This repository has been archived by the owner on Aug 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
34 lines (34 loc) · 1.67 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Package: n1qn1
Title: Port of the 'Scilab' 'n1qn1' Modules for Un-constrained BFGS Optimization
Version: 6.0.1-9
Authors@R: c(person("Matthew", "Fidler", role=c("aut","cre"), email= "[email protected]"),
person("Wenping", "Wang", role = "aut", email = "[email protected]"),
person("Claude","Lemarechal", role=c("aut","ctb")),
person("Joseph", "Bonnans", role=c("ctb")),
person("Jean-Charles", "Gilbert", role=c("ctb")),
person("Claudia","Sagastizabal",role=c("ctb")),
person("Stephen L.", "Campbell,", role=c("ctb")),
person("Jean-Philippe", "Chancelier", role=c("ctb")),
person("Ramine", "Nikoukhah", role=c("ctb")),
person("Dirk", "Eddelbuettel", role="ctb"),
person("Bruno", "Jofret", role="ctb"),
person("INRIA", role="cph")
)
Maintainer: Matthew Fidler <[email protected]>
Description: Provides 'Scilab' 'n1qn1', or Quasi-Newton BFGS
"qn" without constraints and 'qnbd' or Quasi-Newton BFGS with constraints.
This takes more memory than traditional L-BFGS. The n1qn1 routine is useful since it allows prespecification of a Hessian.
If the Hessian is near enough the truth in optimization it can speed up the optimization problem. Both algorithms are described in the
'Scilab' optimization documentation located at
<https://www.scilab.org/sites/default/files/optimization_in_scilab.pdf>.
URL: https://github.com/nlmixrdevelopment/n1qn1
BugReports: https://github.com/nlmixrdevelopment/n1qn1/issues
Depends: R (>= 3.2)
Imports: Rcpp (>= 0.12.3)
Suggests: testthat, covr
License: CeCILL-2
Biarch: true
NeedsCompilation: yes
LinkingTo: RcppArmadillo (>= 0.5.600.2.0), Rcpp (>= 0.12.3)
LazyData: true
RoxygenNote: 7.1.1