-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy patharray.nit
1017 lines (885 loc) · 20.4 KB
/
array.nit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is part of NIT ( http://www.nitlanguage.org ).
#
# Copyright 2004-2008 Jean Privat <[email protected]>
# Copyright 2008 Floréal Morandat <[email protected]>
#
# This file is free software, which comes along with NIT. This software is
# distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. You can modify it is you want, provided this header
# is kept unaltered, and a notification of the changes is added.
# You are allowed to redistribute it and sell it, alone or is a part of
# another product.
# This module introduces the standard array structure.
# It also implements two other abstract collections : ArrayMap and ArraySet
module array is
no_warning "useless-type-test" # to avoid warning with nitc while compiling with c_src
end
import abstract_collection
# One dimension array of objects.
abstract class AbstractArrayRead[E]
super SequenceRead[E]
redef var length = 0
redef fun is_empty do return _length == 0
redef fun has(item)
do
var i = 0
var l = length
while i < l do
if self[i] == item then return true
i += 1
end
return false
end
redef fun has_only(item)
do
var i = 0
var l = length
while i < l do
if self[i] != item then return false
i += 1
end
return true
end
redef fun count(item)
do
var res = 0
var i = 0
var l = length
while i < l do
if self[i] == item then res += 1
i += 1
end
return res
end
redef fun index_of(item) do return index_of_from(item, 0)
redef fun last_index_of(item) do return last_index_of_from(item, length-1)
redef fun index_of_from(item, pos) do
var i = pos
var len = length
while i < len do
if self[i] == item then
return i
end
i += 1
end
return -1
end
redef fun last_index_of_from(item, pos) do
var i = pos
while i >= 0 do
if self[i] == item then
return i
else
i -= 1
end
end
return -1
end
# Return a new array that is the reverse of `self`
#
# assert [1,2,3].reversed == [3, 2, 1]
fun reversed: Array[E]
do
var cmp = _length
var result = new Array[E].with_capacity(cmp)
while cmp > 0 do
cmp -= 1
result.add(self[cmp])
end
return result
end
# Copy a portion of `self` to an other array.
#
# var a = [1, 2, 3, 4]
# var b = [10, 20, 30, 40, 50]
# a.copy_to(1, 2, b, 2)
# assert b == [10, 20, 2, 3, 50]
fun copy_to(start: Int, len: Int, dest: AbstractArray[E], new_start: Int)
do
if start < new_start then
var i = len
while i > 0 do
i -= 1
dest[new_start+i] = self[start+i]
end
else
var i = 0
while i < len do
dest[new_start+i] = self[start+i]
i += 1
end
end
end
redef fun output
do
var i = 0
var l = length
while i < l do
var e = self[i]
if e != null then e.output
i += 1
end
end
redef fun iterator: IndexedIterator[E] do
var res = _free_iterator
if res == null then return new ArrayIterator[E](self)
res._index = 0
_free_iterator = null
return res
end
# An old iterator, free to reuse.
# Once an iterator is `finish`, it become reusable.
# Since some arrays are iterated a lot, this avoid most of the
# continuous allocation/garbage-collection of the needed iterators.
private var free_iterator: nullable ArrayIterator[E] = null
redef fun reverse_iterator do return new ArrayReverseIterator[E](self)
