-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pipeline.py
40 lines (23 loc) · 1.01 KB
/
run_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pathlib import Path
import pandas as pd
from src.struct.pipeline import DataPipeline
pipeline = DataPipeline(
kaggle_dataset="lukebarousse/data-analyst-job-postings-google-search",
file_to_download="gsearch_jobs.csv"
)
pipeline.run_pipeline()
file = pipeline.cleaned_filepath
data = pd.read_parquet(file)
# Saving data into sub frames for working streamlit efficiently
save_to = Path('./data-subframes')
save_to.mkdir(parents=True, exist_ok=True)
salary = data[['salary_min', 'salary_max', 'salary_avg']]
tokens = data[['description_tokens', 'technical_tokens', 'softskills_tokens', 'education_tokens']]
cols_to_drop = list(salary.columns) + list(tokens.columns)
jobs = data.drop(columns=cols_to_drop)
salary.to_parquet(save_to/'salary.parquet', index=False)
tokens.to_parquet(save_to/'tokens.parquet', index=False)
jobs.to_parquet(save_to/'jobs.parquet', index=False)
print(salary.columns)
print(tokens.columns)
print(jobs.columns)