diff --git a/._timeseries.Rproj b/._timeseries.Rproj
index 364cb68..b57fc73 100644
Binary files a/._timeseries.Rproj and b/._timeseries.Rproj differ
diff --git a/.gitignore b/.gitignore
index 807ea25..d893563 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,3 +1,4 @@
.Rproj.user
.Rhistory
.RData
+Meta
diff --git a/Meta/vignette.rds b/Meta/vignette.rds
index ff0a06f..0cbe8d7 100644
Binary files a/Meta/vignette.rds and b/Meta/vignette.rds differ
diff --git a/doc/qstacktseries.R b/doc/qstacktseries.R
new file mode 100644
index 0000000..a7ff05b
--- /dev/null
+++ b/doc/qstacktseries.R
@@ -0,0 +1,36 @@
+## ---- include = FALSE---------------------------------------------------------
+knitr::opts_chunk$set(
+ collapse = TRUE,
+ comment = "#>"
+)
+
+## ----setup--------------------------------------------------------------------
+library(timeseries)
+library(gapminder)
+library(dplyr)
+
+## ----dataset------------------------------------------------------------------
+ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
+ rainfall = c(runif(11, 0, 100), rnorm(11, 70, 10),
+ rnorm(11, 20, 20)),
+ temp = c(rnorm(11, 70, 30), rnorm(11, 45, 20),
+ rnorm(11, 100, 10)),
+ daysofsun = c(NA, NA, rnorm(9, 280, 50), rnorm(11, 300, 30), NA,
+ rnorm(10, 340, 15)),
+ region = c(rep("A",11), rep("B", 11), rep("C", 11)))
+
+## ----example 1----------------------------------------------------------------
+qstacktseries(testdf, year, rainfall, region, verbose = TRUE)
+
+## ----example 2----------------------------------------------------------------
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"), year, gdpPercap, country, verbose = TRUE)
+
+## ----example 3: Errors, error=TRUE--------------------------------------------
+
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"),continent, pop, country, verbose = TRUE)
+
+qstacktseries(gapminder %>%
+ filter(continent == "Africa"), year, country, continent, verbose = TRUE)
+
diff --git a/doc/qstacktseries.Rmd b/doc/qstacktseries.Rmd
new file mode 100644
index 0000000..c23bc21
--- /dev/null
+++ b/doc/qstacktseries.Rmd
@@ -0,0 +1,57 @@
+---
+title: "qstacktseries"
+output: rmarkdown::html_vignette
+vignette: >
+ %\VignetteIndexEntry{qstacktseries}
+ %\VignetteEngine{knitr::rmarkdown}
+ %\VignetteEncoding{UTF-8}
+---
+
+```{r, include = FALSE}
+knitr::opts_chunk$set(
+ collapse = TRUE,
+ comment = "#>"
+)
+```
+
+```{r setup}
+library(timeseries)
+library(gapminder)
+library(dplyr)
+```
+
+This is how the function `qstacktseries` works:
+
+Building a stacked area time series plot with a dummy data set:
+
+```{r dataset}
+ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
+ rainfall = c(runif(11, 0, 100), rnorm(11, 70, 10),
+ rnorm(11, 20, 20)),
+ temp = c(rnorm(11, 70, 30), rnorm(11, 45, 20),
+ rnorm(11, 100, 10)),
+ daysofsun = c(NA, NA, rnorm(9, 280, 50), rnorm(11, 300, 30), NA,
+ rnorm(10, 340, 15)),
+ region = c(rep("A",11), rep("B", 11), rep("C", 11)))
+```
+
+```{r example 1}
+qstacktseries(testdf, year, rainfall, region, verbose = TRUE)
+```
+Building a stacked area time series plot with a pre-existing data set: *gapminder*
+
+```{r example 2}
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"), year, gdpPercap, country, verbose = TRUE)
+```
+These are some errors you might see if `qstacktseries` is given non-numeric input for the *time* or *voi* inputs:
+
+```{r example 3: Errors, error=TRUE}
+
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"),continent, pop, country, verbose = TRUE)
+
+qstacktseries(gapminder %>%
+ filter(continent == "Africa"), year, country, continent, verbose = TRUE)
+```
+
diff --git a/doc/qstacktseries.html b/doc/qstacktseries.html
new file mode 100644
index 0000000..e23927c
--- /dev/null
+++ b/doc/qstacktseries.html
@@ -0,0 +1,375 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+qstacktseries
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+qstacktseries
+
+
+
+library(timeseries)
+library(gapminder)
+library(dplyr)
+#>
+#> Attaching package: 'dplyr'
+#> The following objects are masked from 'package:stats':
+#>
+#> filter, lag
+#> The following objects are masked from 'package:base':
+#>
+#> intersect, setdiff, setequal, union
+This is how the function qstacktseries
works:
+Building a stacked area time series plot with a dummy data set:
+ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
+ rainfall = c(runif(11, 0, 100), rnorm(11, 70, 10),
+ rnorm(11, 20, 20)),
+ temp = c(rnorm(11, 70, 30), rnorm(11, 45, 20),
+ rnorm(11, 100, 10)),
+ daysofsun = c(NA, NA, rnorm(9, 280, 50), rnorm(11, 300, 30), NA,
+ rnorm(10, 340, 15)),
+ region = c(rep("A",11), rep("B", 11), rep("C", 11)))
+qstacktseries(testdf, year, rainfall, region, verbose = TRUE)
+#> Plotting time series...Done labelling plot!...Done applying default theme aesthetics!
