-
Notifications
You must be signed in to change notification settings - Fork 42
/
misc.py
265 lines (209 loc) · 7.71 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import cv2
import os
import requests
import torch
import torch.nn.functional as F
import torch.distributed as dist
import sys
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import numpy as np
import flow_vis
import cv2
def fig2data(fig):
"""
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
@param fig a matplotlib figure
@return a numpy 3D array of RGBA values
"""
# draw the renderer
fig.canvas.draw()
# Get the RGBA buffer from the figure
w, h = fig.canvas.get_width_height()
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll(buf, 3, axis=2)
return buf
def plot_grid(x, y, ax=None, **kwargs):
ax = ax or plt.gca()
segs1 = np.stack((x, y), axis=2)
segs2 = segs1.transpose(1, 0, 2)
ax.add_collection(LineCollection(segs1, **kwargs))
ax.add_collection(LineCollection(segs2, **kwargs))
ax.autoscale()
def grid2fig(warped_grid, grid_size=32, img_size=256):
dpi = 1000
# plt.ioff()
h_range = torch.linspace(-1, 1, grid_size)
w_range = torch.linspace(-1, 1, grid_size)
grid = torch.stack(torch.meshgrid([h_range, w_range]), -1).flip(2)
flow_uv = grid.cpu().data.numpy()
fig, ax = plt.subplots()
grid_x, grid_y = warped_grid[..., 0], warped_grid[..., 1]
plot_grid(flow_uv[..., 0], flow_uv[..., 1], ax=ax, color="lightgrey")
plot_grid(grid_x, grid_y, ax=ax, color="C0")
plt.axis("off")
plt.tight_layout(pad=0)
fig.set_size_inches(img_size/100, img_size/100)
fig.set_dpi(100)
out = fig2data(fig)[:, :, :3]
plt.close()
plt.cla()
plt.clf()
return out
def flow2fig(warped_grid, id_grid, grid_size=32, img_size=128):
# h_range = torch.linspace(-1, 1, grid_size)
# w_range = torch.linspace(-1, 1, grid_size)
# id_grid = torch.stack(torch.meshgrid([h_range, w_range]), -1).flip(2)
warped_flow = warped_grid - id_grid
img = flow_vis.flow_to_color(warped_flow)
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA)
return img
def conf2fig(conf, img_size=128):
conf = F.interpolate(conf.unsqueeze(dim=0), size=img_size).data.cpu().numpy()
conf = np.transpose(conf, [0, 2, 3, 1])
conf = np.array(conf[0, :, :, 0]*255, dtype=np.uint8)
return conf
class Logger(object):
def __init__(self, filename='default.log', stream=sys.stdout):
self.terminal = stream
self.log = open(filename, 'w')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
def resize(im, desired_size, interpolation):
old_size = im.shape[:2]
ratio = float(desired_size)/max(old_size)
new_size = tuple(int(x*ratio) for x in old_size)
im = cv2.resize(im, (new_size[1], new_size[0]), interpolation=interpolation)
delta_w = desired_size - new_size[1]
delta_h = desired_size - new_size[0]
top, bottom = delta_h//2, delta_h-(delta_h//2)
left, right = delta_w//2, delta_w-(delta_w//2)
color = [0, 0, 0]
new_im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
return new_im
def resample(image, flow):
r"""Resamples an image using the provided flow.
Args:
image (NxCxHxW tensor) : Image to resample.
flow (Nx2xHxW tensor) : Optical flow to resample the image.
Returns:
output (NxCxHxW tensor) : Resampled image.
"""
assert flow.shape[1] == 2
b, c, h, w = image.size()
grid = get_grid(b, (h, w))
flow = torch.cat([flow[:, 0:1, :, :] / ((w - 1.0) / 2.0),
flow[:, 1:2, :, :] / ((h - 1.0) / 2.0)], dim=1)
final_grid = (grid + flow).permute(0, 2, 3, 1)
try:
output = F.grid_sample(image, final_grid, mode='bilinear',
padding_mode='border', align_corners=True)
except Exception:
output = F.grid_sample(image, final_grid, mode='bilinear',
padding_mode='border')
return output
def get_grid(batchsize, size, minval=-1.0, maxval=1.0):
r"""Get a grid ranging [-1, 1] of 2D/3D coordinates.
Args:
batchsize (int) : Batch size.
size (tuple) : (height, width) or (depth, height, width).
minval (float) : minimum value in returned grid.
maxval (float) : maximum value in returned grid.
Returns:
t_grid (4D tensor) : Grid of coordinates.
"""
if len(size) == 2:
rows, cols = size
elif len(size) == 3:
deps, rows, cols = size
else:
raise ValueError('Dimension can only be 2 or 3.')
x = torch.linspace(minval, maxval, cols)
x = x.view(1, 1, 1, cols)
x = x.expand(batchsize, 1, rows, cols)
y = torch.linspace(minval, maxval, rows)
y = y.view(1, 1, rows, 1)
y = y.expand(batchsize, 1, rows, cols)
t_grid = torch.cat([x, y], dim=1)
if len(size) == 3:
z = torch.linspace(minval, maxval, deps)
z = z.view(1, 1, deps, 1, 1)
z = z.expand(batchsize, 1, deps, rows, cols)
t_grid = t_grid.unsqueeze(2).expand(batchsize, 2, deps, rows, cols)
t_grid = torch.cat([t_grid, z], dim=1)
t_grid.requires_grad = False
return t_grid.to('cuda')
def get_checkpoint(checkpoint_path, url=''):
r"""Get the checkpoint path. If it does not exist yet, download it from
the url.
Args:
checkpoint_path (str): Checkpoint path.
url (str): URL to download checkpoint.
Returns:
(str): Full checkpoint path.
"""
if 'TORCH_HOME' not in os.environ:
os.environ['TORCH_HOME'] = os.getcwd()
save_dir = os.path.join(os.environ['TORCH_HOME'], 'checkpoints')
os.makedirs(save_dir, exist_ok=True)
full_checkpoint_path = os.path.join(save_dir, checkpoint_path)
if not os.path.exists(full_checkpoint_path):
os.makedirs(os.path.dirname(full_checkpoint_path), exist_ok=True)
if is_master():
print('Download {}'.format(url))
download_file_from_google_drive(url, full_checkpoint_path)
if dist.is_available() and dist.is_initialized():
dist.barrier()
return full_checkpoint_path
def download_file_from_google_drive(file_id, destination):
r"""Download a file from the google drive by using the file ID.
Args:
file_id: Google drive file ID
destination: Path to save the file.
Returns:
"""
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': file_id}, stream=True)
token = get_confirm_token(response)
if token:
params = {'id': file_id, 'confirm': token}
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def get_confirm_token(response):
r"""Get confirm token
Args:
response: Check if the file exists.
Returns:
"""
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
def save_response_content(response, destination):
r"""Save response content
Args:
response:
destination: Path to save the file.
Returns:
"""
chunk_size = 32768
with open(destination, "wb") as f:
for chunk in response.iter_content(chunk_size):
if chunk:
f.write(chunk)
def get_rank():
r"""Get rank of the thread."""
rank = 0
if dist.is_available():
if dist.is_initialized():
rank = dist.get_rank()
return rank
def is_master():
r"""check if current process is the master"""
return get_rank() == 0