-
Notifications
You must be signed in to change notification settings - Fork 271
/
Copy pathsse.cpp
1133 lines (980 loc) · 28 KB
/
sse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: SSE Math primitives.
//
//=====================================================================================//
#include <math.h>
#include <float.h> // Needed for FLT_EPSILON
#include "basetypes.h"
#include <memory.h>
#include "tier0/dbg.h"
#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
#if defined(__arm__) || defined(__aarch64__)
#include "sse2neon.h"
#endif
#if !defined(__e2k__)
#include "sse.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#ifndef COMPILER_MSVC64
// Implement for 64-bit Windows if needed.
static const uint32 _sincos_masks[] = { (uint32)0x0, (uint32)~0x0 };
static const uint32 _sincos_inv_masks[] = { (uint32)~0x0, (uint32)0x0 };
//-----------------------------------------------------------------------------
// Macros and constants required by some of the SSE assembly:
//-----------------------------------------------------------------------------
#ifdef _WIN32
#define _PS_EXTERN_CONST(Name, Val) \
const __declspec(align(16)) float _ps_##Name[4] = { Val, Val, Val, Val }
#define _PS_EXTERN_CONST_TYPE(Name, Type, Val) \
const __declspec(align(16)) Type _ps_##Name[4] = { Val, Val, Val, Val }; \
#define _EPI32_CONST(Name, Val) \
static const __declspec(align(16)) __int32 _epi32_##Name[4] = { Val, Val, Val, Val }
#define _PS_CONST(Name, Val) \
static const __declspec(align(16)) float _ps_##Name[4] = { Val, Val, Val, Val }
#elif POSIX
#define _PS_EXTERN_CONST(Name, Val) \
const float _ps_##Name[4] __attribute__((aligned(16))) = { Val, Val, Val, Val }
#define _PS_EXTERN_CONST_TYPE(Name, Type, Val) \
const Type _ps_##Name[4] __attribute__((aligned(16))) = { Val, Val, Val, Val }; \
#define _EPI32_CONST(Name, Val) \
static const int32 _epi32_##Name[4] __attribute__((aligned(16))) = { Val, Val, Val, Val }
#define _PS_CONST(Name, Val) \
static const float _ps_##Name[4] __attribute__((aligned(16))) = { Val, Val, Val, Val }
#endif
_PS_EXTERN_CONST(am_0, 0.0f);
_PS_EXTERN_CONST(am_1, 1.0f);
_PS_EXTERN_CONST(am_m1, -1.0f);
_PS_EXTERN_CONST(am_0p5, 0.5f);
_PS_EXTERN_CONST(am_1p5, 1.5f);
_PS_EXTERN_CONST(am_pi, (float)M_PI);
_PS_EXTERN_CONST(am_pi_o_2, (float)(M_PI / 2.0));
_PS_EXTERN_CONST(am_2_o_pi, (float)(2.0 / M_PI));
_PS_EXTERN_CONST(am_pi_o_4, (float)(M_PI / 4.0));
_PS_EXTERN_CONST(am_4_o_pi, (float)(4.0 / M_PI));
_PS_EXTERN_CONST_TYPE(am_sign_mask, uint32, 0x80000000);
_PS_EXTERN_CONST_TYPE(am_inv_sign_mask, uint32, ~0x80000000);
_PS_EXTERN_CONST_TYPE(am_min_norm_pos,uint32, 0x00800000);
_PS_EXTERN_CONST_TYPE(am_mant_mask, uint32, 0x7f800000);
_PS_EXTERN_CONST_TYPE(am_inv_mant_mask, int32, ~0x7f800000);
_EPI32_CONST(1, 1);
_EPI32_CONST(2, 2);
_PS_CONST(sincos_p0, 0.15707963267948963959e1f);
_PS_CONST(sincos_p1, -0.64596409750621907082e0f);
_PS_CONST(sincos_p2, 0.7969262624561800806e-1f);
_PS_CONST(sincos_p3, -0.468175413106023168e-2f);
#ifdef PFN_VECTORMA
void __cdecl _SSE_VectorMA( const float *start, float scale, const float *direction, float *dest );
#endif
//-----------------------------------------------------------------------------
// SSE implementations of optimized routines:
//-----------------------------------------------------------------------------
float _SSE_Sqrt(float x)
{
Assert( s_bMathlibInitialized );
float root = 0.f;
#ifdef _WIN32
_asm
{
sqrtss xmm0, x
movss root, xmm0
}
#elif POSIX
_mm_store_ss( &root, _mm_sqrt_ss( _mm_load_ss( &x ) ) );
#endif
return root;
}
// Single iteration NewtonRaphson reciprocal square root:
// 0.5 * rsqrtps * (3 - x * rsqrtps(x) * rsqrtps(x))
// Very low error, and fine to use in place of 1.f / sqrtf(x).
