-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_wowpedia.py
404 lines (326 loc) · 13.5 KB
/
process_wowpedia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
import time
import os
import json
import spacy
import numpy as np
from sklearn.cluster import SpectralClustering
def main():
# get_quest_data(verbose=True)
# process_quest_data()
# time.sleep(5)
# prune_verbs()
# time.sleep(5)
# cluster_verbs()
# time.sleep(5)
expand_verbs()
def get_quests_from_categories():
def has_next_page(tag):
return tag.name == "a" and tag.text.strip() == "next page"
with open("data/wow/quest_category_urls.txt") as f:
urls = f.readlines()
urls = [url.strip() for url in urls]
base_url = "https://wowpedia.fandom.com"
quest_urls = []
for url in tqdm(urls):
while True:
time.sleep(1)
response = requests.get(url)
soup = BeautifulSoup(response.text, features="html.parser")
page_div = soup.find("div", class_="mw-category-generated")
quest_div = page_div.find("div", class_="mw-content-ltr")
quests = quest_div.find_all("a")
for quest in quests:
quest_urls.append(base_url + quest["href"])
next_page = page_div.find(has_next_page)
if next_page:
url = base_url + next_page["href"]
else:
break
with open("data/wow/quest_urls.txt", "w") as f:
for url in quest_urls:
f.write(url + "\n")
def filter_quests():
with open("data/wow/quest_urls.txt") as f:
urls = f.readlines()
urls = [url.strip() for url in urls]
filtered_urls = []
for url in urls:
if "_(Horde)" not in url and "_(Alliance)" not in url:
horde_version = url + "_(Horde)"
alliance_version = url + "_(Alliance)"
if horde_version in urls and alliance_version in urls:
pass
else:
filtered_urls.append(url)
else:
filtered_urls.append(url)
with open("data/wow/filtered_quest_urls.txt", "w") as f:
for url in filtered_urls:
f.write(url + "\n")
def save_html_source():
def get_with_retry(url, max_retries=5, backoff_factor=1):
for retry in range(max_retries):
url_response = requests.get(url)
if url_response.status_code != 429: # If not 'Too Many Requests'
return url_response
else:
wait_time = backoff_factor * (2 ** retry)
time.sleep(wait_time)
raise Exception(f"Failed to get a successful response after {max_retries} attempts.")
with open("data/wow/quest_urls.txt") as f:
urls = f.readlines()
urls = [url.strip() for url in urls]
for i, url in tqdm(enumerate(urls), total=len(urls)):
start_time = time.time()
response = get_with_retry(url)
with open(f"data/wow/quest_html/{i}.html", "w") as f:
f.write(response.text)
end_time = time.time()
elapsed_time = end_time - start_time
if elapsed_time < 1:
time.sleep(1.2 - elapsed_time)
def get_quest_data(verbose=True):
"""
Extracts quest data from the html files.
"""
def find_th(tag_string, target):
return tag_string.name == 'th' and tag_string.string == target
quest_path = "data/wow/quest_html"
urls = [os.path.join(quest_path, url) for url in os.listdir(quest_path) if url.endswith(".html")]
contents = []
for url in tqdm(urls, disable=not verbose):
quest_content = {}
with open(url) as f:
content = f.read()
soup = BeautifulSoup(content, features="html.parser")
quest_id = soup.find("li", class_="wowhead")
if quest_id:
quest_id = quest_id.find("a")
if quest_id:
quest_id = quest_id["href"].split("=")[-1]
if quest_id.isdigit():
quest_content["id"] = quest_id
else:
quest_content["id"] = None
else:
quest_content["id"] = None
else:
quest_content["id"] = None
quest_url = soup.find("meta", property="og:url")
if quest_url:
quest_url = quest_url.get("content", None)
if not quest_url:
continue
else:
quest_content["url"] = quest_url
else:
continue
objective = soup.find("span", class_="mw-headline", id="Objectives")
if not objective:
continue
header = objective.find_parent("h2")
objectives = []
for item in header.next_siblings:
if "<h2>" in str(item):
break
objective_text = item.text.strip()
if objective_text:
objectives.append(objective_text)
quest_content["objectives"] = objectives
patch_changes = soup.find("span", class_="mw-headline", id="Patch_changes")
patch_number = None
if patch_changes:
header = patch_changes.find_parent("h2")
for item in header.next_siblings:
if "<h2>" in str(item):
break
ul_element = BeautifulSoup(str(item), features="html.parser")
li_elements = ul_element.find_all('li')
if li_elements:
last_li = li_elements[-1]
patch_tag = last_li.find('b')
if patch_tag:
patch_number = patch_tag.get_text().split(':')[0]
patch_number = patch_number.split(' ')[1]
quest_content["patch"] = patch_number
info_table = soup.find("table", class_="infobox darktable questbox")
if info_table:
titles = ["Alliance", "Horde", "Neutral", "Alliance & Horde"]
for title in titles:
faction = info_table.find("a", title=title)
if faction:
quest_content["faction"] = faction["title"]
break
else:
quest_content["faction"] = None
infobox_items = ["Level", "Category", "Previous", "Next"]
for item in infobox_items:
label = info_table.find(lambda tag: find_th(tag, item))
if label:
sibling = label.find_next_sibling("td")
if sibling:
target_text = sibling.text.strip()
if "\xa0" in target_text:
target_text = target_text.split("\xa0")[-1].strip()
quest_content[item.lower()] = target_text
