diff --git a/articles/convert-nlmixr2.html b/articles/convert-nlmixr2.html index e765dab..12f1c4c 100644 --- a/articles/convert-nlmixr2.html +++ b/articles/convert-nlmixr2.html @@ -84,7 +84,7 @@

Converting a NONMEM fit to a nlmixr2 object

- Source: vignettes/articles/convert-nlmixr2.Rmd + Source: vignettes/articles/convert-nlmixr2.Rmd
convert-nlmixr2.Rmd
@@ -510,7 +510,7 @@

Converting the model to a nlmixr2 #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 -#> elapsed 0.042002 0.117 0.014 100.95 2.876 +#> elapsed 0.043223 0.117 0.014 100.95 2.856 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> diff --git a/articles/create-augPred.html b/articles/create-augPred.html index a81d999..3e64dd8 100644 --- a/articles/create-augPred.html +++ b/articles/create-augPred.html @@ -84,7 +84,7 @@

Created Augmented pred/ipred plots with `augPred()`

- Source: vignettes/articles/create-augPred.Rmd + Source: vignettes/articles/create-augPred.Rmd
create-augPred.Rmd
@@ -209,7 +209,7 @@

Step 2: convert the rx #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 -#> elapsed 0.042472 0.123 0.013 100.95 2.876 +#> elapsed 0.041519 0.122 0.013 100.95 2.864 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> diff --git a/articles/create-office.html b/articles/create-office.html index f1203c2..7a70568 100644 --- a/articles/create-office.html +++ b/articles/create-office.html @@ -84,7 +84,7 @@

Create PowerPoint and Word documents using nonmem2rx

- Source: vignettes/articles/create-office.Rmd + Source: vignettes/articles/create-office.Rmd
create-office.Rmd
diff --git a/articles/create-vpc.html b/articles/create-vpc.html index 283011f..678be24 100644 --- a/articles/create-vpc.html +++ b/articles/create-vpc.html @@ -84,7 +84,7 @@

Easily Create a VPC using nonmem2rx

- Source: vignettes/articles/create-vpc.Rmd + Source: vignettes/articles/create-vpc.Rmd
create-vpc.Rmd
@@ -207,7 +207,7 @@

Step 2: convert the rx #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 -#> elapsed 0.042329 0.093 0.011 100.95 2.473 +#> elapsed 0.042266 0.094 0.012 100.95 2.467 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> diff --git a/articles/import-nonmem.html b/articles/import-nonmem.html index 29a9dce..03c5549 100644 --- a/articles/import-nonmem.html +++ b/articles/import-nonmem.html @@ -84,7 +84,7 @@

Importing NONMEM into rxode2

- Source: vignettes/import-nonmem.Rmd + Source: vignettes/import-nonmem.Rmd
import-nonmem.Rmd
diff --git a/articles/mod-PowerPoint.pptx b/articles/mod-PowerPoint.pptx index 83b7f2e..47078b4 100644 Binary files a/articles/mod-PowerPoint.pptx and b/articles/mod-PowerPoint.pptx differ diff --git a/articles/mod-Word.docx b/articles/mod-Word.docx index 22eaff0..c5af927 100644 Binary files a/articles/mod-Word.docx and b/articles/mod-Word.docx differ diff --git a/articles/read-rounding.html b/articles/read-rounding.html index 7d80a7a..6458778 100644 --- a/articles/read-rounding.html +++ b/articles/read-rounding.html @@ -84,7 +84,7 @@

Reading rounding from NONMEM

- Source: vignettes/articles/read-rounding.Rmd + Source: vignettes/articles/read-rounding.Rmd
read-rounding.Rmd
@@ -630,7 +630,7 @@

Step 4: Explore t #> ── Time (sec $time): ── #> #> setup table compress NONMEM as.nlmixr2 -#> elapsed 0.033591 0.078 0.01 320.27 3.673 +#> elapsed 0.032207 0.077 0.01 320.27 3.613 #> #> ── Population Parameters ($parFixed or $parFixedDf): ── #> @@ -863,7 +863,7 @@

