Skip to content

Commit def1e28

Browse files
committed
docs: fix references
1 parent 81e2d35 commit def1e28

File tree

1 file changed

+91
-95
lines changed

1 file changed

+91
-95
lines changed

docs/outputs.md

+91-95
Original file line numberDiff line numberDiff line change
@@ -334,7 +334,7 @@ Surface output spaces include `fsnative` (full density subject-specific mesh),
334334
a container format that holds both volumetric (regularly sampled in a grid) and surface
335335
(sampled on a triangular mesh) samples.
336336
Sub-cortical time series are sampled on a regular grid derived from one MNI template, while
337-
cortical time series are sampled on surfaces projected from the [Glasser2016]_ template.
337+
cortical time series are sampled on surfaces projected from the [^Glasser2016] template.
338338
If CIFTI outputs are requested (with the `--cifti-outputs` argument), the BOLD series are also
339339
saved as `dtseries.nii` CIFTI2 files
340340

@@ -436,7 +436,7 @@ of both neuronal and non-neuronal origin.
436436
Neuronal signals are measured indirectly as changes in the local concentration of oxygenated hemoglobin.
437437
Non-neuronal fluctuations in fMRI data may appear as a result of head motion, scanner noise,
438438
or physiological fluctuations (related to cardiac or respiratory effects).
439-
For a detailed review of the possible sources of noise in the BOLD signal, refer to [Greve2013]_.
439+
For a detailed review of the possible sources of noise in the BOLD signal, refer to [^Greve2013].
440440

441441
*Confounds* (or nuisance regressors) are variables representing fluctuations with a potential
442442
non-neuronal origin.
@@ -514,23 +514,23 @@ These confounds can be used to detect potential outlier time points -
514514
frames with sudden and large motion or intensity spikes.
515515

516516
- `framewise_displacement` - is a quantification of the estimated bulk-head motion calculated using
517-
formula proposed by [Power2012]_;
517+
formula proposed by [^Power2012];
518518
- `rmsd` - is a quantification of the estimated relative (frame-to-frame) bulk head motion
519-
calculated using the {abbr}`RMS (root mean square)` approach of [Jenkinson2002]_;
519+
calculated using the {abbr}`RMS (root mean square)` approach of [^Jenkinson2002];
520520
- `dvars` - the derivative of RMS variance over voxels (or {abbr}`DVARS (derivative of
521-
RMS variance over voxels)`) [Power2012]_;
521+
RMS variance over voxels)`) [^Power2012];
522522
- `std_dvars` - standardized {abbr}`DVARS (derivative of RMS variance over voxels)`;
523523
- `non_steady_state_outlier_XX` - columns indicate non-steady state volumes with a single
524524
`1` value and `0` elsewhere (*i.e.*, there is one `non_steady_state_outlier_XX` column per
525525
outlier/volume).
526526

527527
Detected outliers can be further removed from time series using methods such as:
528-
volume *censoring* - entirely discarding problematic time points [Power2012]_,
528+
volume *censoring* - entirely discarding problematic time points [^Power2012],
529529
regressing signal from outlier points in denoising procedure, or
530530
including outlier points in the subsequent first-level analysis when building
531531
the design matrix.
532532
Averaged value of confound (for example, mean `framewise_displacement`)
533-
can also be added as regressors in group level analysis [Yan2013]_.
533+
can also be added as regressors in group level analysis [^Yan2013].
534534
*Regressors of motion spikes* for outlier censoring are generated from within *NiBabies*,
535535
and their calculation may be adjusted with the command line options `--fd-spike-threshold`
536536
and `--dvars-spike-threshold` (defaults are FD > 0.5 mm or DVARS > 1.5).
@@ -574,7 +574,7 @@ In the method, principal components are calculated within an {abbr}`ROI (Region
574574
that is unlikely to include signal related to neuronal activity, such as {abbr}`CSF (cerebro-spinal fluid)`
575575
and {abbr}`WM (white matter)` masks.
576576
Signals extracted from CompCor components can be further regressed out from the fMRI data with a
577-
denoising procedure [Behzadi2007].
577+
denoising procedure [^Behzadi2007].
578578

579579
- `a_comp_cor_XX` - additional noise components are calculated using anatomical {abbr}`CompCor
580580
(Component Based Noise Correction)`;
@@ -628,9 +628,9 @@ For CompCor decompositions, entries include:
628628