else:
quest_content[item.lower()] = None
title = soup.find("meta", property="og:title")
if title:
quest_content["title"] = title["content"]
else:
quest_content["title"] = None
contents.append(quest_content)
with open("data/wow/quest_data.txt", "w") as f:
json.dump(contents, f, indent=4)
def process_quest_data():
with open("data/wow/quest_data.txt") as f:
quests = json.load(f)
filtered_quests = []
for quest in tqdm(quests, desc="Filtering quests"):
full_quest = True
for q_key, q_val in quest.items():
if not q_val:
full_quest = False
if full_quest:
filtered_quests.append(quest)
nlp = spacy.load("en_core_web_md")
for quest in tqdm(filtered_quests, desc="Updating quests"):
objectives = quest["objectives"]
updated_objectives = []
split_objectives = []
for objective in objectives:
split_obj = objective.split("\n")
for obj in split_obj:
split_objectives.append(obj)
for objective in split_objectives:
if "\xa0" not in objective:
if objective and objective[0] != "[" and objective[-1] != ")" and objective[-1] != "]" and objective != "OR":
updated_objectives.append(objective)
quest["objectives"] = updated_objectives
directive_verbs = ["want", "ask", "tell", "need", "require", "order", "urge"]
extracted_verbs = []
for quest in tqdm(filtered_quests, desc="Processing quests"):
for objective in quest["objectives"]:
doc = nlp(objective)
for sent in doc.sents:
if sent[0].pos_ == "VERB":
patch = quest.get("patch", None)
if patch:
patch = patch.split(".")[0]
level = quest.get("level", None)
if level:
if "\u2002" in level:
level = level.split("\u2002")[0]
verb_data = {
"verb": sent[0].lemma_.lower(),
"patch": patch,
"faction": quest.get("faction", None),
"level": level,
"category": quest.get("category", None),
"type": "imperative"
}
extracted_verbs.append(verb_data)
else:
if sent.root.pos_ == "VERB" and sent.root.lemma_ in directive_verbs:
if len(sent) > (sent.root.i + 1):
has_comp = [tok for tok in sent if tok.dep_ == "xcomp" or tok.dep_ == "ccomp"]
if has_comp:
patch = quest.get("patch", None)
if patch:
patch = patch.split(".")[0]
level = quest.get("level", None)
if level:
if "\u2002" in level:
level = level.split("\u2002")[0]
verb_data = {
"verb": has_comp[0].lemma_.lower(),
"patch": patch,
"faction": quest.get("faction", None),
"level": level,
"category": quest.get("category", None),
"type": "complement"
}
extracted_verbs.append(verb_data)
filtered_verbs = []
for verb in tqdm(extracted_verbs, desc="Filtering quests"):
full_verb = True
for q_key, q_val in verb.items():
if not q_val:
full_verb = False
if full_verb:
filtered_verbs.append(verb)
with open("data/wow/verb_data.json", "w") as f:
json.dump(filtered_verbs, f, indent=4)
def prune_verbs():
with open("data/wow/verb_data.json") as f:
verb_data = json.load(f)
verbs = [verb["verb"] for verb in verb_data]
verb_counts = {}
for verb in verbs:
if verb in verb_counts:
verb_counts[verb] += 1
else:
verb_counts[verb] = 1
sorted_verb_counts = sorted(verb_counts.items(), key=lambda x: x[1], reverse=True)
labels, counts = zip(*sorted_verb_counts)
accepted_labels = []
manual_remove = ["darkwe"]
for label, count in zip(labels, counts):
if count >= 10 and label not in manual_remove:
accepted_labels.append(label)
pruned_data = []
for verb in verb_data:
if verb["verb"] in accepted_labels:
pruned_data.append(verb)
with open("data/wow/pruned_verb_data.json", "w") as f:
json.dump(pruned_data, f, indent=4)
def cluster_verbs():
def spectral_clustering(vectors, k=5):
spectral = SpectralClustering(n_clusters=k, random_state=42, affinity='nearest_neighbors', n_init=10)
clusters = spectral.fit_predict(vectors)
cluster_dict = {i: [] for i in range(k)}
for verb, cluster_label in zip(verbs, clusters):
cluster_dict[cluster_label].append(verb)
return clusters
with open("data/wow/pruned_verb_data.json") as f:
verb_data = json.load(f)
with open("data/wow/cluster_mapping.json") as f:
cluster_mapping = json.load(f)
nlp = spacy.load("en_core_web_md")
verbs = [verb["verb"] for verb in verb_data]
seen = set()
unique_verbs = [x for x in verbs if not (x in seen or seen.add(x))]
verb_vectors = np.array([nlp(verb).vector for verb in unique_verbs])
clustering_results = spectral_clustering(verb_vectors)
labeled_clusters = []
for cluster_index in clustering_results:
label = cluster_mapping[str(cluster_index)]
labeled_clusters.append(label)
for unique_verb, cluster in zip(unique_verbs, labeled_clusters):
for verb in verb_data:
if verb["verb"] == unique_verb:
verb["cluster"] = cluster
with open("data/wow/clustered_verbs.json", 'w') as f:
json.dump(verb_data, f, indent=4)
def expand_verbs():
with open("data/wow/clustered_verbs.json") as f:
verb_data = json.load(f)
expanded_verbs = []
for verb in tqdm(verb_data, desc="Expanding verbs"):
level = verb["level"]
if "-" in level:
levels = level.split("-")
levels = range(int(levels[0]), int(levels[1]) + 1)
else:
levels = [int(level)]
for level in levels:
verb_copy = verb.copy()
verb_copy["level"] = level
expanded_verbs.append(verb_copy)
with open("data/wow/expanded_verb_data.json", "w") as f:
json.dump(expanded_verbs, f, indent=4)
main()