Step 4: Explore t #> ── Time (sec fit2$time): ── #> #> setup optimize covariance table compress other -#> elapsed 0.003448 35.97675 35.97676 0.113 0.014 91.73504 +#> elapsed 0.003792 35.85824 35.85824 0.104 0.014 91.85373 #> #> ── Population Parameters (fit2$parFixed or fit2$parFixedDf): ── #> @@ -1002,7 +1002,7 @@

Step 5: Get the covariance of th #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 covariance -#> elapsed 0.033591 0.078 0.01 320.27 3.673 13.826 +#> elapsed 0.032207 0.077 0.01 320.27 3.613 13.727 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> diff --git a/articles/rxode2-validate.html b/articles/rxode2-validate.html index a736e5a..900ede5 100644 --- a/articles/rxode2-validate.html +++ b/articles/rxode2-validate.html @@ -84,7 +84,7 @@

Qualify rxode2 model against NONMEM

- Source: vignettes/articles/rxode2-validate.Rmd + Source: vignettes/articles/rxode2-validate.Rmd
rxode2-validate.Rmd
diff --git a/articles/simulate-extra-items.html b/articles/simulate-extra-items.html index 3be50c8..e261c06 100644 --- a/articles/simulate-extra-items.html +++ b/articles/simulate-extra-items.html @@ -84,7 +84,7 @@

Simulate Derived Variables from imported NONMEM model

- Source: vignettes/articles/simulate-extra-items.Rmd + Source: vignettes/articles/simulate-extra-items.Rmd
simulate-extra-items.Rmd
diff --git a/articles/simulate-new-dosing.html b/articles/simulate-new-dosing.html index a7c916b..d8e51fd 100644 --- a/articles/simulate-new-dosing.html +++ b/articles/simulate-new-dosing.html @@ -84,7 +84,7 @@

Simulate New dosing from NONMEM model

- Source: vignettes/articles/simulate-new-dosing.Rmd + Source: vignettes/articles/simulate-new-dosing.Rmd
simulate-new-dosing.Rmd
diff --git a/articles/simulate-uncertainty.html b/articles/simulate-uncertainty.html index c7f95f8..dec50ef 100644 --- a/articles/simulate-uncertainty.html +++ b/articles/simulate-uncertainty.html @@ -84,7 +84,7 @@

Simulate using Parameter Uncertainty

- Source: vignettes/articles/simulate-uncertainty.Rmd + Source: vignettes/articles/simulate-uncertainty.Rmd
simulate-uncertainty.Rmd
diff --git a/articles/simulate-with-covs.html b/articles/simulate-with-covs.html index d85d4e0..6748fb2 100644 --- a/articles/simulate-with-covs.html +++ b/articles/simulate-with-covs.html @@ -84,7 +84,7 @@

Simulate New dosing with covariates

- Source: vignettes/articles/simulate-with-covs.Rmd + Source: vignettes/articles/simulate-with-covs.Rmd
simulate-with-covs.Rmd
diff --git a/authors.html b/authors.html index cea54fc..b9b336e 100644 --- a/authors.html +++ b/authors.html @@ -69,14 +69,14 @@

Authors

Citation

-

Source: DESCRIPTION

+

Source: DESCRIPTION

Fidler M (2024). -nonmem2rx: 'nonmem2rx' Converts 'NONMEM' Models to 'rxode2'. +nonmem2rx: Converts 'NONMEM' Models to 'rxode2'. R package version 0.1.5, https://github.com/nlmixr2/nonmem2rx/, https://nlmixr2.github.io/nonmem2rx/.