# Returns a sub-array containing `count` elements starting from `from`.
#
# For most cases (see other case bellow),
# the first element is `from` and
# the last element is `from+count-1`.
#
# ~~~
# var a = [10, 20, 30, 40, 50]
# assert a.sub(0, 3) == [10, 20, 30]
# assert a.sub(3, 2) == [40, 50]
# assert a.sub(3, 1) == [40]
# ~~~
#
# If `count` is 0 or negative then an empty array is returned
#
# ~~~
# assert a.sub(3,0).is_empty
# assert a.sub(3,-1).is_empty
# ~~~
#
# If `from < 0` or `from+count>length` then inexistent elements are ignored.
# In this case the length of the result is lower than count.
#
# ~~~
# assert a.sub(-2, 4) == [10, 20]
# assert a.sub(4, 99) == [50]
# assert a.sub(-9, 99) == [10,20,30,40,50]
# assert a.sub(-99, 9).is_empty
# ~~~
fun sub(from: Int, count: Int): Array[E] do
if from < 0 then
count += from
from = 0
end
if count < 0 then
count = 0
end
var to = from + count
if to > length then
to = length
end
var res = new Array[E].with_capacity(to - from)
while from < to do
res.add(self[from])
from += 1
end
return res
end
end
# Resizable one dimension array of objects.
abstract class AbstractArray[E]
super AbstractArrayRead[E]
super Sequence[E]
# Force the capacity to be at least `cap`.
# The capacity of the array is an internal information.
# However, this method can be used to prepare a large amount of add
fun enlarge(cap: Int) is abstract
redef fun push(item) do add(item)
# EXPECT `not_empty`
redef fun pop
do
var r = last
_length -= 1
return r
end
# EXPECT `not_empty`
redef fun shift
do
var r = first
var l = length-1
copy_to(1, l, self, 0)
_length = l
return r
end
redef fun unshift(item)
do
var l = length
if l > 0 then
enlarge(l + 1)
copy_to(0, l, self, 1)
end
self[0] = item
end
redef fun insert(item, pos) do
enlarge(length + 1)
copy_to(pos, length-pos, self, pos + 1)
self[pos] = item
end
redef fun insert_all(coll, pos)
do
var l = coll.length
if l == 0 then return
enlarge(length + l)
_length += l
copy_to(pos, length-pos-l, self, pos + l)
for c in coll do
self[pos] = c
pos += 1
end
end
redef fun add(item) do self[length] = item
redef fun clear do _length = 0
redef fun remove(item) do remove_at(index_of(item))
redef fun remove_all(item)
do
var i = index_of(item)
while i >= 0 do
remove_at(i)
i = index_of_from(item, i)
end
end
redef fun remove_at(i)
do
var l = length
if i >= 0 and i < l then
var j = i + 1
while j < l do
self[j-1] = self[j]
j += 1
end
_length = l - 1
end
end
# Invert two elements in the array
#
# var a = [10, 20, 30, 40]
# a.swap_at(1, 3)
# assert a == [10, 40, 30, 20]
fun swap_at(a: Int,b: Int)
do
var e = self[a]
self[a] = self[b]
self[b] = e
end
end
# Resizable one dimension array of objects.
#
# Arrays have a literal representation.
#
# var a = [12, 32, 8]
# # is equivalent with:
# var b = new Array[Int]
# b.push(12)
# b.push(32)
# b.push(8)
# assert a == b
class Array[E]
super AbstractArray[E]
super Cloneable
# EXPECT `index >= 0 and index <= length`
redef fun [](index)
do
return _items.as(not null)[index]
end
# EXPECT `index >= 0 and index <= length`
redef fun []=(index, item)
do
if _capacity <= index then
enlarge(index + 1)
end
if _length <= index then
_length = index + 1
end
_items.as(not null)[index] = item
end
redef fun add(item)
do
var l = _length
if _capacity <= l then
enlarge(l + 1)
end
_length = l + 1
_items.as(not null)[l] = item
end
# Slight optimization for arrays
redef fun add_all(items)
do
var l = _length
var nl = l + items.length
if _capacity < nl then
enlarge nl
end
if items isa Array[E] then
var k = 0
while l < nl do
_items.as(not null)[l] = items._items.as(not null)[k]
l += 1
k += 1
end
else
for item in items do
_items.as(not null)[l] = item
l += 1
end
end
_length = nl
end
redef fun copy_to(start, len, dest, new_start)
do
# Fast code when source and destination are two arrays
if not dest isa Array[E] then
super
return
end
# Enlarge dest if required
var dest_len = new_start + len
if dest_len > dest.length then
dest.enlarge(dest_len)
dest.length = dest_len
end
# Get underlying native arrays
var items = self.items
if items == null then return
var dest_items = dest.items
assert dest_items != null
# Native copy
items.memmove(start, len, dest_items, new_start)
end
redef fun enlarge(cap)
do
var c = _capacity
if cap <= c then return
while c <= cap do c = c * 2 + 2
var a = new NativeArray[E](c)
if _capacity > 0 then _items.as(not null).copy_to(a, _length)
_items = a
_capacity = c
end
# Create an empty array.
init
do
_capacity = 0
_length = 0
end
# Create an array from a collection.
init from(items: Collection[E]) do
with_capacity(items.length)
self.add_all(items)
end
# Create an array with some `objects`.
init with_items(objects: E...)
