-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr_scheduler.py
35 lines (25 loc) · 1.21 KB
/
lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import numpy as np
class LR_Scheduler(object):
def __init__(self, optimizer, warmup_epochs, warmup_lr, num_epochs, base_lr, final_lr, iter_per_epoch, constant_predictor_lr=False):
self.base_lr = base_lr
self.constant_predictor_lr = constant_predictor_lr
warmup_iter = iter_per_epoch * warmup_epochs
warmup_lr_schedule = np.linspace(warmup_lr, base_lr, warmup_iter)
decay_iter = iter_per_epoch * (num_epochs - warmup_epochs)
cosine_lr_schedule = final_lr+0.5*(base_lr-final_lr)*(1+np.cos(np.pi*np.arange(decay_iter)/decay_iter))
self.lr_schedule = np.concatenate((warmup_lr_schedule, cosine_lr_schedule))
self.optimizer = optimizer
self.iter = 0
self.current_lr = 0
def step(self):
for param_group in self.optimizer.param_groups:
if self.constant_predictor_lr and param_group['name'] == 'predictor':
param_group['lr'] = self.base_lr
else:
lr = param_group['lr'] = self.lr_schedule[self.iter]
self.iter += 1
self.current_lr = lr
return lr
def get_last_lr(self):
return self.current_lr