+
Building a stacked area time series plot with a pre-existing data set: gapminder
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"), year, gdpPercap, country, verbose = TRUE)
+#> Plotting time series...Done labelling plot!...Done applying default theme aesthetics!
+
These are some errors you might see if qstacktseries
is given non-numeric input for the time or voi inputs:
+
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"),continent, pop, country, verbose = TRUE)
+#> Error in qstacktseries(gapminder %>% filter(continent == "Asia"), continent, : Sorry, the time variable needs to be a numeric variable!
+
+qstacktseries(gapminder %>%
+ filter(continent == "Africa"), year, country, continent, verbose = TRUE)
+#> Error in qstacktseries(gapminder %>% filter(continent == "Africa"), year, : Sorry, the variable of interest (dependent) needs to be a numeric variable!
+
+
+
+
+
+
+
+
+
+
+
diff --git a/doc/qtseries.R b/doc/qtseries.R
index 70faa7d..d046fcd 100644
--- a/doc/qtseries.R
+++ b/doc/qtseries.R
@@ -6,6 +6,8 @@ knitr::opts_chunk$set(
## ----setup--------------------------------------------------------------------
library(timeseries)
+library(gapminder)
+library(dplyr)
## ----dummy dataset setup------------------------------------------------------
testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
@@ -18,19 +20,13 @@ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
qtseries(testdf, year, daysofsun, region, verbose = TRUE)
## ----example 2----------------------------------------------------------------
-library(gapminder)
-library(magrittr)
-library(dplyr)
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, pop, country, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Europe"), year, pop, country, verbose = TRUE)
## ----example 3: Errors, error=TRUE--------------------------------------------
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(continent, pop, country, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Americas"),continent, pop, country, verbose = TRUE)
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, country, continent, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Europe"),year, country, continent, verbose = TRUE)
diff --git a/doc/qtseries.Rmd b/doc/qtseries.Rmd
index 40d8226..ca62a3e 100644
--- a/doc/qtseries.Rmd
+++ b/doc/qtseries.Rmd
@@ -16,11 +16,13 @@ knitr::opts_chunk$set(
```{r setup}
library(timeseries)
+library(gapminder)
+library(dplyr)
```
This is how the function `qtseries` works:
-Building a time series plot with a dummy data set
+Building a time series plot with a dummy data set:
```{r dummy dataset setup}
testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
@@ -34,24 +36,19 @@ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
qtseries(testdf, year, daysofsun, region, verbose = TRUE)
```
-Building a time series plot with the gapminder data set:
+Building a time series plot with the *gapminder* data set:
```{r example 2}
-library(gapminder)
-library(magrittr)
-library(dplyr)
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, pop, country, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Europe"), year, pop, country, verbose = TRUE)
```
+
Some errors you might see if `qtseries` is given non-numeric variables for the *time* or *voi* inputs:
```{r example 3: Errors, error=TRUE}
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(continent, pop, country, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Americas"),continent, pop, country, verbose = TRUE)
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, country, continent, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Europe"),year, country, continent, verbose = TRUE)
```
diff --git a/doc/qtseries.html b/doc/qtseries.html
index 3ed3dee..6193a3b 100644
--- a/doc/qtseries.html
+++ b/doc/qtseries.html
@@ -319,9 +319,11 @@ qtseries
-
+library(timeseries)
+library(gapminder)
+library(dplyr)
This is how the function qtseries
works:
-Building a time series plot with a dummy data set
+Building a time series plot with a dummy data set:
testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
rainfall = c(rnorm(11, 100, 30), rnorm(11, 70, 10),rnorm(11, 20, 20)),
temp = c(rnorm(11, 70, 30), rnorm(11, 100, 10),rnorm(11, 45, 20)),
@@ -331,33 +333,20 @@ qtseries
#> Plotting time series...Done labelling plot!...Done applying default theme aesthetics!
