@@ -334,7 +334,7 @@ Surface output spaces include `fsnative` (full density subject-specific mesh),
334
334
a container format that holds both volumetric (regularly sampled in a grid) and surface
335
335
(sampled on a triangular mesh) samples.
336
336
Sub-cortical time series are sampled on a regular grid derived from one MNI template, while
337
- cortical time series are sampled on surfaces projected from the [ Glasser2016] _ template.
337
+ cortical time series are sampled on surfaces projected from the [ ^ Glasser2016 ] template.
338
338
If CIFTI outputs are requested (with the ` --cifti-outputs ` argument), the BOLD series are also
339
339
saved as ` dtseries.nii ` CIFTI2 files
340
340
@@ -436,7 +436,7 @@ of both neuronal and non-neuronal origin.
436
436
Neuronal signals are measured indirectly as changes in the local concentration of oxygenated hemoglobin.
437
437
Non-neuronal fluctuations in fMRI data may appear as a result of head motion, scanner noise,
438
438
or physiological fluctuations (related to cardiac or respiratory effects).
439
- For a detailed review of the possible sources of noise in the BOLD signal, refer to [ Greve2013] _ .
439
+ For a detailed review of the possible sources of noise in the BOLD signal, refer to [ ^ Greve2013 ] .
440
440
441
441
* Confounds* (or nuisance regressors) are variables representing fluctuations with a potential
442
442
non-neuronal origin.
@@ -514,23 +514,23 @@ These confounds can be used to detect potential outlier time points -
514
514
frames with sudden and large motion or intensity spikes.
515
515
516
516
- ` framewise_displacement ` - is a quantification of the estimated bulk-head motion calculated using
517
- formula proposed by [ Power2012] _ ;
517
+ formula proposed by [ ^ Power2012 ] ;
518
518
- ` rmsd ` - is a quantification of the estimated relative (frame-to-frame) bulk head motion
519
- calculated using the {abbr}` RMS (root mean square) ` approach of [ Jenkinson2002] _ ;
519
+ calculated using the {abbr}` RMS (root mean square) ` approach of [ ^ Jenkinson2002 ] ;
520
520
- ` dvars ` - the derivative of RMS variance over voxels (or {abbr}`DVARS (derivative of
521
- RMS variance over voxels)`) [ Power2012] _ ;
521
+ RMS variance over voxels)`) [ ^ Power2012 ] ;
522
522
- ` std_dvars ` - standardized {abbr}` DVARS (derivative of RMS variance over voxels) ` ;
523
523
- ` non_steady_state_outlier_XX ` - columns indicate non-steady state volumes with a single
524
524
` 1 ` value and ` 0 ` elsewhere (* i.e.* , there is one ` non_steady_state_outlier_XX ` column per
525
525
outlier/volume).
526
526
527
527
Detected outliers can be further removed from time series using methods such as:
528
- volume * censoring* - entirely discarding problematic time points [ Power2012] _ ,
528
+ volume * censoring* - entirely discarding problematic time points [ ^ Power2012 ] ,
529
529
regressing signal from outlier points in denoising procedure, or
530
530
including outlier points in the subsequent first-level analysis when building
531
531
the design matrix.
532
532
Averaged value of confound (for example, mean ` framewise_displacement ` )
533
- can also be added as regressors in group level analysis [ Yan2013] _ .
533
+ can also be added as regressors in group level analysis [ ^ Yan2013 ] .
534
534
* Regressors of motion spikes* for outlier censoring are generated from within * NiBabies* ,
535
535
and their calculation may be adjusted with the command line options ` --fd-spike-threshold `
536
536
and ` --dvars-spike-threshold ` (defaults are FD > 0.5 mm or DVARS > 1.5).
@@ -574,7 +574,7 @@ In the method, principal components are calculated within an {abbr}`ROI (Region
574
574
that is unlikely to include signal related to neuronal activity, such as {abbr}` CSF (cerebro-spinal fluid) `
575
575
and {abbr}` WM (white matter) ` masks.
576
576
Signals extracted from CompCor components can be further regressed out from the fMRI data with a
577
- denoising procedure [ Behzadi2007] .
577
+ denoising procedure [ ^ Behzadi2007 ] .
578
578
579
579
- ` a_comp_cor_XX ` - additional noise components are calculated using anatomical {abbr}`CompCor
580
580
(Component Based Noise Correction)`;
@@ -628,9 +628,9 @@ For CompCor decompositions, entries include:
628
628
629
629
:::{caution}
630
630
Only a subset of these CompCor decompositions should be used for further denoising.
