys.stderr.write("no filenames list built, check inputs\n")
if not ids:
sys.stderr.write("No ids list built, check inputs\n")
# --------------------------------------------------------------------------
if args.multi_f5:
if args.verbose:
sys.stderr.write("Extracting reads from multi-fast5 files...\n")
m_paths = get_paths_multi_f5(args.multi_f5, filenames)
if not m_paths:
sys.stderr.write("No file paths built\n")
multi_f5_handler(args, m_paths, filenames)
else:
if args.verbose:
sys.stderr.write("Doing legacy extraction...\n")
paths = get_paths(args.index, filenames)
# TODO: place multiprocessing pool here
for p, f in paths:
# if -z option, get file paths for command lists
if args.pppp:
if p in p_dic:
p_dic[p].append(f)
else:
p_dic[p] = [f]
continue
else:
try:
extract_file(args, p, f)
except:
traceback.print_exc()
sys.stderr.write("Failed to extract: {} {}\n".format(p, f))
# For each .tar file, write a file with the tarball name as filename.tar.txt
# and contains a list of files to extract - input for batch_tater.py
if args.pppp:
# TODO: check for naming and dynamically make tater_master filename
with open("tater_master.txt", 'w') as m:
for i in p_dic:
fname = "tater_" + i.split('/')[-1] + ".txt"
m_entry = "{}\t{}".format(fname, i)
fname = args.output + "/tater_" + i.split('/')[-1] + ".txt"
m.write(m_entry)
m.write('\n')
with open(fname, 'w') as f:
for j in p_dic[i]:
f.write(j)
f.write('\n')
if args.verbose:
# do a check some files were actually extracted
sys.stderr.write("done!\n\nScript end.\n")
def dicSwitch(i):
'''
A switch to handle file opening and reduce duplicated code
'''
open_method = {
"gz": gzip.open,
"norm": open
}
return open_method[i]
def get_fq_reads(fastq):
'''
read fastq file and extract read ids
quick and dirty to limit library requirements - still bullet fast
reads 4 lines at a time and on 1st line, split and get id, dropping the @ symbol
'''
c = 0
read_ids = set()
if fastq.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(fastq, 'rt') as fq:
for line in fq:
c += 1
line = line.strip('\n')
if c == 1:
idx = line.split()[0][1:]
read_ids.add(idx)
elif c >= 4:
c = 0
return read_ids
def get_paf_reads(reads):
'''
Parse paf file to pull read ids (from minimap2 alignment)
First field is the readID
'''
read_ids = set()
if reads.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(reads, 'rt') as fq:
for line in fq:
line = line.strip('\n')
line = line.split()
read_ids.add(line[0])
return read_ids
def get_flat_reads(filename):
'''
Parse a flat file separated by line breaks \n
ie, one readID per line
TODO: make @ symbol check once, as they should all be the same
'''
read_ids = set()
check = True
if filename.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(filename, 'rt') as fq:
for line in fq:
line = line.strip('\n')
if check:
if line[0] == '@':
x = 1
else:
x = 0
check = False
idx = line[x:]
read_ids.add(idx)
return read_ids
def trim_SS(args, ids, SS):
'''
Trims the sequencing_summary.txt file to only the input IDs
'''
if args.prefix:
pre = args.prefix + "_seq_sum.txt"
else:
pre = "trimmed_seq_sum.txt"
head = True
if SS.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
# make this compatible with dicSwitch
with open(pre, "w") as w:
with f_read(SS, 'rt') as sz:
for line in sz:
if head:
w.write(line)
head = False
continue
l = line.split()
if l[1] in ids:
w.write(line)
def trim_both(args, ids, FQ, SS):
'''
Trims the sequencing_summary.txt and fastq files to only the input IDs
'''
# trim the SS
trim_SS(args, ids, SS)
if args.prefix:
pre = args.prefix + ".fastq"
else:
pre = "trimmed.fastq"
# trim the fastq
c = 0
P = False
if FQ.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with open(pre, "w") as w:
with f_read(FQ, 'rt') as fq:
for line in fq:
c += 1
if c == 1:
if line.split()[0][1:] in ids:
P = True
w.write(line)
elif P and c < 4:
w.write(line)
elif c >= 4:
if P:
w.write(line)
c = 0
P = False
def get_filenames(seq_sum, ids):
'''
match read ids with seq_sum to pull filenames
uses set to remove possible duplicates, as well as faster "if in" checks
sets are hashed, lists are not, so O(N) vs O(1) complexity
'''
# for when using seq_sum for filtering, and not fq,paf,flat
ss_only = False
if not ids:
ss_only = True
ids = set()
head = True
files = set()
if seq_sum.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(seq_sum, 'rt') as sz:
for line in sz:
if head:
head = False
continue
line = line.strip('\n')
line = line.split()
# add 1D^2 logic here
if ss_only:
files.add(line[0])
ids.add(line[1])
else:
if line[1] in ids:
files.add(line[0])
return files, ids
def get_filenames_multi_f5(seq_sum, ids):
'''
Match read ids with seq_sum to pull file names when packed in multifast5 format
columns keep changing....fix this
'''
# for when using seq_sum for filtering, and not fq,paf,flat
ss_only = False
if not ids:
ss_only = True
ids = set()
head = True
files = {}
if seq_sum.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(seq_sum, 'rt') as sz:
for line in sz:
if head:
head = False
continue
line = line.strip('\n')
line = line.split()
# add 1D^2 logic here
if ss_only:
if line[0] not in files:
files[line[0]] = []
files[line[0]].append(line[1])
ids.add(line[1])
else:
if line[1] in ids:
if line[0] not in files:
files[line[0]] = []
files[line[0]].append(line[1])
return files, ids
def get_1D2_filenames_multi_f5(seq_sum, ids):
'''
Match read ids with seq_sum to pull file names when packed in multifast5 format
'''
# for when using seq_sum for filtering, and not fq,paf,flat
ss_only = False
if not ids:
ss_only = True
ids = set()
head = True
files = {}
if seq_sum.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
with f_read(seq_sum, 'rt') as sz:
for line in sz:
if head:
head = False
continue
line = line.strip('\n')
line = line.split('\t')
if ss_only:
if line[0] not in files:
files[line[0]] = []
files[line[0]].append(line[2])
ids.add(line[2])
if line[1] not in files:
files[line[1]] = []
files[line[1]].append(line[3])
ids.add(line[3])
else:
if line[2] in ids:
if line[0] not in files:
files[line[0]] = []
files[line[0]].append(line[2])
if line[1] not in files:
files[line[1]] = []
files[line[1]].append(line[3])
return files, ids
def get_paths(index_file, filenames, f5=None):
'''
Read index and extract full paths for file extraction
This could be done better with byte indexing
'''
tar = False
paths = []
c = 0
if index_file.endswith('.gz'):
f_read = dicSwitch('gz')
else:
f_read = dicSwitch('norm')
# detect normal or tars
with f_read(index_file, 'rt') as idz:
for line in idz:
line = line.strip('\n')
c += 1
if c > 10:
break
if line.endswith('.tar'):
tar = True
break
# extract paths
with f_read(index_file, 'rt') as idz:
for line in idz:
line = line.strip('\n')
if tar:
if line.endswith('.tar'):
path = line
elif line.endswith('.fast5'):
f = line.split('/')[-1]
if f in filenames:
paths.append([path, line])
else:
continue
else:
if line.endswith('.fast5'):
f = line.split('/')[-1]
if f in filenames:
paths.append(['', line])
else:
continue
return paths
def get_paths_multi_f5(path, filenames):
'''
Build the path list for the multi_fast5 files given a top dir, recursive
'''
filepaths = []
for dirpath, dirnames, files in os.walk(path):
for fast5 in files:
if fast5.endswith('.fast5'):
if fast5 in filenames:
filepaths.append([os.path.join(dirpath, fast5), fast5])
return filepaths
def convert_multi_to_single(input_file, read_list, output_folder):
'''
Pull the exact read out of the file.