629629
:::{caution}
630630
Only a subset of these CompCor decompositions should be used for further denoising.
631-
The original Behzadi aCompCor implementation [Behzadi2007]_ can be applied using
631+
The original Behzadi aCompCor implementation [^Behzadi2007] can be applied using
632632
components from the combined masks, while the more recent Muschelli implementation
633-
[Muschelli2014]_ can be applied using
633+
[^Muschelli2014] can be applied using
634634
the {abbr}`WM (white matter)` and {abbr}`CSF (cerebro-spinal fluid)` masks.
635635
To determine the provenance of each component, consult the metadata file (described above).
636636

@@ -647,9 +647,9 @@ cumulative fraction of variance is explained (e.g., 50%).
647647
:::{caution}
648648
Similarly, if you are using anatomical or temporal CompCor it may not make sense
649649
to use the `csf`, or `white_matter` global regressors -
650-
see `#1049 <https://github.com/nipreps/fmriprep/issues/1049>`_.
650+
see [fmriprep#1049](https://github.com/nipreps/fmriprep/issues/1049).
651651
Conversely, using the overall `global_signal` confound in addition to CompCor's
652-
regressors can be beneficial (see [Parkes2018]_).
652+
regressors can be beneficial (see [^Parkes2018]).
653653
:::
654654

655655
:::{danger}
@@ -670,28 +670,14 @@ Reusing the implementation of aCompCor, *NiBabies* generates regressors correspo
670670
24 first principal components extracted with PCA using the voxel time-series delineated by
671671
the brain's outer edge (*crown*) mask.
672672
The procedure essentially follows the initial proposal of the approach by Patriat et al.
673-
[Patriat2017]_ and is described in our ISMRM abstract [Provins2022]_.
673+
[^Patriat2017] and is described in our ISMRM abstract [^Provins2022].
674+
675+
#### Confounds and "carpet"-plot on the visual reports
674676

675-
Confounds and "carpet"-plot on the visual reports
676-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
677677
The visual reports provide several sections per task and run to aid designing
678678
a denoising strategy for subsequent analysis.
679679
Some of the estimated confounds are plotted with a "carpet" visualization of the
680-
:abbr:`BOLD (blood-oxygen level-dependent)` time series [Power2016]_.
681-
An example of these plots follows:
682-
683-
.. figure:: _static/sub-405_ses-01_task-rest_run-01_desc-carpetplot_bold.svg
684-
685-
The figure shows on top several confounds estimated for the BOLD series:
686-
global signals ('GS', 'CSF', 'WM'), DVARS,
687-
and framewise-displacement ('FD').
688-
At the bottom, a 'carpetplot' summarizing the BOLD series [Power2016]_.
689-
The carpet plot rows correspond to voxelwise time series,
690-
and are separated into regions: cortical gray matter, deep
691-
gray matter, white matter and cerebrospinal fluid, cerebellum
692-
and the brain-edge or “crown” [Provins2022]_.
693-
The crown corresponds to the voxels located on a
694-
closed band around the brain [Patriat2015]_.
680+
:abbr:`BOLD (blood-oxygen level-dependent)` time series [^Power2016].
695681

696682
Noise components computed during each CompCor decomposition are evaluated according
697683
to the fraction of variance that they explain across the nuisance ROI.
@@ -709,68 +695,78 @@ to which tissue-specific regressors correlate with global signal.
709695