631
- The original Behzadi aCompCor implementation [ Behzadi2007] _ can be applied using
631
+ The original Behzadi aCompCor implementation [ ^ Behzadi2007 ] can be applied using
632
632
components from the combined masks, while the more recent Muschelli implementation
633
- [ Muschelli2014] _ can be applied using
633
+ [ ^ Muschelli2014 ] can be applied using
634
634
the {abbr}` WM (white matter) ` and {abbr}` CSF (cerebro-spinal fluid) ` masks.
635
635
To determine the provenance of each component, consult the metadata file (described above).
636
636
@@ -647,9 +647,9 @@ cumulative fraction of variance is explained (e.g., 50%).
647
647
:::{caution}
648
648
Similarly, if you are using anatomical or temporal CompCor it may not make sense
649
649
to use the ` csf ` , or ` white_matter ` global regressors -
650
- see ` #1049 < https://github.com/nipreps/fmriprep/issues/1049> ` _ .
650
+ see [ fmriprep #1049 ] ( https://github.com/nipreps/fmriprep/issues/1049 ) .
651
651
Conversely, using the overall ` global_signal ` confound in addition to CompCor's
652
- regressors can be beneficial (see [ Parkes2018] _ ).
652
+ regressors can be beneficial (see [ ^ Parkes2018 ] ).
653
653
:::
654
654
655
655
:::{danger}
@@ -670,28 +670,14 @@ Reusing the implementation of aCompCor, *NiBabies* generates regressors correspo
670
670
24 first principal components extracted with PCA using the voxel time-series delineated by
671
671
the brain's outer edge (* crown* ) mask.
672
672
The procedure essentially follows the initial proposal of the approach by Patriat et al.
673
- [ Patriat2017] _ and is described in our ISMRM abstract [ Provins2022] _ .
673
+ [ ^ Patriat2017 ] and is described in our ISMRM abstract [ ^ Provins2022 ] .
674
+
675
+ #### Confounds and "carpet"-plot on the visual reports
674
676
675
- Confounds and "carpet"-plot on the visual reports
676
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
677
677
The visual reports provide several sections per task and run to aid designing
678
678
a denoising strategy for subsequent analysis.
679
679
Some of the estimated confounds are plotted with a "carpet" visualization of the
680
- :abbr:`BOLD (blood-oxygen level-dependent)` time series [Power2016]_.
681
- An example of these plots follows:
682
-
683
- .. figure:: _static/sub-405_ses-01_task-rest_run-01_desc-carpetplot_bold.svg
684
-
685
- The figure shows on top several confounds estimated for the BOLD series:
686
- global signals ('GS', 'CSF', 'WM'), DVARS,
687
- and framewise-displacement ('FD').
688
- At the bottom, a 'carpetplot' summarizing the BOLD series [Power2016]_.
689
- The carpet plot rows correspond to voxelwise time series,
690
- and are separated into regions: cortical gray matter, deep
691
- gray matter, white matter and cerebrospinal fluid, cerebellum
692
- and the brain-edge or “crown” [Provins2022]_.
693
- The crown corresponds to the voxels located on a
694
- closed band around the brain [Patriat2015]_.
680
+ :abbr:` BOLD (blood-oxygen level-dependent) ` time series [ ^ Power2016 ] .
695
681
696
682
Noise components computed during each CompCor decomposition are evaluated according
697
683
to the fraction of variance that they explain across the nuisance ROI.
@@ -709,68 +695,78 @@ to which tissue-specific regressors correlate with global signal.
709
695
710
696
See implementation on :mod:` ~nibabies.workflows.bold.confounds.init_bold_confs_wf ` .
711
697
712
- .. topic:: References
713
-
714
- .. [Behzadi2007] Behzadi Y, Restom K, Liau J, Liu TT, A component-based noise correction method
715
- (CompCor) for BOLD and perfusion-based fMRI. NeuroImage. 2007.
716
- doi:`10.1016/j.neuroimage.2007.04.042 <https://doi.org/10.1016/j.neuroimage.2007.04.042>`_
717
-
718
- .. [Ciric2017] Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA,
719
- Eickhoff SB, Davatzikos C., Gur RC, Gur RE, Bassett DS, Satterthwaite TD.
720
- Benchmarking of participant-level confound regression strategies for the control of motion
721
- artifact in studies of functional connectivity. Neuroimage. 2017.
722
- doi:`10.1016/j.neuroimage.2017.03.020 <https://doi.org/10.1016/j.neuroimage.2017.03.020>`_
723
-
724
- .. [Greve2013] Greve DN, Brown GG, Mueller BA, Glover G, Liu TT,
725
- A Survey of the Sources of Noise in fMRI. Psychometrika. 2013.
