-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN_simple.py
49 lines (40 loc) · 1.8 KB
/
CNN_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
from dataset import *
import torch.utils.data
class ConvNet(nn.Module):
def __init__(self, in_channel, channel_size, kernel=5, pad=2, num_conv=2, embed=20, output_width=400):
super().__init__()
self.conv1 = nn.Conv2d(in_channel, channel_size, kernel, padding=pad)
module = []
module.append(self.conv1)
for i in range(num_conv - 1):
module.append(nn.Conv2d(channel_size, channel_size, kernel, padding=pad))
for i in range(num_conv):
nn.init.kaiming_normal_(module[i].weight)
nn.init.zeros_(module[i].bias)
self.sequence = nn.Sequential()
self.sequence.add_module("conv" + str(0), module[0])
self.sequence.add_module("relu" + str(0), nn.ReLU())
self.sequence.add_module("conv" + str(1), module[1])
self.sequence.add_module("relu" + str(1 + 0), nn.ReLU())
self.sequence.add_module("pool1", nn.MaxPool2d((1, 2)))
self.sequence.add_module("conv2", nn.Conv2d(1, 1, kernel_size=5, padding=2))
self.sequence.add_module("relu2", nn.ReLU())
self.sequence.add_module("conv3", nn.Conv2d(1, 1, kernel_size=5, padding=2))
self.sequence.add_module("relu3", nn.ReLU())
self.sequence.add_module("pool" + str(0), nn.AdaptiveMaxPool2d((embed, output_width)))
# self.sequence.add_module("pool" + str(0), nn.MaxPool2d(2, padding=1))
def forward(self, x):
out = self.sequence(x)
return out
if __name__ == '__main__':
corpus, word2idx, idx2word, max_len = read_captions_word("music_strings_small.txt")
corpus_idx = convert_corpus_idx(word2idx, corpus, max_len)
data = Dataset("data", list(range(0, len(corpus))), corpus_idx)
train_loader = torch.utils.data.DataLoader(
data, batch_size=4, shuffle=True, num_workers=0, pin_memory=True)
encoder = ConvNet(3, 1)
for i, (imgs, caps, caplens) in enumerate(train_loader):
imgs = encoder(imgs.float())
print(imgs.shape)