do
_items = objects._items
_capacity = objects._capacity
_length = objects.length
end
# Create an empty array with a given capacity.
init with_capacity(cap: Int)
is
expect(cap >= 0)
do
_items = new NativeArray[E](cap)
_capacity = cap
_length = 0
end
# Create an array of `count` elements
init filled_with(value: E, count: Int)
is
expect(count >= 0)
do
_items = new NativeArray[E](count)
_capacity = count
_length = count
var i = 0
while i < count do
self[i] = value
i += 1
end
end
# Create a array filled with a given native array.
init with_native(nat: NativeArray[E], size: Int)
is
expect(size >= 0)
do
_items = nat
_capacity = size
_length = size
end
# The internal storage.
private var items: nullable NativeArray[E] = null
# The size of `_items`.
private var capacity: Int = 0
redef fun ==(o)
do
if not o isa Array[nullable Object] then return super
# Efficient implementation
var l = length
if l != o.length then return false
if l == 0 then return true
var i = 0
var it = _items.as(not null)
var oit = o._items.as(not null)
while i < l do
if it[i] != oit[i] then return false
i += 1
end
return true
end
# Shallow clone of `self`
#
# ~~~
# var a = [1,2,3]
# var b = a.clone
# assert a == b
# a.add 4
# assert a != b
# b.add 4
# assert a == b
# ~~~
#
# Note that the clone is shallow and elements are shared between `self` and the result.
#
# ~~~
# var aa = [a]
# var bb = aa.clone
# assert aa == bb
# aa.first.add 5
# assert aa == bb
# ~~~
redef fun clone do return to_a
# Concatenation of arrays.
#
# Returns a new array built by concatenating `self` and `other` together.
#
# var a1 = [1,2,3]
# var a2 = [4,5,6]
# var a3 = a1 + a2
# assert a3 == [1,2,3,4,5,6]
#
# Because a new array is always created, future modification on `self` and `other`
# does not impact the previously computed result.
#
# a1.add(30)
# a2.add(60)
# assert a3 == [1,2,3,4,5,6] # unchanged
# assert a1 + a2 == [1,2,3,30,4,5,6,60]
fun +(other: Array[E]): Array[E]
do
var res = new Array[E].with_capacity(length + other.length)
res.append(self)
res.append(other)
return res
end
# Repetition of arrays.
#
# returns a new array built by concatenating `self` `repeat` times.
#
# var a = [1,2,3]
# assert (a * 0).is_empty
# assert a * 1 == [1,2,3]
# assert a * 2 == [1,2,3,1,2,3]
# assert (a * 10).length == 30
fun *(repeat: Int): Array[E]
is
expect(repeat >= 0)
do
var res = new Array[E].with_capacity(length * repeat)
while repeat > 0 do
res.add_all(self)
repeat -= 1
end
return res
end
end
# An `Iterator` on `AbstractArray`
private class ArrayIterator[E]
super IndexedIterator[E]
redef fun item do return _array[_index]
# redef fun item=(e) do _array[_index] = e
redef fun is_ok do return _index < _array.length
redef fun next do _index += 1
redef var index = 0
var array: AbstractArrayRead[E]
redef fun finish do _array._free_iterator = self
end
private class ArrayReverseIterator[E]
super ArrayIterator[E]
redef fun is_ok do return _index >= 0
redef fun next do _index -= 1
init
do
_index = _array.length - 1
end
# Do not cache `self`
redef fun finish do end
end
# Others collections ##########################################################
# A set implemented with an Array.
class ArraySet[E]
super Set[E]
# The stored elements.
private var array: Array[E] is noinit
redef fun has(e) do return _array.has(e)
redef fun add(e) do if not _array.has(e) then _array.add(e)
redef fun is_empty do return _array.is_empty
redef fun length do return _array.length
# EXPECT `not_empty`
redef fun first do return _array.first
redef fun remove(item)
do
var i = _array.index_of(item)
if i >= 0 then remove_at(i)
end
redef fun remove_all(item) do remove(item)
redef fun clear do _array.clear
redef fun iterator do return new ArraySetIterator[E](_array.iterator)