726
- doi:`10.1007/s11336-013-9344-2 <https://doi.org/10.1007/s11336-013-9344-2>`_
727
-
728
- .. [Friston1996] Friston KJ1, Williams S, Howard R, Frackowiak RS, Turner R,
729
- Movement‐Related effects in fMRI time‐series. Magnetic Resonance in Medicine. 1996.
730
- doi:`10.1002/mrm.191035031 <https://doi.org/10.1002/mrm.1910350312>`_
731
-
732
- .. [Glasser2016] Glasser MF, Coalson TS Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K,
733
- Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC.
734
- A multi-modal parcellation of human cerebral cortex. Nature. 2016.
735
- doi:`10.1038/nature18933 <https://doi.org/10.1038/nature18933>`_
736
-
737
- .. [Jenkinson2002] Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the
738
- robust and accurate linear registration and motion correction of brain images. Neuroimage.
739
- 2002. doi:`10.1016/s1053-8119(02)91132-8 <https://doi.org/10.1016/s1053-8119(02)91132-8>`__.
740
-
741
- .. [Muschelli2014] Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH,
742
- Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage. 2014.
743
- doi:`10.1016/j.neuroimage.2014.03.028 <https://doi.org/10.1016/j.neuroimage.2014.03.028>`_
744
-
745
- .. [Parkes2018] Parkes L, Fulcher B, Yücel M, Fornito A, An evaluation of the efficacy, reliability,
746
- and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage. 2018.
747
- doi:`10.1016/j.neuroimage.2017.12.073 <https://doi.org/10.1016/j.neuroimage.2017.12.073>`_
748
-
749
- .. [Patriat2015] Patriat R, EK Molloy, RM Birn, T. Guitchev, and A. Popov. ,Using Edge Voxel Information to
750
- Improve Motion Regression for Rs-FMRI Connectivity Studies. Brain Connectivity. 2015.
751
- doi:`10.1089/brain.2014.0321 <https://doi.org/10.1089/brain.2014.0321>`_.
752
-
753
- .. [Patriat2017] Patriat R, Reynolds RC, Birn RM, An improved model of motion-related signal
754
- changes in fMRI. NeuroImage. 2017.
755
- doi:`10.1016/j.neuroimage.2016.08.051 <https://doi.org/10.1016/j.neuroimage.2016.08.051>`_.
756
-
757
- .. [Power2012] Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen, SA, Spurious but systematic
758
- correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012.
759
- doi:`10.1016/j.neuroimage.2011.10.018 <https://doi.org/10.1016/j.neuroimage.2011.10.018>`_
760
-
761
- .. [Power2016] Power JD, A simple but useful way to assess fMRI scan qualities. NeuroImage. 2016.
762
- doi:`10.1016/j.neuroimage.2016.08.009 <https://doi.org/10.1016/j.neuroimage.2016.08.009>`_
763
-
764
- .. [Provins2022] Provins C et al., Quality control and nuisance regression of fMRI, looking out
765
- where signal should not be found. Proc. Intl. Soc. Mag. Reson. Med. 31, London (UK). 2022
766
- doi:`10.31219/osf.io/hz52v <https://doi.org/10.31219/osf.io/hz52v>`_.
767
-
768
- .. [Satterthwaite2013] Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME,
769
- Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH,
770
- An improved framework for confound regression and filtering for control of motion artifact
771
- in the preprocessing of resting-state functional connectivity data. NeuroImage. 2013. doi:`10.1016/j.neuroimage.2012.08.052 <https://doi.org/10.1016/j.neuroimage.2012.08.052>`_
772
-
773
- .. [Yan2013] Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN,
774
- Castellanos FX, Milham MP, A comprehensive assessment of regional variation in the impact of
775
- head micromovements on functional connectomics. NeuroImage. 2013.
776
- doi:`10.1016/j.neuroimage.2013.03.004 <https://doi.org/10.1016/j.neuroimage.2013.03.004>`_
698
+ ## References
699
+
700
+ [ ^ Behzadi2007 ] : Behzadi Y, Restom K, Liau J, Liu TT.
701
+ A component-based noise correction method (CompCor) for BOLD and perfusion-based fMRI. NeuroImage. 2007.
702
+ doi:[ 10.1016/j.neuroimage.2007.04.042] ( https://doi.org/10.1016/j.neuroimage.2007.04.042 )
703
+
704
+ [ ^ Ciric2017 ] : Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C., Gur RC, Gur RE, Bassett DS, Satterthwaite TD.
705
+ Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
706
+ Neuroimage. 2017.