@Manual{,
-  title = {nonmem2rx: 'nonmem2rx' Converts 'NONMEM' Models to 'rxode2'},
+  title = {nonmem2rx: Converts 'NONMEM' Models to 'rxode2'},
   author = {Matthew Fidler},
   year = {2024},
   note = {R package version 0.1.5, https://github.com/nlmixr2/nonmem2rx/},
diff --git a/index.html b/index.html
index 1e8da83..95ce911 100644
--- a/index.html
+++ b/index.html
@@ -5,7 +5,7 @@
 
 
 
-nonmem2rx Converts NONMEM Models to rxode2 • nonmem2rx
+Converts NONMEM Models to rxode2 • nonmem2rx
 
 
 
@@ -16,7 +16,7 @@
 
 
 
-
+
 
 
 
diff --git a/news/index.html b/news/index.html
index cfbb63f..332209a 100644
--- a/news/index.html
+++ b/news/index.html
@@ -48,11 +48,11 @@
 
-

nonmem2rx 0.1.5

+

nonmem2rx 0.1.5

CRAN release: 2024-09-18

  • Be more forgiving in the validation and remove IDs without observations when solving the IPRED problem.

  • Binary linkage to dparser changed to structure only, meaning nonmem2rx may not have to be updated if dparser is updated.