# Assume the capacity is at least `cap`.
fun enlarge(cap: Int) do _array.enlarge(cap)
private fun remove_at(i: Int)
do
_array[i] = _array.last
_array.pop
end
# Create an empty set
init do _array = new Array[E]
# Create an empty set with a given capacity.
init with_capacity(i: Int) do _array = new Array[E].with_capacity(i)
redef fun new_set do return new ArraySet[E]
# Shallow clone of `self`
#
# ~~~
# var a = new ArraySet[Int]
# a.add 1
# a.add 2
# var b = a.clone
# assert a == b
# a.add 3
# assert a != b
# b.add 3
# assert a == b
# ~~~
#
# Note that the clone is shallow and keys and values are shared between `self` and the result.
#
# ~~~
# var aa = new ArraySet[Array[Int]]
# aa.add([1,2])
# var bb = aa.clone
# assert aa == bb
# aa.first.add 5
# assert aa == bb
# ~~~
redef fun clone
do
var res = new ArraySet[E]
res.add_all self
return res
end
end
# Iterators on sets implemented with arrays.
private class ArraySetIterator[E]
super Iterator[E]
redef fun is_ok do return _iter.is_ok
redef fun next do _iter.next
redef fun item: E do return _iter.item
var iter: Iterator[E]
end
# Associative arrays implemented with an array of (key, value) pairs.
class ArrayMap[K, E]
super CoupleMap[K, E]
super Cloneable
# O(n)
redef fun [](key)
do
var i = index(key)
if i >= 0 then
return _items[i].second
else
return provide_default_value(key)
end
end
# O(n)
redef fun []=(key, item)
do
var i = index(key)
if i >= 0 then
_items[i].second = item
else
_items.push(new Couple[K,E](key, item))
end
end
redef var keys: RemovableCollection[K] = new ArrayMapKeys[K, E](self) is lazy
redef var values: RemovableCollection[E] = new ArrayMapValues[K, E](self) is lazy
# O(1)
redef fun length do return _items.length
redef fun couple_iterator do return _items.iterator
redef fun is_empty do return _items.is_empty
redef fun clear do _items.clear
# Assume the capacity to be at least `cap`.
fun enlarge(cap: Int) do _items.enlarge(cap)
redef fun couple_at(key)
do
var i = index(key)
if i >= 0 then
return _items[i]
else
return null
end
end
# Internal storage.
private var items = new Array[Couple[K,E]]
# fast remove the ith element of the array
private fun remove_at_index(i: Int)
