-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoskethes.py
129 lines (89 loc) · 3.44 KB
/
oskethes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Wrapper for original Sketch Engine Thesaurus
... + some other stuff involving `manatee` or `wmap` package
"""
from collections import defaultdict
import manatee
import wmap
class OutOfVocabError(AttributeError):
pass
def iter_sentences(corpus_name, struct_name="s", attr_name="word",
vocab=None, min_freq=20):
"""
Yields sentences (as lists of strings) from a corpus compiled in Manatee.
If you want to restrict the vocabulary in some fancy way,
provide the set of allowed items through the `vocab` attribute.
"""
corpus = manatee.Corpus(corpus_name)
struct = corpus.get_struct(struct_name)
attr = corpus.get_attr(attr_name)
if vocab is None:
vocab = {i: attr.freq(i) for i in range(attr.id_range())}
vocab = {i: c for i, c in vocab.items() if c >= min_freq}
else:
vocab = {i: attr.freq(i) for i in set(vocab)}
for i in range(struct.size()):
beg = struct.beg(i)
end = struct.end(i)
raw_block = [attr.pos2id(j) for j in range(beg, end)]
yield [attr.id2str(j) for j in raw_block if j in vocab]
class OriginalThesaurus(object):
"""
Class that uses the original Sketch Engine Thesaurus
"""
def __init__(self, corpus_name):
self.corpus = manatee.Corpus(corpus_name)
self.wsthes = self.corpus.get_conf("WSTHES")
self.attr = self.corpus.get_attr(self.corpus.get_conf("WSATTR"))
self.cached_sims = dict()
def similarities(self, word):
if word in self.cached_sims:
return self.cached_sims[word]
word_i = self.attr.str2id(word)
if word_i < 0:
raise OutOfVocabError("Out-of-vocabulary word '%s'." % word)
thes = wmap.Thesaurus_f(self.wsthes, word_i)
sims = dict()
while not thes.eos():
sims[self.attr.id2str(thes.getid())] = thes.getscore()
thes.next()
self.cached_sims[word] = sims
return sims
def most_similar(self, word, topn=10):
return sorted(self.similarities(word).items(), key=lambda (w, s): s,
reverse=True)[:topn]
def solve_analogy(self, a, b, aa, mul=False):
sims_a, sims_b, sims_aa = (
defaultdict(lambda: 0.05, self.similarities(w))
for w in (a, b, aa)
)
results = {
w: (sims_b[w] * sims_aa[w] / sims_a[w] if mul
else sims_b[w] + sims_aa[w] - sims_a[w])
for w in set(sims_b) & set(sims_aa) - {a}
}.items()
return (
None if len(results) == 0
else max(results, key=lambda (c, s): s)[0]
)
def eval_on_dataset(self, dataset, mul=False):
results = {
category_label: dict(acc=0.0, oov=0, queries=list())
for category_label
in dataset
}
for cat, queries in dataset.items():
for a, b, aa, bbs in queries:
try:
candidate = self.solve_analogy(a, b, aa, mul)
except OutOfVocabError:
results[cat]["oov"] += 1
continue
if candidate in bbs:
results[cat]["acc"] += 1
results[cat]["queries"].append(
(a, b, aa, candidate, candidate in bbs)
)
# After all queries are processed:
results[cat]["acc"] /= float(len(queries))
return results