-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture2_imports.py
408 lines (352 loc) · 14.9 KB
/
lecture2_imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import torch
from torch import nn
import numpy as np
import os
from torch_geometric.data import Data, InMemoryDataset, DataLoader
from torch.nn import functional as F
from torch import optim
from torch_geometric import nn as pyg_nn
from torch_geometric.datasets import QM9
import networkx as nx
from torchvision import datasets, transforms
from torchvision.models import mobilenet_v2
from matplotlib import pyplot as plt
from matplotlib import animation
import matplotlib
from PIL import Image
from dlgdrive import download_file_from_google_drive
from srgan.utils import *
import models
import warnings
from torch.serialization import SourceChangeWarning
warnings.filterwarnings("ignore", category=SourceChangeWarning)
transform = transforms.Compose(
[transforms.ToTensor()])
CIFAR10_trainset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
CIFAR10_trainloader = torch.utils.data.DataLoader(CIFAR10_trainset, batch_size=4,
shuffle=True, num_workers=2)
def onedimsz(xysz, kernel_size, stride):
return int((xysz - kernel_size)/stride + 1)
def output_im(image, kernel, stride):
imx, imy, _ = image.shape
kernel_size, _, _ = kernel.shape
outszx = onedimsz(imx, kernel_size, stride)
outszy = onedimsz(imy, kernel_size, stride)
return np.zeros((outszx, outszy))
def num_strides(image, kernel, stride):
imx, imy, _ = image.shape
c, _, _ = kernel.shape
if (imx - c) % stride != 0 or (imy - c) % stride != 0:
raise ArithmeticError(f'Image shape ({imx}, {imy}) does not allow striding with stride {stride} evenly')
return (imx - c) // stride + 1, (imy - c) // stride + 1
def pad(image, padding):
imx, imy, imz = image.shape
new_image = np.zeros((imx + 2*padding, imy + 2*padding, imz))
new_image[padding:imx+padding, padding:imy+padding] = image
return new_image
def convolve_to(num, image, kernel, stride, padding):
image = pad(image, padding)
output = output_im(image, kernel, stride)
num_stridesx, num_stridesy = num_strides(image, kernel, stride)
c, _, _ = kernel.shape
for i in range(num):
x, y = i//num_stridesx, i%num_stridesy
startx, starty = x * stride, y * stride
output[x, y] = np.sum(image[startx:startx+c, starty:starty+c, :] * kernel)
return shiftrescale(output) * 255
def showuntil(num, im, data):
imx, imy = data.shape
output = np.zeros_like(data)
for i in range(num):
x, y = i // imy, i % imy
output[x, y] = data[x, y]
im.set_data(output)
return output
def shiftrescale(image):
shift = image + np.abs(np.min(image))
rescaled = shift / np.max(shift)
return rescaled
class socfb(InMemoryDataset):
# @inproceedings{nr,
# title={The Network Data Repository with Interactive Graph Analytics and Visualization},
# author={Ryan A. Rossi and Nesreen K. Ahmed},
# booktitle={AAAI},
# url={http://networkrepository.com},
# year={2015}
# }
def __init__(self, root, name, transform=None, pre_transform=None):
self.name = name
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return ['readme.html', f'{self.name}.mtx']
@property
def processed_file_names(self):
return ['data.pt']
def download(self):
from urllib.request import urlopen
a = urlopen(f'http://nrvis.com/download/data/socfb/{self.name}.zip')
if a.status == 200:
with open(f'{self.root}/raw/{self.name}.zip', 'wb') as f:
f.write(a.read())
else:
raise Exception(f'Could not download {self.name}')
from zipfile import ZipFile
with ZipFile(f'{self.root}/raw/{self.name}.zip') as f:
f.extractall(path=f'{self.root}/raw')
def process(self):
