Skip to content

Commit

Permalink
docs: fix references
Browse files Browse the repository at this point in the history
  • Loading branch information
mgxd committed Aug 29, 2024
1 parent 81e2d35 commit def1e28
Showing 1 changed file with 91 additions and 95 deletions.
186 changes: 91 additions & 95 deletions docs/outputs.md
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,7 @@ Surface output spaces include `fsnative` (full density subject-specific mesh),
a container format that holds both volumetric (regularly sampled in a grid) and surface
(sampled on a triangular mesh) samples.
Sub-cortical time series are sampled on a regular grid derived from one MNI template, while
cortical time series are sampled on surfaces projected from the [Glasser2016]_ template.
cortical time series are sampled on surfaces projected from the [^Glasser2016] template.
If CIFTI outputs are requested (with the `--cifti-outputs` argument), the BOLD series are also
saved as `dtseries.nii` CIFTI2 files

Expand Down Expand Up @@ -436,7 +436,7 @@ of both neuronal and non-neuronal origin.
Neuronal signals are measured indirectly as changes in the local concentration of oxygenated hemoglobin.
Non-neuronal fluctuations in fMRI data may appear as a result of head motion, scanner noise,
or physiological fluctuations (related to cardiac or respiratory effects).
For a detailed review of the possible sources of noise in the BOLD signal, refer to [Greve2013]_.
For a detailed review of the possible sources of noise in the BOLD signal, refer to [^Greve2013].

*Confounds* (or nuisance regressors) are variables representing fluctuations with a potential
non-neuronal origin.
Expand Down Expand Up @@ -514,23 +514,23 @@ These confounds can be used to detect potential outlier time points -
frames with sudden and large motion or intensity spikes.

- `framewise_displacement` - is a quantification of the estimated bulk-head motion calculated using
formula proposed by [Power2012]_;
formula proposed by [^Power2012];
- `rmsd` - is a quantification of the estimated relative (frame-to-frame) bulk head motion
calculated using the {abbr}`RMS (root mean square)` approach of [Jenkinson2002]_;
calculated using the {abbr}`RMS (root mean square)` approach of [^Jenkinson2002];
- `dvars` - the derivative of RMS variance over voxels (or {abbr}`DVARS (derivative of
RMS variance over voxels)`) [Power2012]_;
RMS variance over voxels)`) [^Power2012];
- `std_dvars` - standardized {abbr}`DVARS (derivative of RMS variance over voxels)`;
- `non_steady_state_outlier_XX` - columns indicate non-steady state volumes with a single
`1` value and `0` elsewhere (*i.e.*, there is one `non_steady_state_outlier_XX` column per
outlier/volume).

Detected outliers can be further removed from time series using methods such as:
volume *censoring* - entirely discarding problematic time points [Power2012]_,
volume *censoring* - entirely discarding problematic time points [^Power2012],
regressing signal from outlier points in denoising procedure, or
including outlier points in the subsequent first-level analysis when building
the design matrix.
Averaged value of confound (for example, mean `framewise_displacement`)
can also be added as regressors in group level analysis [Yan2013]_.
can also be added as regressors in group level analysis [^Yan2013].
*Regressors of motion spikes* for outlier censoring are generated from within *NiBabies*,
and their calculation may be adjusted with the command line options `--fd-spike-threshold`
and `--dvars-spike-threshold` (defaults are FD > 0.5 mm or DVARS > 1.5).
Expand Down Expand Up @@ -574,7 +574,7 @@ In the method, principal components are calculated within an {abbr}`ROI (Region
that is unlikely to include signal related to neuronal activity, such as {abbr}`CSF (cerebro-spinal fluid)`
and {abbr}`WM (white matter)` masks.
Signals extracted from CompCor components can be further regressed out from the fMRI data with a
denoising procedure [Behzadi2007].
denoising procedure [^Behzadi2007].