710696
See implementation on :mod:`~nibabies.workflows.bold.confounds.init_bold_confs_wf`.
711697

712-
.. topic:: References
713-
714-
.. [Behzadi2007] Behzadi Y, Restom K, Liau J, Liu TT, A component-based noise correction method
715-
(CompCor) for BOLD and perfusion-based fMRI. NeuroImage. 2007.
716-
doi:`10.1016/j.neuroimage.2007.04.042 <https://doi.org/10.1016/j.neuroimage.2007.04.042>`_
717-
718-
.. [Ciric2017] Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA,
719-
Eickhoff SB, Davatzikos C., Gur RC, Gur RE, Bassett DS, Satterthwaite TD.
720-
Benchmarking of participant-level confound regression strategies for the control of motion
721-
artifact in studies of functional connectivity. Neuroimage. 2017.
722-
doi:`10.1016/j.neuroimage.2017.03.020 <https://doi.org/10.1016/j.neuroimage.2017.03.020>`_
723-
724-
.. [Greve2013] Greve DN, Brown GG, Mueller BA, Glover G, Liu TT,
725-
A Survey of the Sources of Noise in fMRI. Psychometrika. 2013.
726-
doi:`10.1007/s11336-013-9344-2 <https://doi.org/10.1007/s11336-013-9344-2>`_
727-
728-
.. [Friston1996] Friston KJ1, Williams S, Howard R, Frackowiak RS, Turner R,
729-
Movement‐Related effects in fMRI time‐series. Magnetic Resonance in Medicine. 1996.
730-
doi:`10.1002/mrm.191035031 <https://doi.org/10.1002/mrm.1910350312>`_
731-
732-
.. [Glasser2016] Glasser MF, Coalson TS Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K,
733-
Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC.
734-
A multi-modal parcellation of human cerebral cortex. Nature. 2016.
735-
doi:`10.1038/nature18933 <https://doi.org/10.1038/nature18933>`_
736-
737-
.. [Jenkinson2002] Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the
738-
robust and accurate linear registration and motion correction of brain images. Neuroimage.
739-
2002. doi:`10.1016/s1053-8119(02)91132-8 <https://doi.org/10.1016/s1053-8119(02)91132-8>`__.
740-
741-
.. [Muschelli2014] Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH,
742-
Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage. 2014.
743-
doi:`10.1016/j.neuroimage.2014.03.028 <https://doi.org/10.1016/j.neuroimage.2014.03.028>`_
744-
745-
.. [Parkes2018] Parkes L, Fulcher B, Yücel M, Fornito A, An evaluation of the efficacy, reliability,
746-
and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage. 2018.
747-
doi:`10.1016/j.neuroimage.2017.12.073 <https://doi.org/10.1016/j.neuroimage.2017.12.073>`_
748-
749-
.. [Patriat2015] Patriat R, EK Molloy, RM Birn, T. Guitchev, and A. Popov. ,Using Edge Voxel Information to
750-
Improve Motion Regression for Rs-FMRI Connectivity Studies. Brain Connectivity. 2015.
751-
doi:`10.1089/brain.2014.0321 <https://doi.org/10.1089/brain.2014.0321>`_.
752-
753-
.. [Patriat2017] Patriat R, Reynolds RC, Birn RM, An improved model of motion-related signal
754-
changes in fMRI. NeuroImage. 2017.
755-
doi:`10.1016/j.neuroimage.2016.08.051 <https://doi.org/10.1016/j.neuroimage.2016.08.051>`_.
756-
757-
.. [Power2012] Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen, SA, Spurious but systematic
758-
correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012.
759-
doi:`10.1016/j.neuroimage.2011.10.018 <https://doi.org/10.1016/j.neuroimage.2011.10.018>`_
760-
761-
.. [Power2016] Power JD, A simple but useful way to assess fMRI scan qualities. NeuroImage. 2016.
762-
doi:`10.1016/j.neuroimage.2016.08.009 <https://doi.org/10.1016/j.neuroimage.2016.08.009>`_
763-
764-
.. [Provins2022] Provins C et al., Quality control and nuisance regression of fMRI, looking out
765-
where signal should not be found. Proc. Intl. Soc. Mag. Reson. Med. 31, London (UK). 2022
766-
doi:`10.31219/osf.io/hz52v <https://doi.org/10.31219/osf.io/hz52v>`_.
767-
768-
.. [Satterthwaite2013] Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME,
769-
Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH,
770-
An improved framework for confound regression and filtering for control of motion artifact
771-
in the preprocessing of resting-state functional connectivity data. NeuroImage. 2013. doi:`10.1016/j.neuroimage.2012.08.052 <https://doi.org/10.1016/j.neuroimage.2012.08.052>`_
772-
773-
.. [Yan2013] Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN,
774-