#if 0
float _SSE_RSqrtAccurate(float x)
{
Assert( s_bMathlibInitialized );
float rroot;
_asm
{
rsqrtss xmm0, x
movss rroot, xmm0
}
return (0.5f * rroot) * (3.f - (x * rroot) * rroot);
}
#else
#ifdef POSIX
const __m128 f3 = _mm_set_ss(3.0f); // 3 as SSE value
const __m128 f05 = _mm_set_ss(0.5f); // 0.5 as SSE value
#endif
// Intel / Kipps SSE RSqrt. Significantly faster than above.
float _SSE_RSqrtAccurate(float a)
{
#ifdef _WIN32
float x;
float half = 0.5f;
float three = 3.f;
__asm
{
movss xmm3, a;
movss xmm1, half;
movss xmm2, three;
rsqrtss xmm0, xmm3;
mulss xmm3, xmm0;
mulss xmm1, xmm0;
mulss xmm3, xmm0;
subss xmm2, xmm3;
mulss xmm1, xmm2;
movss x, xmm1;
}
return x;
#elif POSIX
__m128 xx = _mm_load_ss( &a );
__m128 xr = _mm_rsqrt_ss( xx );
__m128 xt;
xt = _mm_mul_ss( xr, xr );
xt = _mm_mul_ss( xt, xx );
xt = _mm_sub_ss( f3, xt );
xt = _mm_mul_ss( xt, f05 );
xr = _mm_mul_ss( xr, xt );
_mm_store_ss( &a, xr );
return a;
#else
#error "Not Implemented"
#endif
}
#endif
// Simple SSE rsqrt. Usually accurate to around 6 (relative) decimal places
// or so, so ok for closed transforms. (ie, computing lighting normals)
float _SSE_RSqrtFast(float x)
{
Assert( s_bMathlibInitialized );
float rroot;
#if defined(__arm__) || defined(__aarch64__)
rroot = _SSE_RSqrtAccurate(x);
#elif _WIN32
_asm
{
rsqrtss xmm0, x
movss rroot, xmm0
}
#elif POSIX
__asm__ __volatile__( "rsqrtss %0, %1" : "=x" (rroot) : "x" (x) );
#else
#error
#endif
return rroot;
}
float FASTCALL _SSE_VectorNormalize (Vector& vec)
{
Assert( s_bMathlibInitialized );
// NOTE: This is necessary to prevent an memory overwrite...
// sice vec only has 3 floats, we can't "movaps" directly into it.
#ifdef _WIN32
__declspec(align(16)) float result[4];
#elif POSIX
float result[4] __attribute__((aligned(16)));
#endif
float *v = &vec[0];
float *r = &result[0];
float radius = 0.f;
// Blah, get rid of these comparisons ... in reality, if you have all 3 as zero, it shouldn't
// be much of a performance win, considering you will very likely miss 3 branch predicts in a row.