- `a_comp_cor_XX` - additional noise components are calculated using anatomical {abbr}`CompCor
(Component Based Noise Correction)`;
Expand Down Expand Up @@ -628,9 +628,9 @@ For CompCor decompositions, entries include:

:::{caution}
Only a subset of these CompCor decompositions should be used for further denoising.
The original Behzadi aCompCor implementation [Behzadi2007]_ can be applied using
The original Behzadi aCompCor implementation [^Behzadi2007] can be applied using
components from the combined masks, while the more recent Muschelli implementation
[Muschelli2014]_ can be applied using
[^Muschelli2014] can be applied using
the {abbr}`WM (white matter)` and {abbr}`CSF (cerebro-spinal fluid)` masks.
To determine the provenance of each component, consult the metadata file (described above).

Expand All @@ -647,9 +647,9 @@ cumulative fraction of variance is explained (e.g., 50%).
:::{caution}
Similarly, if you are using anatomical or temporal CompCor it may not make sense
to use the `csf`, or `white_matter` global regressors -
see `#1049 <https://github.com/nipreps/fmriprep/issues/1049>`_.
see [fmriprep#1049](https://github.com/nipreps/fmriprep/issues/1049).
Conversely, using the overall `global_signal` confound in addition to CompCor's
regressors can be beneficial (see [Parkes2018]_).
regressors can be beneficial (see [^Parkes2018]).
:::

:::{danger}
Expand All @@ -670,28 +670,14 @@ Reusing the implementation of aCompCor, *NiBabies* generates regressors correspo
24 first principal components extracted with PCA using the voxel time-series delineated by
the brain's outer edge (*crown*) mask.
The procedure essentially follows the initial proposal of the approach by Patriat et al.
[Patriat2017]_ and is described in our ISMRM abstract [Provins2022]_.
[^Patriat2017] and is described in our ISMRM abstract [^Provins2022].

#### Confounds and "carpet"-plot on the visual reports

Confounds and "carpet"-plot on the visual reports
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The visual reports provide several sections per task and run to aid designing
a denoising strategy for subsequent analysis.
Some of the estimated confounds are plotted with a "carpet" visualization of the
:abbr:`BOLD (blood-oxygen level-dependent)` time series [Power2016]_.
An example of these plots follows:
.. figure:: _static/sub-405_ses-01_task-rest_run-01_desc-carpetplot_bold.svg
The figure shows on top several confounds estimated for the BOLD series:
global signals ('GS', 'CSF', 'WM'), DVARS,
and framewise-displacement ('FD').
At the bottom, a 'carpetplot' summarizing the BOLD series [Power2016]_.
The carpet plot rows correspond to voxelwise time series,
and are separated into regions: cortical gray matter, deep
gray matter, white matter and cerebrospinal fluid, cerebellum
and the brain-edge or “crown” [Provins2022]_.
The crown corresponds to the voxels located on a
closed band around the brain [Patriat2015]_.
:abbr:`BOLD (blood-oxygen level-dependent)` time series [^Power2016].

Noise components computed during each CompCor decomposition are evaluated according
to the fraction of variance that they explain across the nuisance ROI.
Expand All @@ -709,68 +695,78 @@ to which tissue-specific regressors correlate with global signal.

See implementation on :mod:`~nibabies.workflows.bold.confounds.init_bold_confs_wf`.