diff --git a/pkgdown.yml b/pkgdown.yml index d5b0e9c..900145b 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -13,4 +13,4 @@ articles: articles/simulate-new-dosing: simulate-new-dosing.html articles/simulate-uncertainty: simulate-uncertainty.html articles/simulate-with-covs: simulate-with-covs.html -last_built: 2024-09-18T16:33Z +last_built: 2024-09-19T15:51Z diff --git a/reference/as.nonmem2rx.html b/reference/as.nonmem2rx.html index ec41a03..b2e592e 100644 --- a/reference/as.nonmem2rx.html +++ b/reference/as.nonmem2rx.html @@ -48,7 +48,7 @@
diff --git a/reference/autoplot.nonmem2rx.html b/reference/autoplot.nonmem2rx.html index 308634e..c9930fa 100644 --- a/reference/autoplot.nonmem2rx.html +++ b/reference/autoplot.nonmem2rx.html @@ -48,7 +48,7 @@
diff --git a/reference/nmcov.html b/reference/nmcov.html index faf5f2f..ec8a800 100644 --- a/reference/nmcov.html +++ b/reference/nmcov.html @@ -48,7 +48,7 @@
diff --git a/reference/nmext.html b/reference/nmext.html index 73e9aff..0df2eaa 100644 --- a/reference/nmext.html +++ b/reference/nmext.html @@ -48,7 +48,7 @@
diff --git a/reference/nminfo.html b/reference/nminfo.html index 720899f..2585008 100644 --- a/reference/nminfo.html +++ b/reference/nminfo.html @@ -48,7 +48,7 @@
diff --git a/reference/nmlst.html b/reference/nmlst.html index a16d399..8bb369f 100644 --- a/reference/nmlst.html +++ b/reference/nmlst.html @@ -48,7 +48,7 @@
diff --git a/reference/nmtab.html b/reference/nmtab.html index 398f53d..1b96b43 100644 --- a/reference/nmtab.html +++ b/reference/nmtab.html @@ -48,7 +48,7 @@
diff --git a/reference/nmxml.html b/reference/nmxml.html index 65de2b6..665f4c1 100644 --- a/reference/nmxml.html +++ b/reference/nmxml.html @@ -48,7 +48,7 @@
diff --git a/reference/nmxmlCov.html b/reference/nmxmlCov.html index 203fcc5..84ea682 100644 --- a/reference/nmxmlCov.html +++ b/reference/nmxmlCov.html @@ -48,7 +48,7 @@
diff --git a/reference/nonmem2rx.html b/reference/nonmem2rx.html index 58505f8..d07d3c6 100644 --- a/reference/nonmem2rx.html +++ b/reference/nonmem2rx.html @@ -48,7 +48,7 @@
diff --git a/reference/nonmem2rxRec.html b/reference/nonmem2rxRec.html index ff7ab0a..ccc5bda 100644 --- a/reference/nonmem2rxRec.html +++ b/reference/nonmem2rxRec.html @@ -48,7 +48,7 @@
diff --git a/reference/reexports.html b/reference/reexports.html index abda417..eff6e2a 100644 --- a/reference/reexports.html +++ b/reference/reexports.html @@ -86,7 +86,7 @@
diff --git a/search.json b/search.json index 0b5adcb..178aaea 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"/articles/convert-nlmixr2.html","id":"creating-a-nlmixr2-compatible-model","dir":"Articles","previous_headings":"","what":"Creating a nlmixr2 compatible model","title":"Converting a NONMEM fit to a nlmixr2 object","text":"Depending model, residual specifications translated nlmixr2 style residuals. means model immediately used either nlmixr2() estimation creating nlmixr2 fit object (though can simulate without certainty without modifications) example something like: model can nlmixr2 estimation instead simply simulation residual needs changed something like: Since model import translation done already, can easily tweak model form. example residual errors automatically translated nlmixr2 parameter style (case option determineError=FALSE)","code":"y <- ipred*(1+eps1) cp ~ prop(prop.sd)"},{"path":"/articles/convert-nlmixr2.html","id":"example-no-error-determined","dir":"Articles","previous_headings":"","what":"Example – no error determined","title":"Converting a NONMEM fit to a nlmixr2 object","text":"One approach get nlmixr2 compatible model copy printed model modify needed. case, name parameters something bit meaningful keeping estimates : .nonmem2rx() function compare already imported rxode2 model function model made manual tweaks : case new model qualifies now information imported nonmem2rx model. means can estimate new model knowing model specified