if ( v[0] || v[1] || v[2] )
{
#if defined(__arm__) || defined(__aarch64__)
float rsqrt = _SSE_RSqrtAccurate( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
r[0] = v[0] * rsqrt;
r[1] = v[1] * rsqrt;
r[2] = v[2] * rsqrt;
#elif _WIN32
_asm
{
mov eax, v
mov edx, r
#ifdef ALIGNED_VECTOR
movaps xmm4, [eax] // r4 = vx, vy, vz, X
movaps xmm1, xmm4 // r1 = r4
#else
movups xmm4, [eax] // r4 = vx, vy, vz, X
movaps xmm1, xmm4 // r1 = r4
#endif
mulps xmm1, xmm4 // r1 = vx * vx, vy * vy, vz * vz, X
movhlps xmm3, xmm1 // r3 = vz * vz, X, X, X
movaps xmm2, xmm1 // r2 = r1
shufps xmm2, xmm2, 1 // r2 = vy * vy, X, X, X
addss xmm1, xmm2 // r1 = (vx * vx) + (vy * vy), X, X, X
addss xmm1, xmm3 // r1 = (vx * vx) + (vy * vy) + (vz * vz), X, X, X
sqrtss xmm1, xmm1 // r1 = sqrt((vx * vx) + (vy * vy) + (vz * vz)), X, X, X
movss radius, xmm1 // radius = sqrt((vx * vx) + (vy * vy) + (vz * vz))
rcpss xmm1, xmm1 // r1 = 1/radius, X, X, X
shufps xmm1, xmm1, 0 // r1 = 1/radius, 1/radius, 1/radius, X
mulps xmm4, xmm1 // r4 = vx * 1/radius, vy * 1/radius, vz * 1/radius, X
movaps [edx], xmm4 // v = vx * 1/radius, vy * 1/radius, vz * 1/radius, X
}
#elif POSIX
__asm__ __volatile__(
#ifdef ALIGNED_VECTOR
"movaps %2, %%xmm4 \n\t"
"movaps %%xmm4, %%xmm1 \n\t"
#else
"movups %2, %%xmm4 \n\t"
"movaps %%xmm4, %%xmm1 \n\t"
#endif
"mulps %%xmm4, %%xmm1 \n\t"
"movhlps %%xmm1, %%xmm3 \n\t"
"movaps %%xmm1, %%xmm2 \n\t"
"shufps $1, %%xmm2, %%xmm2 \n\t"
"addss %%xmm2, %%xmm1 \n\t"
"addss %%xmm3, %%xmm1 \n\t"
"sqrtss %%xmm1, %%xmm1 \n\t"
"movss %%xmm1, %0 \n\t"
"rcpss %%xmm1, %%xmm1 \n\t"
"shufps $0, %%xmm1, %%xmm1 \n\t"
"mulps %%xmm1, %%xmm4 \n\t"
"movaps %%xmm4, %1 \n\t"
: "=m" (radius), "=m" (result)
: "m" (*v)
: "xmm1", "xmm2", "xmm3", "xmm4"
);
#else
#error "Not Implemented"
#endif
vec.x = result[0];
vec.y = result[1];
vec.z = result[2];
}
return radius;
}
void FASTCALL _SSE_VectorNormalizeFast (Vector& vec)
{
float ool = _SSE_RSqrtAccurate( FLT_EPSILON + vec.x * vec.x + vec.y * vec.y + vec.z * vec.z );
vec.x *= ool;
vec.y *= ool;
vec.z *= ool;
}
float _SSE_InvRSquared(const float* v)
{
float inv_r2 = 1.f;
#if defined(__arm__) || defined(__aarch64__)
return _SSE_RSqrtAccurate( FLT_EPSILON + v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
#elif _WIN32
_asm { // Intel SSE only routine
mov eax, v
movss xmm5, inv_r2 // x5 = 1.0, 0, 0, 0
#ifdef ALIGNED_VECTOR
movaps xmm4, [eax] // x4 = vx, vy, vz, X
#else
movups xmm4, [eax] // x4 = vx, vy, vz, X
#endif
movaps xmm1, xmm4 // x1 = x4
mulps xmm1, xmm4 // x1 = vx * vx, vy * vy, vz * vz, X
movhlps xmm3, xmm1 // x3 = vz * vz, X, X, X
movaps xmm2, xmm1 // x2 = x1
shufps xmm2, xmm2, 1 // x2 = vy * vy, X, X, X
addss xmm1, xmm2 // x1 = (vx * vx) + (vy * vy), X, X, X
addss xmm1, xmm3 // x1 = (vx * vx) + (vy * vy) + (vz * vz), X, X, X
maxss xmm1, xmm5 // x1 = max( 1.0, x1 )
rcpss xmm0, xmm1 // x0 = 1 / max( 1.0, x1 )
movss inv_r2, xmm0 // inv_r2 = x0
}
#elif POSIX
__asm__ __volatile__(
"movss %0, %%xmm5 \n\t"
#ifdef ALIGNED_VECTOR