# Read data into huge `Data` list.
with open(f'{self.root}/raw/{self.raw_file_names[1]}') as f:
lines = f.readlines()[1:] # First line is a comment I think
num_nodes, a, num_edge = lines[0].split()
lines = lines[1:]
assert(len(lines) == int(num_edge))
edges = [line.split() for line in lines]
edges = [[int(x[0]), int(x[1])] for x in edges]
edges = torch.tensor(edges, dtype=torch.long).T
data_list = [Data(edge_index=edges)]
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def update_image(num, fig, im, data):
showim = showuntil(num, im, data)
setfigval(fig, showim)
return im
def setfigval(fig, vals):
xsteps, ysteps = vals.shape
if len(fig.texts) == xsteps * ysteps:
for num, txt in enumerate(fig.texts):
i, j = num // xsteps, num % ysteps
txt.set_text(f'{vals[i, j]:.2f}')
else:
for i in range(xsteps):
for j in range(ysteps):
txt = plt.text(j, i, f'{vals[i, j]:.1f}', ha='center', va='center', color='white')
fig.texts.append(txt)
def show_car(CIFAR10_trainset):
plt.figure()
data, label = CIFAR10_trainset[4]
datashow = data.transpose(0, 1).transpose(1, 2)
plt.imshow(datashow)
plt.title('Image')
return data
def show_random_kernel():
plt.figure()
kernel_size = 8
stride = 8
padding = 0
conv = nn.Conv2d(3, 1, kernel_size=kernel_size, stride=stride, padding=padding)
kernel = conv.weight.squeeze().transpose(0, 1).transpose(1, 2).detach()
plt.imshow(shiftrescale(kernel.numpy()))
plt.title('Kernel')
return conv
def show_conv_anim(data, conv):
fig = plt.figure()
stride = 8
padding = 0
datashow = data.transpose(0, 1).transpose(1, 2)
padded = pad(datashow, padding)
kernel = conv.weight.squeeze().transpose(0, 1).transpose(1, 2).detach()
xsteps, ysteps = num_strides(padded, kernel, stride)
num_steps = xsteps * ysteps + 1
data = data.unsqueeze(0)
final_fm = conv(data)
final_fm = final_fm.squeeze().squeeze().detach().numpy()
fm_min, fm_max = np.min(final_fm), np.max(final_fm)
im = plt.imshow(np.zeros_like(final_fm), vmin=fm_min, vmax=fm_max) # vmin and vmax required so the image isn't blank
# setfigval(fig1, final_fm)
# print(update_image(num_steps-1, fig1, im, final_fm).get_array())
plt.title(f'Output of convolution (feature map)')
return fig, num_steps, im, final_fm
def update_image_no_annotation(num, im, data):
showim = showuntil(num, im, data)
return im
def show_cute_fox():
plt.figure()
data = torch.tensor(np.array(Image.open('fox.jpeg')))
x, y, _ = data.shape
data = data[:min(x, y):4, :min(x, y):4, :]
datashow = data.clone()
data = data.transpose(1, 2).transpose(0, 1).unsqueeze(0).type(torch.DoubleTensor)
plt.imshow(datashow)
plt.title('Image')
return data
def show_edge_detector(kernel):
plt.figure()
# Change the kernel and see what happens!
stride = 1
padding = 1
conv = nn.Conv2d(3, 1, kernel_size=kernel.shape, stride=stride, padding=padding)
kernel = np.stack((kernel,)*3, axis=0)
kernelshow = shiftrescale(kernel).T
conv.weight = nn.Parameter(torch.tensor(kernel).unsqueeze(0).type(torch.DoubleTensor), requires_grad=False)
plt.imshow(kernelshow)
plt.title('Kernel')
return conv
def show_edge_detection(data, conv):
fig = plt.figure()
stride = 1
padding = 1
datashow = data.squeeze().transpose(0, 1).transpose(1, 2)
padded = pad(datashow, padding)
kernel = conv.weight.squeeze().transpose(0, 1).transpose(1, 2).detach()
xsteps, ysteps = num_strides(padded, kernel, stride)
num_steps = xsteps * ysteps + 1
final_fm = conv(data)
final_fm = final_fm.squeeze().squeeze().detach().numpy()
fm_min, fm_max = np.min(final_fm), np.max(final_fm)
im = plt.imshow(np.zeros_like(datashow), cmap='gray', vmin=fm_min, vmax=fm_max) # vmin and vmax required so the image isn't blank
plt.title('Output of convolution (feature map)')
return fig, num_steps, im, final_fm
def update_row(num, ims, imlist):
for im, d in zip(ims, imlist[num*4:(num+1)*4, :, :, :]):
im.set_data(d.detach().numpy())
return ims
def get_mobilenet_convbnrelu():
mob = mobilenet_v2(pretrained=True)
modules = list(mob.modules())
convbnrelu = modules[2]
return convbnrelu
def show_conv_weights(convlayer):
num_steps = 8
fig, axes = plt.subplots(1, 4, figsize=(9, 4))
fig.suptitle('Convolutional layer weights')
ims = [ax.imshow(shiftrescale(kernel.transpose(1, 2).transpose(0, 1).detach().numpy())) for ax, kernel in zip(axes, convlayer.weight[:4, :, :, :])]
return fig, num_steps, ims
def get_224px_fox():
data = Image.open('fox.jpeg')
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]
)
data = transform(data)
return data
def show_224px_fox():
fig = plt.figure()
fig.suptitle('Still using our cute fox but in 224x224')
data = get_224px_fox()
plt.imshow(data.transpose(0, 1).transpose(1, 2).numpy().astype(np.uint8))
return data
def update_row_output(num, ims, imlist):