NONMEM. Since iwres affected specify residuals, pay special attention validation. validate, may forgot translate NONMEM variance estimate standard deviation estimate required many estimation methods.","code":"library(nonmem2rx) library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(mod) #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> theta1 ~ c(theta1 = 0.000887681) #> theta2 ~ c(theta1 = -0.00010551, theta2 = 0.000871409) #> theta3 ~ c(theta1 = 0.000184416, theta2 = -0.000106195, #> theta3 = 0.00299336) #> theta4 ~ c(theta1 = -0.000120234, theta2 = -5.06663e-05, #> theta3 = 0.000165252, theta4 = 0.00121347) #> RSV ~ c(theta1 = 5.2783e-08, theta2 = -1.56562e-05, theta3 = 5.99331e-06, #> theta4 = -2.53991e-05, RSV = 9.94218e-06) #> eps1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0) #> eta1 ~ c(theta1 = -4.71273e-05, theta2 = 4.69667e-05, #> theta3 = -3.64271e-05, theta4 = 2.54796e-05, RSV = -8.16885e-06, #> eps1 = 0, eta1 = 0.000169296) #> omega.2.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0) #> eta2 ~ c(theta1 = -7.37156e-05, theta2 = 2.56634e-05, #> theta3 = -8.08349e-05, theta4 = 1.37e-05, RSV = -4.36564e-06, #> eps1 = 0, eta1 = 8.75181e-06, omega.2.1 = 0, eta2 = 0.00015125) #> omega.3.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta3 ~ c(theta1 = 6.63383e-05, theta2 = -8.19002e-05, #> theta3 = 0.000548985, theta4 = 0.000168356, RSV = 1.59122e-06, #> eps1 = 0, eta1 = 3.48714e-05, omega.2.1 = 0, eta2 = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0.000959029) #> omega.4.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0) #> omega.4.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta4 ~ c(theta1 = -9.49661e-06, theta2 = 0.000110108, #> theta3 = -0.000306537, theta4 = -9.12897e-05, RSV = 3.1877e-06, #> eps1 = 0, eta1 = 1.36628e-05, omega.2.1 = 0, eta2 = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta4 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> w <- ipred * rescv #> ires <- DV - ipred #> iwres <- ires/w #> y <- ipred + w * eps1 #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • there are duplicate eta names, not renaming duplicate parameters #> • there are duplicate theta names, not renaming duplicate parameters #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol mod2 <-function() { ini({ lcl <- 1.37034036528946 lvc <- 4.19814911033061 lq <- 1.38003493562413 lvp <- 3.87657341967489 RSV <- c(0, 0.196446108190896, 1) eta.cl ~ 0.101251418415006 eta.v ~ 0.0993872449483344 eta.q ~ 0.101302674763154 eta.v2 ~ 0.0730497519364148 }) model({ cmt(CENTRAL) cmt(PERI) cl <- exp(lcl + eta.cl) v <- exp(lvc + eta.v) q <- exp(lq + eta.q) v2 <- exp(lvp + eta.v2) v1 <- v scale1 <- v k21 <- q/v2 k12 <- q/v d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL f <- CENTRAL/scale1 f ~ prop(RSV) }) } new <- as.nonmem2rx(mod2, mod) #> ℹ parameter labels from comments are typically ignored in non-interactive mode #> ℹ Need to run with the source intact to parse comments #> ℹ copy 'dfSub' to nonmem2rx model #> ℹ copy 'thetaMat' to nonmem2rx model #> ℹ copy 'dfObs' to nonmem2rx model #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(new) #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> lcl lvc lq lvp RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta.cl eta.v eta.q eta.v2 #> eta.cl 0.1012514 0.00000000 0.0000000 0.00000000 #> eta.v 0.0000000 0.09938724 0.0000000 0.00000000 #> eta.q 0.0000000 0.00000000 0.1013027 0.00000000 #> eta.v2 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 lcl eta.cl id #> 2 lvc eta.v id #> 3 lq eta.q id #> 4 lvp eta.v2 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> thetaMat <- lotri({ #> lcl ~ c(lcl = 0.000887681) #> lvc ~ c(lcl = -0.00010551, lvc = 0.000871409) #> lq ~ c(lcl = 0.000184416, lvc = -0.000106195, lq = 0.00299336) #> lvp ~ c(lcl = -0.000120234, lvc = -5.06663e-05, lq = 0.000165252, #> lvp = 0.00121347) #> RSV ~ c(lcl = 