'''
results = [os.path.basename(input_file)]
try:
with MultiFast5File(input_file, 'r') as multi_f5:
read_ids = set(multi_f5.get_read_ids())
for query_read in read_list:
if query_read in read_ids:
try:
read = multi_f5.get_read(query_read)
output_file = os.path.join(output_folder, "{}.fast5".format(query_read))
create_single_f5(output_file, read)
results.append(os.path.basename(output_file))
except:
traceback.print_exc()
sys.stderr.write("{}\n\tFailed to copy read '{}' from {}\n".format("convert_multi_to_single", query_read, input_file))
else:
sys.stderr.write("{}\n\tFailed to find read '{}' in {}\n".format("convert_multi_to_single", query_read, input_file))
except:
traceback.print_exc()
sys.stderr.write("{}\n\tFailed to copy files from: {}\n".format("convert_multi_to_single", input_file))
finally:
return results
def m2s(f5_path, read_list, save_path):
'''
Open a single multi-fast5 file and extract 1 single read
TODO: sort out the file mapping file writing
'''
result = convert_multi_to_single(f5_path, read_list, save_path)
with open(os.path.join(save_path, "filename_mapping.txt"), 'a') as out_sum:
M = result[0]
for S in result[1:]:
out_sum.write("{}\t{}\n".format(M,S))
def s2m(f5_path, read_list, save_path):
'''
Open a single multi-fast5 file and extract 1 single read
TODO: sort out the file mapping file writing
'''
result = convert_multi_to_single(f5_path, read_list, save_path)
with open(os.path.join(save_path, "filename_mapping.txt"), 'a') as out_sum:
M = result[0]
for S in result[1:]:
out_sum.write("{}\t{}\n".format(S, M))
def multi_f5_handler(args, m_paths, filenames):
'''
handle multi-fast5 Files
'''
save_path = args.output
if args.f5_format == "mm":
sys.stderr.write("multi to multi currently not implemented. Coming soon. Exiting\n")
# read_multi
# write_multi
sys.exit(2)
elif args.f5_format == "ms":
with open(os.path.join(args.output, "filename_mapping.txt"), 'w') as out_sum:
out_sum.write("multi_read_file\tsingle_read_file\n")
for p, f in m_paths:
try:
read_list = filenames[f]
m2s(p, read_list, save_path)
except:
traceback.print_exc()
sys.stderr.write("Failed to extract from multi_fast5: {}\n".format(p))
elif args.f5_format == "sm":
# this may be be best done by first doing single sorting, then pushing into multi files
sys.stderr.write("single to multi currently not implemented. Coming soon. Exiting\n")
sys.exit(2)
else:
sys.stderr.write("Something went wrong, check --f5_format: {}\n".format(args.f5_format))
def extract_file(args, path, filename):
'''
Do the extraction.
I was using the tarfile python lib, but honestly, it sucks and was too volatile.
if you have a better suggestion, let me know :)
That --transform hack is awesome btw. Blows away all the leading folders. use
cp for when using untarred structures. Not recommended, but here for completeness.
--transform not working on MacOS. Need to use gtar
Thanks to Kai Martin for picking that one up!
TODO: move OS detection to top, and use to help compatibility for edge cases.
works pretty well on all systems so far, but all about dat support!
'''
OSystem = ""
OSystem = args.OSystem
save_path = args.output
if path.endswith('.tar'):
if OSystem in ["Linux", "Windows"]:
cmd = "tar -xf {} --transform='s/.*\///' -C {} {}".format(
path, save_path, filename)
elif OSystem == "Darwin":
cmd = "gtar -xf {} --transform='s/.*\///' -C {} {}".format(
path, save_path, filename)
else:
sys.stderr.write("Unsupported OSystem, trying Tar anyway, OS: {}\n".format(OSystem))
cmd = "tar -xf {} --transform='s/.*\///' -C {} {}".format(
path, save_path, filename)
else:
cmd = "cp {} {}".format(filename, save_path)
subprocess.call(cmd, shell=True, executable='/bin/bash')
if __name__ == '__main__':
main()