#> Warning: Removed 3 rows containing missing values (geom_point).
#> Warning: Removed 3 row(s) containing missing values (geom_path).
-![]()
-Building a time series plot with the gapminder data set:
-library(gapminder)
-library(magrittr)
-library(dplyr)
-#>
-#> Attaching package: 'dplyr'
-#> The following objects are masked from 'package:stats':
-#>
-#> filter, lag
-#> The following objects are masked from 'package:base':
-#>
-#> intersect, setdiff, setequal, union
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, pop, country, verbose = TRUE)
-#> Plotting time series...Done labelling plot!...Done applying default theme aesthetics!
-
Some errors you might see if qtseries
is given non-numeric variables for the time or voi inputs:
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(continent, pop, country, verbose = TRUE)
-#> Error in qtseries(., continent, pop, country, verbose = TRUE): Sorry, the time variable needs to be a numeric variable!
-
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, country, continent, verbose = TRUE)
-#> Error in qtseries(., year, country, continent, verbose = TRUE): Sorry, the variable of interest (dependent) needs to be a numeric variable!
+![]()
+Building a time series plot with the gapminder data set:
+qtseries(gapminder %>%
+ filter(continent == "Europe"), year, pop, country, verbose = TRUE)
+#> Plotting time series...Done labelling plot!...Done applying default theme aesthetics!
+![]()
+Some errors you might see if qtseries
is given non-numeric variables for the time or voi inputs:
+qtseries(gapminder %>%
+ filter(continent == "Americas"),continent, pop, country, verbose = TRUE)
+#> Error in qtseries(gapminder %>% filter(continent == "Americas"), continent, : Sorry, the time variable needs to be a numeric variable!
+
+qtseries(gapminder %>%
+ filter(continent == "Europe"),year, country, continent, verbose = TRUE)
+#> Error in qtseries(gapminder %>% filter(continent == "Europe"), year, country, : Sorry, the variable of interest (dependent) needs to be a numeric variable!
diff --git a/tests/testthat/test-qstacktseries.R b/tests/testthat/test-qstacktseries.R
new file mode 100644
index 0000000..58c667b
--- /dev/null
+++ b/tests/testthat/test-qstacktseries.R
@@ -0,0 +1,22 @@
+test_that("Quick Stacked Area Time Series Check", {
+
+ # create dummy dataframe
+ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
+ rainfall = c(runif(11, 0, 100), rnorm(11, 70, 10),rnorm(11, 20, 20)),
+ temp = c(rnorm(11, 70, 30), rnorm(11, 45, 20), rnorm(11, 100, 10)),
+ daysofsun = c(NA, NA, rnorm(9, 280, 50), rnorm(11, 300, 30), NA, rnorm(10, 340, 15)),
+ region = c(rep("A",11), rep("B", 11), rep("C", 11)))
+
+
+ # test that the data is grouped as expected, testing with NA's present & all arguments = TRUE
+ expect_match("region",as.character(rlang::get_expr(qstacktseries(testdf, year,daysofsun,region, round_values = TRUE, verbose = FALSE)$mapping$fill)))
+ cat(" Expected grouping & extra arguments working? -> Yes!")
+
+ # test that the output is a ggplot object, testing without NA's present & all arguments = FALSE
+ expect_identical(class(qstacktseries(testdf, year,rainfall, region, default_theme = FALSE))[2], "ggplot")
+ cat("...Expected Object Output (ggplot)? -> Yes!")
+
+ # test that the first layer is a geom_area layer
+ expect_true("GeomArea" %in% class(qstacktseries(testdf, year,temp, region)$layers[[1]]$geom))
+ cat("...Expected Geom_Area Layer? -> Yes!")
+})
diff --git a/tests/testthat/test-qtseries.R b/tests/testthat/test-qtseries.R
index e250365..4c97b12 100644
--- a/tests/testthat/test-qtseries.R
+++ b/tests/testthat/test-qtseries.R
@@ -7,14 +7,14 @@ test_that("Quick Time Series Check", {
region = c(rep("A",11), rep("B", 11), rep("C", 11)))
# test that the data is grouped as expected, testing with NA's present & all arguments = TRUE
- expect_match("state",as.character(rlang::get_expr(qtseries(testdf, year,daysofsun,state, round_values = TRUE, verbose = TRUE)$mapping$colour)))
+ expect_match("region",as.character(rlang::get_expr(qtseries(testdf, year,daysofsun,region, round_values = TRUE, verbose = FALSE )$mapping$colour)))
cat(" Expected grouping & extra arguments working? -> Yes!")