5.2783e-08, lvc = -1.56562e-05, lq = 5.99331e-06, #> lvp = -2.53991e-05, RSV = 9.94218e-06) #> eta.cl ~ c(lcl = -4.71273e-05, lvc = 4.69667e-05, lq = -3.64271e-05, #> lvp = 2.54796e-05, RSV = -8.16885e-06, eta.cl = 0.000169296) #> eta.v ~ c(lcl = -7.37156e-05, lvc = 2.56634e-05, lq = -8.08349e-05, #> lvp = 1.37e-05, RSV = -4.36564e-06, eta.cl = 8.75181e-06, #> eta.v = 0.00015125) #> eta.q ~ c(lcl = 6.63383e-05, lvc = -8.19002e-05, lq = 0.000548985, #> lvp = 0.000168356, RSV = 1.59122e-06, eta.cl = 3.48714e-05, #> eta.v = 4.31593e-07, eta.q = 0.000959029) #> eta.v2 ~ c(lcl = -9.49661e-06, lvc = 0.000110108, lq = -0.000306537, #> lvp = -9.12897e-05, RSV = 3.1877e-06, eta.cl = 1.36628e-05, #> eta.v = -1.95096e-05, eta.q = -0.00012977, eta.v2 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> lcl <- 1.37034036528946 #> lvc <- 4.19814911033061 #> lq <- 1.38003493562413 #> lvp <- 3.87657341967489 #> RSV <- c(0, 0.196446108190896, 1) #> eta.cl ~ 0.101251418415006 #> eta.v ~ 0.0993872449483344 #> eta.q ~ 0.101302674763154 #> eta.v2 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(lcl + eta.cl) #> v <- exp(lvc + eta.v) #> q <- exp(lq + eta.q) #> v2 <- exp(lvp + eta.v2) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> f ~ prop(RSV) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/convert-nlmixr2.html","id":"converting-the-model-to-a-nlmixr2-fit","dir":"Articles","previous_headings":"Example – no error determined","what":"Converting the model to a nlmixr2 fit","title":"Converting a NONMEM fit to a nlmixr2 object","text":"rxode2() model : Qualifies NONMEM model, nlmixr2 compatible residuals can convert nlmixr2 fit object babelmixr2:","code":"library(babelmixr2) fit <- as.nlmixr2(new) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2176 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) #> nonmem2rx 15977.28 20185.64 20237.23 -10083.82 335.4129 #> Condition#(Cor) #> nonmem2rx 2.096559 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.042002 0.117 0.014 100.95 2.876 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Est. SE %RSE Back-transformed(95%CI) BSV(CV%) Shrink(SD)% #> lcl 1.37 0.0298 2.17 3.94 (3.71, 4.17) 32.6 1.94% #> lvc 4.2 0.0295 0.703 66.6 (62.8, 70.5) 32.3 2.46% #> lq 1.38 0.0547 3.96 3.98 (3.57, 4.42) 32.7 40.5% #> lvp 3.88 0.0348 0.899 48.3 (45.1, 51.7) 27.5 28.4% #> RSV 0.196 0.196 #> #> Covariance Type (fit$covMethod): nonmem2rx #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION SUCCESSFUL #> NO. OF FUNCTION EVALUATIONS USED: 320 #> NO. OF SIG. DIGITS IN FINAL EST.: 2.5 #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.25e-05, 0.0418); atol=0.00167 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382); atol=6.41e-06 #> nonmem2rx model file: '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 2,280 × 25 #> ID TIME DV PRED RES IPRED IRES IWRES eta.cl eta.v eta.q eta.v2 #> #> 1 1 0.25 1041. 1750. -710. 1215. -175. -0.732 -0.144 0.375 0.0650 0.241 #> 2 1 0.5 1629 1700. -70.8 1192. 437. 1.87 -0.144 0.375 0.0650 0.241 #> 3 1 0.75 878. 1651. -774. 1169. -291. -1.27 -0.144 0.375 0.0650 0.241 #> # ℹ 2,277 more rows #> # ℹ 13 more variables: f , CENTRAL , PERI , cl , v , #> # q , v2 , v1 , scale1 , k21 , k12 , tad , #> # dosenum "},{"path":"/articles/create-augPred.html","id":"step-1-convert-the-nonmem-model-to-rxode2","dir":"Articles","previous_headings":"","what":"Step 1: Convert the NONMEM model to rxode2:","title":"Created Augmented pred/ipred plots with `augPred()`","text":"","code":"library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/create-augPred.html","id":"step-2-convert-the-rxode2-model-to-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: convert the rxode2 model to nlmixr2","title":"Created Augmented pred/ipred plots with `augPred()`","text":"step, convert model nlmixr2 .nlmixr2(mod); may need little manual work get residual specification match nlmixr2 NONMEM. residual specification