"movaps %1, %%xmm4 \n\t"
#else
"movups %1, %%xmm4 \n\t"
#endif
"movaps %%xmm4, %%xmm1 \n\t"
"mulps %%xmm4, %%xmm1 \n\t"
"movhlps %%xmm1, %%xmm3 \n\t"
"movaps %%xmm1, %%xmm2 \n\t"
"shufps $1, %%xmm2, %%xmm2 \n\t"
"addss %%xmm2, %%xmm1 \n\t"
"addss %%xmm3, %%xmm1 \n\t"
"maxss %%xmm5, %%xmm1 \n\t"
"rcpss %%xmm1, %%xmm0 \n\t"
"movss %%xmm0, %0 \n\t"
: "+m" (inv_r2)
: "m" (*v)
: "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5"
);
#else
#error "Not Implemented"
#endif
return inv_r2;
}
#ifdef POSIX
// #define _PS_CONST(Name, Val) static const ALIGN16 float _ps_##Name[4] ALIGN16_POST = { Val, Val, Val, Val }
#define _PS_CONST_TYPE(Name, Type, Val) static const ALIGN16 Type _ps_##Name[4] ALIGN16_POST = { Val, Val, Val, Val }
_PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
#define _PI32_CONST(Name, Val) static const ALIGN16 int _pi32_##Name[4] ALIGN16_POST = { Val, Val, Val, Val }
_PI32_CONST(1, 1);
_PI32_CONST(inv1, ~1);
_PI32_CONST(2, 2);
_PI32_CONST(4, 4);
_PI32_CONST(0x7f, 0x7f);
_PS_CONST(1 , 1.0f);
_PS_CONST(0p5, 0.5f);
_PS_CONST(minus_cephes_DP1, -0.78515625);
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
_PS_CONST(sincof_p0, -1.9515295891E-4);
_PS_CONST(sincof_p1, 8.3321608736E-3);
_PS_CONST(sincof_p2, -1.6666654611E-1);
_PS_CONST(coscof_p0, 2.443315711809948E-005);
_PS_CONST(coscof_p1, -1.388731625493765E-003);
_PS_CONST(coscof_p2, 4.166664568298827E-002);
_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
typedef union xmm_mm_union {
__m128 xmm;
__m64 mm[2];
} xmm_mm_union;
#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; }
typedef __m128 v4sf; // vector of 4 float (sse1)
typedef __m64 v2si; // vector of 2 int (mmx)
#endif
void _SSE_SinCos(float x, float* s, float* c)
{
#if defined(__arm__) || defined(__aarch64__)
#if defined( OSX )
__sincosf(x, s, c);
#elif defined( POSIX )
sincosf(x, s, c);
#else
*s = sin( x );
*c = cos( x );
#endif
#elif _WIN32
float t4, t8, t12;
__asm
{
movss xmm0, x
movss t12, xmm0
movss xmm1, _ps_am_inv_sign_mask
mov eax, t12
mulss xmm0, _ps_am_2_o_pi
andps xmm0, xmm1
and eax, 0x80000000
cvttss2si edx, xmm0
mov ecx, edx
mov t12, esi
mov esi, edx
add edx, 0x1
shl ecx, (31 - 1)
shl edx, (31 - 1)
movss xmm4, _ps_am_1
cvtsi2ss xmm3, esi
mov t8, eax
and esi, 0x1
subss xmm0, xmm3
movss xmm3, _sincos_inv_masks[esi * 4]
minss xmm0, xmm4
subss xmm4, xmm0
movss xmm6, xmm4
andps xmm4, xmm3
and ecx, 0x80000000
movss xmm2, xmm3
andnps xmm3, xmm0
and edx, 0x80000000
movss xmm7, t8
andps xmm0, xmm2
mov t8, ecx
mov t4, edx
orps xmm4, xmm3
mov eax, s //mov eax, [esp + 4 + 16]
mov edx, c //mov edx, [esp + 4 + 16 + 4]
andnps xmm2, xmm6
orps xmm0, xmm2
movss xmm2, t8
movss xmm1, xmm0
movss xmm5, xmm4
xorps xmm7, xmm2
movss xmm3, _ps_sincos_p3
mulss xmm0, xmm0
mulss xmm4, xmm4
movss xmm2, xmm0
movss xmm6, xmm4
orps xmm1, xmm7
movss xmm7, _ps_sincos_p2
mulss xmm0, xmm3
mulss xmm4, xmm3
movss xmm3, _ps_sincos_p1
addss xmm0, xmm7
addss xmm4, xmm7
movss xmm7, _ps_sincos_p0
mulss xmm0, xmm2
mulss xmm4, xmm6