Castellanos FX, Milham MP, A comprehensive assessment of regional variation in the impact of
775-
head micromovements on functional connectomics. NeuroImage. 2013.
776-
doi:`10.1016/j.neuroimage.2013.03.004 <https://doi.org/10.1016/j.neuroimage.2013.03.004>`_
698+
## References
699+
700+
[^Behzadi2007]: Behzadi Y, Restom K, Liau J, Liu TT.
701+
A component-based noise correction method (CompCor) for BOLD and perfusion-based fMRI. NeuroImage. 2007.
702+
doi:[10.1016/j.neuroimage.2007.04.042](https://doi.org/10.1016/j.neuroimage.2007.04.042)
703+
704+
[^Ciric2017]: Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C., Gur RC, Gur RE, Bassett DS, Satterthwaite TD.
705+
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
706+
Neuroimage. 2017.
707+
doi:[10.1016/j.neuroimage.2017.03.020](https://doi.org/10.1016/j.neuroimage.2017.03.020)
708+
709+
[^Greve2013]: Greve DN, Brown GG, Mueller BA, Glover G, Liu TT.
710+
A Survey of the Sources of Noise in fMRI.
711+
Psychometrika. 2013.
712+
doi:[10.1007/s11336-013-9344-2](https://doi.org/10.1007/s11336-013-9344-2)
713+
714+
[^Friston1996]: Friston KJ1, Williams S, Howard R, Frackowiak RS, Turner R.
715+
Movement‐Related effects in fMRI time‐series.
716+
Magnetic Resonance in Medicine. 1996.
717+
doi:[10.1002/mrm.191035031](https://doi.org/10.1002/mrm.1910350312)
718+
719+
[^Glasser2016]: Glasser MF, Coalson TS Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC.
720+
A multi-modal parcellation of human cerebral cortex.
721+
Nature. 2016.
722+
doi:[10.1038/nature18933](https://doi.org/10.1038/nature18933)
723+
724+
[^Jenkinson2002]: Jenkinson M, Bannister P, Brady M, Smith S.
725+
Improved optimization for the robust and accurate linear registration and motion correction of brain images.
726+
Neuroimage. 2002.
727+
doi:[10.1016/s1053-8119(02)91132-8](https://doi.org/10.1016/s1053-8119(02)91132-8)
728+
729+
[^Muschelli2014]: Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH.
730+
Reduction of motion-related artifacts in resting state fMRI using aCompCor.
731+
NeuroImage. 2014.
732+
doi:[10.1016/j.neuroimage.2014.03.028](https://doi.org/10.1016/j.neuroimage.2014.03.028)
733+
734+
[^Parkes2018]: Parkes L, Fulcher B, Yücel M, Fornito A.
735+
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
736+
NeuroImage. 2018.
737+
doi:[10.1016/j.neuroimage.2017.12.073](https://doi.org/10.1016/j.neuroimage.2017.12.073)
738+
739+
[^Patriat2015]: Patriat R, EK Molloy, RM Birn, T. Guitchev, and A. Popov.
740+
Using Edge Voxel Information to Improve Motion Regression for Rs-FMRI Connectivity Studies.
741+
Brain Connectivity. 2015.
742+
doi:[10.1089/brain.2014.0321](https://doi.org/10.1089/brain.2014.0321)
743+
744+
[^Patriat2017]: Patriat R, Reynolds RC, Birn RM,
745+
An improved model of motion-related signal changes in fMRI.
746+
NeuroImage. 2017.
747+
doi:[10.1016/j.neuroimage.2016.08.051](https://doi.org/10.1016/j.neuroimage.2016.08.051)
748+
749+
[^Power2012]: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen, SA.
750+
Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
751+
NeuroImage. 2012.
752+
doi:[10.1016/j.neuroimage.2011.10.018](https://doi.org/10.1016/j.neuroimage.2011.10.018=[]
753+
754+
[^Power2016]: Power JD.
755+
A simple but useful way to assess fMRI scan qualities.
756+
NeuroImage. 2016.
757+
doi:[10.1016/j.neuroimage.2016.08.009](https://doi.org/10.1016/j.neuroimage.2016.08.009)
758+
759+
[^Provins2022]: Provins C et al.
760+
Quality control and nuisance regression of fMRI, looking out where signal should not be found.
761+
Proc. Intl. Soc. Mag. Reson. Med. 31, London (UK). 2022
762+
doi:[10.31219/osf.io/hz52v](https://doi.org/10.31219/osf.io/hz52v)
763+
764+
[^Satterthwaite2013]: Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH.
765+
An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.
766+
NeuroImage. 2013.
767+
doi:[10.1016/j.neuroimage.2012.08.052](https://doi.org/10.1016/j.neuroimage.2012.08.052)
768+
769+
[^Yan2013]: Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP.
770+
A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
771+
NeuroImage. 2013.
772+
doi:[10.1016/j.neuroimage.2013.03.004](https://doi.org/10.1016/j.neuroimage.2013.03.004)

0 commit comments

Comments
 (0)