# test that the output is a ggplot object, testing without NA's present & all arguments = FALSE
- expect_identical(class(qtseries(testdf, year,rainfall, state, default_theme = FALSE))[2], "ggplot")
+ expect_identical(class(qtseries(testdf, year,rainfall, region, default_theme = FALSE))[2], "ggplot")
cat("...Expected Object Output (ggplot)? -> Yes!")
# test that the first layer is a geom_point layer
- expect_true("GeomPoint" %in% class(qtseries(testdf, year,temp, state)$layers[[1]]$geom))
+ expect_true("GeomPoint" %in% class(qtseries(testdf, year,temp, region)$layers[[1]]$geom))
cat("...Expected Geom_Point Layer? -> Yes!")
})
diff --git a/vignettes/.gitignore b/vignettes/.gitignore
deleted file mode 100644
index e69de29..0000000
diff --git a/vignettes/qstacktseries.Rmd b/vignettes/qstacktseries.Rmd
new file mode 100644
index 0000000..c23bc21
--- /dev/null
+++ b/vignettes/qstacktseries.Rmd
@@ -0,0 +1,57 @@
+---
+title: "qstacktseries"
+output: rmarkdown::html_vignette
+vignette: >
+ %\VignetteIndexEntry{qstacktseries}
+ %\VignetteEngine{knitr::rmarkdown}
+ %\VignetteEncoding{UTF-8}
+---
+
+```{r, include = FALSE}
+knitr::opts_chunk$set(
+ collapse = TRUE,
+ comment = "#>"
+)
+```
+
+```{r setup}
+library(timeseries)
+library(gapminder)
+library(dplyr)
+```
+
+This is how the function `qstacktseries` works:
+
+Building a stacked area time series plot with a dummy data set:
+
+```{r dataset}
+ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
+ rainfall = c(runif(11, 0, 100), rnorm(11, 70, 10),
+ rnorm(11, 20, 20)),
+ temp = c(rnorm(11, 70, 30), rnorm(11, 45, 20),
+ rnorm(11, 100, 10)),
+ daysofsun = c(NA, NA, rnorm(9, 280, 50), rnorm(11, 300, 30), NA,
+ rnorm(10, 340, 15)),
+ region = c(rep("A",11), rep("B", 11), rep("C", 11)))
+```
+
+```{r example 1}
+qstacktseries(testdf, year, rainfall, region, verbose = TRUE)
+```
+Building a stacked area time series plot with a pre-existing data set: *gapminder*
+
+```{r example 2}
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"), year, gdpPercap, country, verbose = TRUE)
+```
+These are some errors you might see if `qstacktseries` is given non-numeric input for the *time* or *voi* inputs:
+
+```{r example 3: Errors, error=TRUE}
+
+qstacktseries(gapminder %>%
+ filter(continent == "Asia"),continent, pop, country, verbose = TRUE)
+
+qstacktseries(gapminder %>%
+ filter(continent == "Africa"), year, country, continent, verbose = TRUE)
+```
+
diff --git a/vignettes/qtseries.Rmd b/vignettes/qtseries.Rmd
index 40d8226..ca62a3e 100644
--- a/vignettes/qtseries.Rmd
+++ b/vignettes/qtseries.Rmd
@@ -16,11 +16,13 @@ knitr::opts_chunk$set(
```{r setup}
library(timeseries)
+library(gapminder)
+library(dplyr)
```
This is how the function `qtseries` works:
-Building a time series plot with a dummy data set
+Building a time series plot with a dummy data set:
```{r dummy dataset setup}
testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
@@ -34,24 +36,19 @@ testdf <- data.frame(year = rep(seq(from = 1980, to= 1990, 1), 3),
qtseries(testdf, year, daysofsun, region, verbose = TRUE)
```
-Building a time series plot with the gapminder data set:
+Building a time series plot with the *gapminder* data set:
```{r example 2}
-library(gapminder)
-library(magrittr)
-library(dplyr)
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, pop, country, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Europe"), year, pop, country, verbose = TRUE)
```
+
Some errors you might see if `qtseries` is given non-numeric variables for the *time* or *voi* inputs:
```{r example 3: Errors, error=TRUE}
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(continent, pop, country, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Americas"),continent, pop, country, verbose = TRUE)
-gapminder %>%
- filter(continent == "Europe")%>%
- qtseries(year, country, continent, verbose = TRUE)
+qtseries(gapminder %>%
+ filter(continent == "Europe"),year, country, continent, verbose = TRUE)
```