addss xmm0, xmm3
addss xmm4, xmm3
movss xmm3, t4
mulss xmm0, xmm2
mulss xmm4, xmm6
orps xmm5, xmm3
mov esi, t12
addss xmm0, xmm7
addss xmm4, xmm7
mulss xmm0, xmm1
mulss xmm4, xmm5
// use full stores since caller might reload with full loads
movss [eax], xmm0
movss [edx], xmm4
}
#elif POSIX
Assert( "Needs testing, verify impl!\n" );
v4sf xx = _mm_load_ss( &x );
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
v2si mm0, mm1, mm2, mm3, mm4, mm5;
sign_bit_sin = xx;
/* take the absolute value */
xx = _mm_and_ps(xx, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(xx, *(v4sf*)_ps_cephes_FOPI);
/* store the integer part of y in mm2:mm3 */
xmm3 = _mm_movehl_ps(xmm3, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm3);
/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
y = _mm_cvtpi32x2_ps(mm2, mm3);
mm4 = mm2;
mm5 = mm3;
/* get the swap sign flag for the sine */
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);
v4sf swap_sign_bit_sin;
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);
/* get the polynom selection mask for the sine */
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
v4sf poly_mask;
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
xx = _mm_add_ps(xx, xmm1);
xx = _mm_add_ps(xx, xmm2);
xx = _mm_add_ps(xx, xmm3);
/* get the sign flag for the cosine */
mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
mm4 = _mm_slli_pi32(mm4, 29);
mm5 = _mm_slli_pi32(mm5, 29);
v4sf sign_bit_cos;
COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
_mm_empty(); /* good-bye mmx */
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
v4sf z = _mm_mul_ps(xx,xx);
y = *(v4sf*)_ps_coscof_p0;
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, xx);
y2 = _mm_add_ps(y2, xx);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
v4sf ysin2 = _mm_and_ps(xmm3, y2);
v4sf ysin1 = _mm_andnot_ps(xmm3, y);
y2 = _mm_sub_ps(y2,ysin2);
y = _mm_sub_ps(y, ysin1);
xmm1 = _mm_add_ps(ysin1,ysin2);
xmm2 = _mm_add_ps(y,y2);
/* update the sign */
_mm_store_ss( s, _mm_xor_ps(xmm1, sign_bit_sin) );
_mm_store_ss( c, _mm_xor_ps(xmm2, sign_bit_cos) );
#else
#error "Not Implemented"
#endif
}
float _SSE_cos( float x )
{
#if defined(__arm__) || defined(__aarch64__)
return cos(x);
#elif _WIN32
float temp;
__asm
{
movss xmm0, x
movss xmm1, _ps_am_inv_sign_mask
andps xmm0, xmm1
addss xmm0, _ps_am_pi_o_2
mulss xmm0, _ps_am_2_o_pi
cvttss2si ecx, xmm0
movss xmm5, _ps_am_1
mov edx, ecx
shl edx, (31 - 1)
cvtsi2ss xmm1, ecx
and edx, 0x80000000
and ecx, 0x1
subss xmm0, xmm1
movss xmm6, _sincos_masks[ecx * 4]
minss xmm0, xmm5
movss xmm1, _ps_sincos_p3
subss xmm5, xmm0
andps xmm5, xmm6
movss xmm7, _ps_sincos_p2
andnps xmm6, xmm0
mov temp, edx
orps xmm5, xmm6
movss xmm0, xmm5
mulss xmm5, xmm5
movss xmm4, _ps_sincos_p1
movss xmm2, xmm5
mulss xmm5, xmm1
movss xmm1, _ps_sincos_p0
addss xmm5, xmm7
mulss xmm5, xmm2
movss xmm3, temp
addss xmm5, xmm4
mulss xmm5, xmm2
orps xmm0, xmm3
addss xmm5, xmm1
mulss xmm0, xmm5
movss x, xmm0
}
#elif POSIX