do
_items[i] = _items.last
_items.pop
end
# The last positive result given by a index(1) call
private var last_index: Int = 0
# Where is the `key` in `_item`?
# return -1 if not found
private fun index(key: K): Int
do
var l = _last_index
if l < _items.length and _items[l].first == key then return l
var i = 0
while i < _items.length do
if _items[i].first == key then
_last_index = i
return i
end
i += 1
end
return -1
end
# Shallow clone of `self`
#
# ~~~
# var a = new ArrayMap[String,Int]
# a["one"] = 1
# a["two"] = 2
# var b = a.clone
# assert a == b
# a["zero"] = 0
# assert a != b
# ~~~
#
# Note that the clone is shallow and keys and values are shared between `self` and the result.
#
# ~~~
# var aa = new ArrayMap[String, Array[Int]]
# aa["two"] = [1,2]
# var bb = aa.clone
# assert aa == bb
# aa["two"].add 5
# assert aa == bb
# ~~~
redef fun clone
do
var res = new ArrayMap[K,E]
res.add_all self
return res
end
end
private class ArrayMapKeys[K, E]
super RemovableCollection[K]
# The original map
var map: ArrayMap[K, E]
redef fun count(k) do if self.has(k) then return 1 else return 0
redef fun first do return self.map._items.first.first
redef fun has(k) do return self.map.index(k) >= 0
redef fun has_only(k) do return (self.has(k) and self.length == 1) or self.is_empty
redef fun is_empty do return self.map.is_empty
redef fun length do return self.map.length
redef fun iterator do return new MapKeysIterator[K, E](self.map.iterator)
redef fun clear do self.map.clear
redef fun remove(key)
do
var i = self.map.index(key)
if i >= 0 then self.map.remove_at_index(i)
end
redef fun remove_all(key) do self.remove(key)
end
private class ArrayMapValues[K, E]
super RemovableCollection[E]
# The original map
var map: ArrayMap[K, E]
redef fun first do return self.map._items.first.second
redef fun is_empty do return self.map.is_empty
redef fun length do return self.map.length
redef fun iterator do return new MapValuesIterator[K, E](self.map.iterator)
# O(n)
redef fun has(item)
do
for i in self.map._items do if i.second == item then return true
return false
end
# O(n)
redef fun has_only(item)
do
for i in self.map._items do if i.second != item then return false
return true
end
# O(n)
redef fun count(item)
do
var nb = 0
for i in self.map._items do if i.second == item then nb += 1
return nb
end
redef fun clear do self.map.clear
redef fun remove(item)
do
var map = self.map
var i = map._items.length - 1
while i >= 0 do
if map._items[i].second == item then
map.remove_at_index(i)
return
end
i -= 1
end
end
redef fun remove_all(item)
do
var map = self.map
var i = map._items.length - 1
while i >= 0 do
if map._items[i].second == item then
map.remove_at_index(i)
end
i -= 1
end
end
end
# Comparable array for comparable elements.
#
# For two arrays, if one is a prefix, then it is lower.
#
# ~~~
# var a12 = new ArrayCmp[nullable Int].with_items(1,2)
# var a123 = new ArrayCmp[nullable Int].with_items(1,2,3)
# assert a12 < a123
# ~~~
#
# Otherwise, the first element just after the longest
# common prefix gives the order between the two arrays.
#
# ~~~
# var a124 = new ArrayCmp[nullable Int].with_items(1,2,4)
# var a13 = new ArrayCmp[nullable Int].with_items(1,3)
# assert a12 < a123
# assert a123 < a13
# ~~~
#
# Obviously, two equal arrays are equal.
#
# ~~~
# var b12 = new ArrayCmp[nullable Int].with_items(1,2)
# assert (a12 <=> b12) == 0
# ~~~
#
# `null` is considered lower than any other elements.
# But is still greater than no element.
#
# ~~~
# var a12n = new ArrayCmp[nullable Int].with_items(1,2,null)
# assert a12n < a123
# assert a12 < a12n
# ~~~
class ArrayCmp[E: nullable Comparable]
super Array[E]
super Comparable
redef type OTHER: ArrayCmp[E] is fixed
redef fun <(o) do return (self <=> o) < 0
redef fun <=>(o)
do
var i = 0
var l = length
if l == 0 then return 0
var it = _items.as(not null)
var oit = o._items.as(not null)
var ol = o.length
var len
if l < ol then len = l else len = ol
while i < len do
var a = it[i]
var b = oit[i]
if a != null then
if b == null then return 1
var d = a <=> b
if d != 0 then return d
else
if b != null then return -1
end
i += 1
end
return l <=> ol
end
end
# Others tools ################################################################
redef class Iterator[E]
# Interate on `self` and build an array
fun to_a: Array[E]
do
var res = new Array[E]
while is_ok do
res.add(item)
next
end
finish
return res
end
end
redef class Collection[E]
# Build a new array from a collection
fun to_a: Array[E]
do
var res = new Array[E].with_capacity(length)
res.add_all(self)
return res
end
end
# Native classes ##############################################################
# Native Nit array
# Access are unchecked and it has a fixed size
# Not for public use: may become private.
universal NativeArray[E]
# Creates a new NativeArray of capacity `length`
new(length: Int) is intern
# The length of the array
fun length: Int is intern
# Use `self` to initialize a standard Nit Array.
fun to_a: Array[E] do return new Array[E].with_native(self, length)
# Get item at `index`.
fun [](index: Int): E is intern
# Set `item` at `index`.
fun []=(index: Int, item: E) is intern
# Copy `length` items to `dest`.
fun copy_to(dest: NativeArray[E], length: Int) is intern
# Copy `length` items to `dest` starting from `dest`.
fun memmove(start: Int, length: Int, dest: NativeArray[E], dest_start: Int) is intern do
if start < dest_start then