for im, d in zip(ims, imlist[num*4:(num+1)*4, :, :]):
im.set_data(d.detach().numpy())
return ims
def show_layer_output(data, layer):
num_steps = 8
fig, axes = plt.subplots(1, 4, figsize=(9, 4))
fig.suptitle('Convolutional layer feature map outputs')
output = layer(data.unsqueeze(0)).squeeze()
ims = [ax.imshow(fm.detach().numpy()) for ax, fm in zip(axes, output[:4, :, :])]
return fig, num_steps, ims, output
def show_maxpool(data, maxpool):
plt.figure()
maxpooloutput = maxpool(data)
plt.title('Maxpool output')
plt.imshow(shiftrescale(maxpooloutput.transpose(0, 1).transpose(1, 2).numpy()))
def show_DW_conv(data, conv3x3, dwconv3x3, dwconv1x1):
dw_3x3_out = torch.stack([dwconv3x3(data[i,:,:].unsqueeze(0).unsqueeze(0)).squeeze() for i in range(3)])
dw_1x1_out = dwconv1x1(dw_3x3_out.unsqueeze(0)).squeeze()
conv_3x3_out = conv3x3(data.unsqueeze(0)).squeeze()
fig, axes = plt.subplots(1, 2, figsize=(9,6))
axes[0].set_title('DW separable convolution')
axes[0].imshow(shiftrescale(dw_1x1_out.detach().numpy()))
axes[1].set_title('Normal 3x3 convolution')
axes[1].imshow(shiftrescale(conv_3x3_out.detach().numpy()))
def get_srgan_weights(srgan_checkpoint):
if not os.path.isfile(srgan_checkpoint):
download_file_from_google_drive('1_PJ1Uimbr0xrPjE8U3Q_bG7XycGgsbVo', srgan_checkpoint)
def tensor2im(tensor):
return tensor.transpose(0, 1).transpose(1, 2).detach().numpy()
def show_srgan_comparison(srgan_checkpoint):
srgan_generator = torch.load(srgan_checkpoint, map_location=torch.device('cpu'))['generator']
srgan_generator.eval()
data = Image.open('fox.jpeg')
transform = ImageTransforms('test', crop_size=0, scaling_factor=4, lr_img_type='imagenet-norm', hr_img_type='[-1, 1]')
sr_data_lr, sr_data_hr = transform(data)
sr_output = srgan_generator(sr_data_lr.unsqueeze(0)).squeeze()
sr_output_im = (sr_output + 1.) / 2.
sr_data_lr_im = sr_data_lr * imagenet_std + imagenet_mean
sr_data_hr_im = (sr_data_hr + 1.) / 2.
images_in_order = ('Low', tensor2im(sr_data_lr_im)), ('Original', tensor2im(sr_data_hr_im)), ('Output', tensor2im(sr_output_im))
fig, axes = plt.subplots(1, 3, figsize=(9, 3))
for (name, im), ax in zip(images_in_order, axes):
ax.set_title(name)
ax.imshow(im)
class GNNStack(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, task='node'):
super(GNNStack, self).__init__()
self.task = task
self.convs = nn.ModuleList()
self.convs.append(self.build_conv_model(input_dim, hidden_dim))
self.lns = nn.ModuleList()
self.lns.append(nn.LayerNorm(hidden_dim))
self.lns.append(nn.LayerNorm(hidden_dim))
for l in range(2):
self.convs.append(self.build_conv_model(hidden_dim, hidden_dim))
# post-message-passing
if self.task == 'node':
self.post_mp = nn.Sequential(
nn.Linear(hidden_dim+29, hidden_dim), nn.Dropout(0.25),
nn.Linear(hidden_dim, output_dim))
elif self.task == 'link':
pass
elif self.task == 'graph':
self.post_mp = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim), nn.Dropout(0.25),
nn.Linear(hidden_dim, output_dim))
if not (self.task == 'node' or self.task == 'graph'):
raise RuntimeError('Unknown task.')
self.dropout = 0.25
self.num_layers = 3
def build_conv_model(self, input_dim, hidden_dim):
# refer to pytorch geometric nn module for different implementation of GNNs.
if self.task == 'node' or self.task == 'link':
return pyg_nn.GCNConv(input_dim, hidden_dim)
else:
return pyg_nn.GINConv(nn.Sequential(nn.Linear(input_dim, hidden_dim),
nn.ReLU(), nn.Linear(hidden_dim, hidden_dim)))
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
for i in range(self.num_layers):
x = self.convs[i](x, edge_index)
emb = x
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
if not i == self.num_layers - 1:
x = self.lns[i](x)
if self.task == 'node':
oh = torch.zeros(data.batch.shape[0], 29).to(x.device)
print(data.mask)
oh.scatter_(1, data.mask.unsqueeze(0), 1)
x = torch.cat((x, oh), dim=1)
elif self.task == 'link':
pass
elif self.task == 'graph':
x = pyg_nn.global_mean_pool(x, batch)
x = self.post_mp(x)
return emb, F.log_softmax(x, dim=1)
def loss(self, pred, label):
if self.task == 'node':
return F.nll_loss(pred, label)
elif self.task == 'graph':
return F.mse_loss(pred, label)
def show_graph_regression():
qm9 = QM9(root='data')
test_loader = DataLoader(qm9[int(1000* 0.8):1000], batch_size=1, shuffle=True)
model = GNNStack(max(qm9.num_node_features, 1), 32, qm9.num_classes, task='graph')
model.load_state_dict(torch.load('graphnn/savegraphmodel_32hid.pth'))
example = next(iter(test_loader))
emb, pred = model(example)
fig, axes = plt.subplots(2, 1, figsize=(10,4))
fig.suptitle('Graph property prediction')
axes[0].imshow(pred.detach().numpy())
axes[0].set_title('Prediction')
axes[1].imshow(example.y.detach().numpy())
axes[1].set_title('Ground truth')