Assert( "Needs testing, verify impl!\n" );
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
v2si mm0, mm1, mm2, mm3;
/* take the absolute value */
v4sf xx = _mm_load_ss( &x );
xx = _mm_and_ps(xx, *(v4sf*)_ps_inv_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(xx, *(v4sf*)_ps_cephes_FOPI);
/* store the integer part of y in mm0:mm1 */
xmm2 = _mm_movehl_ps(xmm2, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm2);
/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
y = _mm_cvtpi32x2_ps(mm2, mm3);
mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);
/* get the swap sign flag in mm0:mm1 and the
polynom selection mask in mm2:mm3 */
mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
v4sf sign_bit, poly_mask;
COPY_MM_TO_XMM(mm0, mm1, sign_bit);
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
_mm_empty(); /* good-bye mmx */
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
xx = _mm_add_ps(xx, xmm1);
xx = _mm_add_ps(xx, xmm2);
xx = _mm_add_ps(xx, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
v4sf z = _mm_mul_ps(xx,xx);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, xx);
y2 = _mm_add_ps(y2, xx);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y,y2);
/* update the sign */
_mm_store_ss( &x, _mm_xor_ps(y, sign_bit) );
#else
#error "Not Implemented"
#endif
return x;
}
//-----------------------------------------------------------------------------
// SSE2 implementations of optimized routines:
//-----------------------------------------------------------------------------
#ifdef PLATFORM_WINDOWS_PC32
void _SSE2_SinCos(float x, float* s, float* c) // any x
{
#ifdef _WIN32
__asm
{
movss xmm0, x
movaps xmm7, xmm0
movss xmm1, _ps_am_inv_sign_mask
movss xmm2, _ps_am_sign_mask
movss xmm3, _ps_am_2_o_pi
andps xmm0, xmm1
andps xmm7, xmm2
mulss xmm0, xmm3
pxor xmm3, xmm3
movd xmm5, _epi32_1
movss xmm4, _ps_am_1
cvttps2dq xmm2, xmm0
pand xmm5, xmm2
movd xmm1, _epi32_2
pcmpeqd xmm5, xmm3
movd xmm3, _epi32_1
cvtdq2ps xmm6, xmm2
paddd xmm3, xmm2
pand xmm2, xmm1
pand xmm3, xmm1
subss xmm0, xmm6
pslld xmm2, (31 - 1)
minss xmm0, xmm4
mov eax, s // mov eax, [esp + 4 + 16]
mov edx, c // mov edx, [esp + 4 + 16 + 4]
subss xmm4, xmm0
pslld xmm3, (31 - 1)
movaps xmm6, xmm4
xorps xmm2, xmm7
movaps xmm7, xmm5
andps xmm6, xmm7
andnps xmm7, xmm0
andps xmm0, xmm5
andnps xmm5, xmm4
movss xmm4, _ps_sincos_p3
orps xmm6, xmm7
orps xmm0, xmm5
movss xmm5, _ps_sincos_p2
movaps xmm1, xmm0
movaps xmm7, xmm6
mulss xmm0, xmm0
mulss xmm6, xmm6
orps xmm1, xmm2
orps xmm7, xmm3
movaps xmm2, xmm0
movaps xmm3, xmm6
mulss xmm0, xmm4
mulss xmm6, xmm4
movss xmm4, _ps_sincos_p1
addss xmm0, xmm5
addss xmm6, xmm5
movss xmm5, _ps_sincos_p0
mulss xmm0, xmm2
mulss xmm6, xmm3
addss xmm0, xmm4
addss xmm6, xmm4
mulss xmm0, xmm2
mulss xmm6, xmm3
addss xmm0, xmm5
addss xmm6, xmm5
mulss xmm0, xmm1
mulss xmm6, xmm7
// use full stores since caller might reload with full loads
movss [eax], xmm0
movss [edx], xmm6
}
#elif POSIX
#warning "_SSE2_SinCos NOT implemented!"