.. topic:: References
.. [Behzadi2007] Behzadi Y, Restom K, Liau J, Liu TT, A component-based noise correction method
(CompCor) for BOLD and perfusion-based fMRI. NeuroImage. 2007.
doi:`10.1016/j.neuroimage.2007.04.042 <https://doi.org/10.1016/j.neuroimage.2007.04.042>`_
.. [Ciric2017] Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA,
Eickhoff SB, Davatzikos C., Gur RC, Gur RE, Bassett DS, Satterthwaite TD.
Benchmarking of participant-level confound regression strategies for the control of motion
artifact in studies of functional connectivity. Neuroimage. 2017.
doi:`10.1016/j.neuroimage.2017.03.020 <https://doi.org/10.1016/j.neuroimage.2017.03.020>`_
.. [Greve2013] Greve DN, Brown GG, Mueller BA, Glover G, Liu TT,
A Survey of the Sources of Noise in fMRI. Psychometrika. 2013.
doi:`10.1007/s11336-013-9344-2 <https://doi.org/10.1007/s11336-013-9344-2>`_
.. [Friston1996] Friston KJ1, Williams S, Howard R, Frackowiak RS, Turner R,
Movement‐Related effects in fMRI time‐series. Magnetic Resonance in Medicine. 1996.
doi:`10.1002/mrm.191035031 <https://doi.org/10.1002/mrm.1910350312>`_
.. [Glasser2016] Glasser MF, Coalson TS Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K,
Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC.
A multi-modal parcellation of human cerebral cortex. Nature. 2016.
doi:`10.1038/nature18933 <https://doi.org/10.1038/nature18933>`_
.. [Jenkinson2002] Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the
robust and accurate linear registration and motion correction of brain images. Neuroimage.
2002. doi:`10.1016/s1053-8119(02)91132-8 <https://doi.org/10.1016/s1053-8119(02)91132-8>`__.
.. [Muschelli2014] Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH,
Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage. 2014.
doi:`10.1016/j.neuroimage.2014.03.028 <https://doi.org/10.1016/j.neuroimage.2014.03.028>`_
.. [Parkes2018] Parkes L, Fulcher B, Yücel M, Fornito A, An evaluation of the efficacy, reliability,
and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage. 2018.
doi:`10.1016/j.neuroimage.2017.12.073 <https://doi.org/10.1016/j.neuroimage.2017.12.073>`_
.. [Patriat2015] Patriat R, EK Molloy, RM Birn, T. Guitchev, and A. Popov. ,Using Edge Voxel Information to
Improve Motion Regression for Rs-FMRI Connectivity Studies. Brain Connectivity. 2015.
doi:`10.1089/brain.2014.0321 <https://doi.org/10.1089/brain.2014.0321>`_.
.. [Patriat2017] Patriat R, Reynolds RC, Birn RM, An improved model of motion-related signal
changes in fMRI. NeuroImage. 2017.
doi:`10.1016/j.neuroimage.2016.08.051 <https://doi.org/10.1016/j.neuroimage.2016.08.051>`_.
.. [Power2012] Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen, SA, Spurious but systematic
correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012.
doi:`10.1016/j.neuroimage.2011.10.018 <https://doi.org/10.1016/j.neuroimage.2011.10.018>`_
.. [Power2016] Power JD, A simple but useful way to assess fMRI scan qualities. NeuroImage. 2016.
doi:`10.1016/j.neuroimage.2016.08.009 <https://doi.org/10.1016/j.neuroimage.2016.08.009>`_
.. [Provins2022] Provins C et al., Quality control and nuisance regression of fMRI, looking out
where signal should not be found. Proc. Intl. Soc. Mag. Reson. Med. 31, London (UK). 2022
doi:`10.31219/osf.io/hz52v <https://doi.org/10.31219/osf.io/hz52v>`_.
.. [Satterthwaite2013] Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME,
Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH,
An improved framework for confound regression and filtering for control of motion artifact
in the preprocessing of resting-state functional connectivity data. NeuroImage. 2013. doi:`10.1016/j.neuroimage.2012.08.052 <https://doi.org/10.1016/j.neuroimage.2012.08.052>`_
.. [Yan2013] Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN,
Castellanos FX, Milham MP, A comprehensive assessment of regional variation in the impact of
head micromovements on functional connectomics. NeuroImage. 2013.
doi:`10.1016/j.neuroimage.2013.03.004 <https://doi.org/10.1016/j.neuroimage.2013.03.004>`_
## References

[^Behzadi2007]: Behzadi Y, Restom K, Liau J, Liu TT.
A component-based noise correction method (CompCor) for BOLD and perfusion-based fMRI. NeuroImage. 2007.
doi:[10.1016/j.neuroimage.2007.04.042](https://doi.org/10.1016/j.neuroimage.2007.04.042)