707
+ doi:[ 10.1016/j.neuroimage.2017.03.020] ( https://doi.org/10.1016/j.neuroimage.2017.03.020 )
708
+
709
+ [ ^ Greve2013 ] : Greve DN, Brown GG, Mueller BA, Glover G, Liu TT.
710
+ A Survey of the Sources of Noise in fMRI.
711
+ Psychometrika. 2013.
712
+ doi:[ 10.1007/s11336-013-9344-2] ( https://doi.org/10.1007/s11336-013-9344-2 )
713
+
714
+ [ ^ Friston1996 ] : Friston KJ1, Williams S, Howard R, Frackowiak RS, Turner R.
715
+ Movement‐Related effects in fMRI time‐series.
716
+ Magnetic Resonance in Medicine. 1996.
717
+ doi:[ 10.1002/mrm.191035031] ( https://doi.org/10.1002/mrm.1910350312 )
718
+
719
+ [ ^ Glasser2016 ] : Glasser MF, Coalson TS Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC.
720
+ A multi-modal parcellation of human cerebral cortex.
721
+ Nature. 2016.
722
+ doi:[ 10.1038/nature18933] ( https://doi.org/10.1038/nature18933 )
723
+
724
+ [ ^ Jenkinson2002 ] : Jenkinson M, Bannister P, Brady M, Smith S.
725
+ Improved optimization for the robust and accurate linear registration and motion correction of brain images.
726
+ Neuroimage. 2002.
727
+ doi:[ 10.1016/s1053-8119(02)91132-8] ( https://doi.org/10.1016/s1053-8119(02)91132-8 )
728
+
729
+ [ ^ Muschelli2014 ] : Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH.
730
+ Reduction of motion-related artifacts in resting state fMRI using aCompCor.
731
+ NeuroImage. 2014.
732
+ doi:[ 10.1016/j.neuroimage.2014.03.028] ( https://doi.org/10.1016/j.neuroimage.2014.03.028 )
733
+
734
+ [ ^ Parkes2018 ] : Parkes L, Fulcher B, Yücel M, Fornito A.
735
+ An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
736
+ NeuroImage. 2018.
737
+ doi:[ 10.1016/j.neuroimage.2017.12.073] ( https://doi.org/10.1016/j.neuroimage.2017.12.073 )
738
+
739
+ [ ^ Patriat2015 ] : Patriat R, EK Molloy, RM Birn, T. Guitchev, and A. Popov.
740
+ Using Edge Voxel Information to Improve Motion Regression for Rs-FMRI Connectivity Studies.
741
+ Brain Connectivity. 2015.
742
+ doi:[ 10.1089/brain.2014.0321] ( https://doi.org/10.1089/brain.2014.0321 )
743
+
744
+ [ ^ Patriat2017 ] : Patriat R, Reynolds RC, Birn RM,
745
+ An improved model of motion-related signal changes in fMRI.
746
+ NeuroImage. 2017.
747
+ doi:[ 10.1016/j.neuroimage.2016.08.051] ( https://doi.org/10.1016/j.neuroimage.2016.08.051 )
748
+
749
+ [ ^ Power2012 ] : Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen, SA.
750
+ Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
751
+ NeuroImage. 2012.
752
+ doi:[ 10.1016/j.neuroimage.2011.10.018] (https://doi.org/10.1016/j.neuroimage.2011.10.018=[ ]
753
+
754
+ [ ^ Power2016 ] : Power JD.
755
+ A simple but useful way to assess fMRI scan qualities.
756
+ NeuroImage. 2016.
757
+ doi:[ 10.1016/j.neuroimage.2016.08.009] ( https://doi.org/10.1016/j.neuroimage.2016.08.009 )
758
+
759
+ [ ^ Provins2022 ] : Provins C et al.
760
+ Quality control and nuisance regression of fMRI, looking out where signal should not be found.
761
+ Proc. Intl. Soc. Mag. Reson. Med. 31, London (UK). 2022
762
+ doi:[ 10.31219/osf.io/hz52v] ( https://doi.org/10.31219/osf.io/hz52v )
763
+
764
+ [ ^ Satterthwaite2013 ] : Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH.
765
+ An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.
766
+ NeuroImage. 2013.
767
+ doi:[ 10.1016/j.neuroimage.2012.08.052] ( https://doi.org/10.1016/j.neuroimage.2012.08.052 )
768
+
769
+ [ ^ Yan2013 ] : Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP.
770
+ A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
771
+ NeuroImage. 2013.
772
+ doi:[ 10.1016/j.neuroimage.2013.03.004] ( https://doi.org/10.1016/j.neuroimage.2013.03.004 )
0 commit comments