Assert( 0 );
#else
#error "Not Implemented"
#endif
}
#endif // PLATFORM_WINDOWS_PC32
#ifdef PLATFORM_WINDOWS_PC32
float _SSE2_cos(float x)
{
#ifdef _WIN32
__asm
{
movss xmm0, x
movss xmm1, _ps_am_inv_sign_mask
movss xmm2, _ps_am_pi_o_2
movss xmm3, _ps_am_2_o_pi
andps xmm0, xmm1
addss xmm0, xmm2
mulss xmm0, xmm3
pxor xmm3, xmm3
movd xmm5, _epi32_1
movss xmm4, _ps_am_1
cvttps2dq xmm2, xmm0
pand xmm5, xmm2
movd xmm1, _epi32_2
pcmpeqd xmm5, xmm3
cvtdq2ps xmm6, xmm2
pand xmm2, xmm1
pslld xmm2, (31 - 1)
subss xmm0, xmm6
movss xmm3, _ps_sincos_p3
minss xmm0, xmm4
subss xmm4, xmm0
andps xmm0, xmm5
andnps xmm5, xmm4
orps xmm0, xmm5
movaps xmm1, xmm0
movss xmm4, _ps_sincos_p2
mulss xmm0, xmm0
movss xmm5, _ps_sincos_p1
orps xmm1, xmm2
movaps xmm7, xmm0
mulss xmm0, xmm3
movss xmm6, _ps_sincos_p0
addss xmm0, xmm4
mulss xmm0, xmm7
addss xmm0, xmm5
mulss xmm0, xmm7
addss xmm0, xmm6
mulss xmm0, xmm1
movss x, xmm0
}
#elif POSIX
#warning "_SSE2_cos NOT implemented!"
Assert( 0 );
#else
#error "Not Implemented"
#endif
return x;
}
#endif // PLATFORM_WINDOWS_PC32
#if 0
// SSE Version of VectorTransform
void VectorTransformSSE(const float *in1, const matrix3x4_t& in2, float *out1)
{
Assert( s_bMathlibInitialized );
Assert( in1 != out1 );
#ifdef _WIN32
__asm
{
mov eax, in1;
mov ecx, in2;
mov edx, out1;
movss xmm0, [eax];
mulss xmm0, [ecx];
movss xmm1, [eax+4];
mulss xmm1, [ecx+4];
movss xmm2, [eax+8];
mulss xmm2, [ecx+8];
addss xmm0, xmm1;
addss xmm0, xmm2;
addss xmm0, [ecx+12]
movss [edx], xmm0;
add ecx, 16;
movss xmm0, [eax];
mulss xmm0, [ecx];
movss xmm1, [eax+4];
mulss xmm1, [ecx+4];
movss xmm2, [eax+8];
mulss xmm2, [ecx+8];
addss xmm0, xmm1;
addss xmm0, xmm2;
addss xmm0, [ecx+12]
movss [edx+4], xmm0;
add ecx, 16;
movss xmm0, [eax];
mulss xmm0, [ecx];
movss xmm1, [eax+4];
mulss xmm1, [ecx+4];
movss xmm2, [eax+8];
mulss xmm2, [ecx+8];
addss xmm0, xmm1;
addss xmm0, xmm2;
addss xmm0, [ecx+12]
movss [edx+8], xmm0;
}
#elif POSIX
#warning "VectorTransformSSE C implementation only"
out1[0] = DotProduct(in1, in2[0]) + in2[0][3];
out1[1] = DotProduct(in1, in2[1]) + in2[1][3];
out1[2] = DotProduct(in1, in2[2]) + in2[2][3];
#else
#error "Not Implemented"
#endif
}
#endif
#if 0
void VectorRotateSSE( const float *in1, const matrix3x4_t& in2, float *out1 )
{
Assert( s_bMathlibInitialized );
Assert( in1 != out1 );
#ifdef _WIN32
__asm
{
mov eax, in1;
mov ecx, in2;
mov edx, out1;
movss xmm0, [eax];
mulss xmm0, [ecx];
movss xmm1, [eax+4];
mulss xmm1, [ecx+4];
movss xmm2, [eax+8];
mulss xmm2, [ecx+8];
addss xmm0, xmm1;
addss xmm0, xmm2;
movss [edx], xmm0;
add ecx, 16;