[^Ciric2017]: Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C., Gur RC, Gur RE, Bassett DS, Satterthwaite TD.
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
Neuroimage. 2017.
doi:[10.1016/j.neuroimage.2017.03.020](https://doi.org/10.1016/j.neuroimage.2017.03.020)

[^Greve2013]: Greve DN, Brown GG, Mueller BA, Glover G, Liu TT.
A Survey of the Sources of Noise in fMRI.
Psychometrika. 2013.
doi:[10.1007/s11336-013-9344-2](https://doi.org/10.1007/s11336-013-9344-2)

[^Friston1996]: Friston KJ1, Williams S, Howard R, Frackowiak RS, Turner R.
Movement‐Related effects in fMRI time‐series.
Magnetic Resonance in Medicine. 1996.
doi:[10.1002/mrm.191035031](https://doi.org/10.1002/mrm.1910350312)

[^Glasser2016]: Glasser MF, Coalson TS Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC.
A multi-modal parcellation of human cerebral cortex.
Nature. 2016.
doi:[10.1038/nature18933](https://doi.org/10.1038/nature18933)

[^Jenkinson2002]: Jenkinson M, Bannister P, Brady M, Smith S.
Improved optimization for the robust and accurate linear registration and motion correction of brain images.
Neuroimage. 2002.
doi:[10.1016/s1053-8119(02)91132-8](https://doi.org/10.1016/s1053-8119(02)91132-8)

[^Muschelli2014]: Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH.
Reduction of motion-related artifacts in resting state fMRI using aCompCor.
NeuroImage. 2014.
doi:[10.1016/j.neuroimage.2014.03.028](https://doi.org/10.1016/j.neuroimage.2014.03.028)

[^Parkes2018]: Parkes L, Fulcher B, Yücel M, Fornito A.
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
NeuroImage. 2018.
doi:[10.1016/j.neuroimage.2017.12.073](https://doi.org/10.1016/j.neuroimage.2017.12.073)

[^Patriat2015]: Patriat R, EK Molloy, RM Birn, T. Guitchev, and A. Popov.
Using Edge Voxel Information to Improve Motion Regression for Rs-FMRI Connectivity Studies.
Brain Connectivity. 2015.
doi:[10.1089/brain.2014.0321](https://doi.org/10.1089/brain.2014.0321)

[^Patriat2017]: Patriat R, Reynolds RC, Birn RM,
An improved model of motion-related signal changes in fMRI.
NeuroImage. 2017.
doi:[10.1016/j.neuroimage.2016.08.051](https://doi.org/10.1016/j.neuroimage.2016.08.051)

[^Power2012]: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen, SA.
Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
NeuroImage. 2012.
doi:[10.1016/j.neuroimage.2011.10.018](https://doi.org/10.1016/j.neuroimage.2011.10.018=[]

[^Power2016]: Power JD.
A simple but useful way to assess fMRI scan qualities.
NeuroImage. 2016.
doi:[10.1016/j.neuroimage.2016.08.009](https://doi.org/10.1016/j.neuroimage.2016.08.009)

[^Provins2022]: Provins C et al.
Quality control and nuisance regression of fMRI, looking out where signal should not be found.
Proc. Intl. Soc. Mag. Reson. Med. 31, London (UK). 2022
doi:[10.31219/osf.io/hz52v](https://doi.org/10.31219/osf.io/hz52v)

[^Satterthwaite2013]: Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH.
An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.
NeuroImage. 2013.
doi:[10.1016/j.neuroimage.2012.08.052](https://doi.org/10.1016/j.neuroimage.2012.08.052)

[^Yan2013]: Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP.
A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
NeuroImage. 2013.
doi:[10.1016/j.neuroimage.2013.03.004](https://doi.org/10.1016/j.neuroimage.2013.03.004)

0 comments on commit def1e28

Please sign in to comment.