compatible nlmixr2 object, can convert model, mod, nlmixr2 fit object:","code":"fit <- as.nlmixr2(mod) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2184 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) #> nonmem2rx 15977.28 20185.64 20237.23 -10083.82 335.4129 #> Condition#(Cor) #> nonmem2rx 2.096559 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.042472 0.123 0.013 100.95 2.876 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%) #> theta1 log Cl 1.37 0.0298 2.17 3.94 (3.71, 4.17) 32.6 #> theta2 log Vc 4.2 0.0295 0.703 66.6 (62.8, 70.5) 32.3 #> theta3 log Q 1.38 0.0547 3.96 3.98 (3.57, 4.42) 32.7 #> theta4 log Vp 3.88 0.0348 0.899 48.3 (45.1, 51.7) 27.5 #> RSV RSV 0.196 0.196 #> Shrink(SD)% #> theta1 1.94% #> theta2 2.46% #> theta3 40.5% #> theta4 28.4% #> RSV #> #> Covariance Type (fit$covMethod): nonmem2rx #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION SUCCESSFUL #> NO. OF FUNCTION EVALUATIONS USED: 320 #> NO. OF SIG. DIGITS IN FINAL EST.: 2.5 #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.25e-05, 0.0418); atol=0.00167 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382); atol=6.41e-06 #> nonmem2rx model file: '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 2,280 × 27 #> ID TIME DV PRED RES IPRED IRES IWRES eta1 eta2 eta3 eta4 #> #> 1 1 0.25 1041. 1750. -710. 1215. -175. -0.732 -0.144 0.375 0.0650 0.241 #> 2 1 0.5 1629 1700. -70.8 1192. 437. 1.87 -0.144 0.375 0.0650 0.241 #> 3 1 0.75 878. 1651. -774. 1169. -291. -1.27 -0.144 0.375 0.0650 0.241 #> # ℹ 2,277 more rows #> # ℹ 15 more variables: ipred , CENTRAL , PERI , cl , #> # v , q , v2 , v1 , scale1 , k21 , k12 , #> # f , rescv , tad , dosenum "},{"path":"/articles/create-augPred.html","id":"step-3-create-and-plot-an-augmented-prediction","dir":"Articles","previous_headings":"","what":"Step 3: Create and plot an augmented prediction","title":"Created Augmented pred/ipred plots with `augPred()`","text":"","code":"ap <- augPred(fit) #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ head(ap) #> values ind id time Endpoint #> 1 1239.488 Individual 1 0.0000 CENTRAL #> 2 1215.358 Individual 1 0.2500 CENTRAL #> 3 1191.924 Individual 1 0.5000 CENTRAL #> 4 1169.164 Individual 1 0.7500 CENTRAL #> 5 1147.057 Individual 1 1.0000 CENTRAL #> 6 1109.689 Individual 1 1.4398 CENTRAL plot(ap)"},{"path":"/articles/create-office.html","id":"step-1-import-the-model-into-nonmem2rx","dir":"Articles","previous_headings":"","what":"Step 1: import the model into nonmem2rx","title":"Create PowerPoint and Word documents using nonmem2rx","text":"","code":"library(nonmem2rx) library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data library(nlmixr2rpt) library(onbrand) library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/create-office.html","id":"step-2-convert-the-rxode2-model-to-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: convert the rxode2 model to nlmixr2","title":"Create PowerPoint and Word documents using nonmem2rx","text":"step, convert model nlmixr2 .nlmixr2(mod); may need little manual work get residual specification match nlmixr2 NONMEM. residual specification compatible nlmixr2 object, can convert model, mod, nlmixr2 fit object: cmt(CENTRAL)cmt(PERI)cl=exp(theta1+eta1)v=exp(theta2+eta2)q=exp(theta3+eta3)v2=exp(theta4+eta4)v1=vscale1=vk21=qv2k12=qvdCENTRALdt=k21×PERI−k12×CENTRAL−cl×CENTRALv1dPERIdt=−k21×PERI+k12×CENTRALf=CENTRALscale1ipred=frescv=RSVipred∼prop(RSV)\\begin{align*} cmt({CENTRAL}) \\\\ cmt({PERI}) \\\\ {cl} & = \\exp\\left({theta1}+{eta1}\\right) \\\\ {v} & = \\exp\\left({theta2}+{eta2}\\right) \\\\ {q} & = \\exp\\left({theta3}+{eta3}\\right) \\\\ {v2} & = \\exp\\left({theta4}+{eta4}\\right) \\\\ {v1} & = {v} \\\\ {scale1} & = {v} \\\\ {k21} & = \\frac{{q}}{{v2}} \\\\ {k12} & = \\frac{{q}}{{v}} \\\\ \\frac{d \\: CENTRAL}{dt} & = {k21} {\\times} {PERI}-{k12} {\\times} {CENTRAL}-\\frac{{cl} {\\times} {CENTRAL}}{{v1}} \\\\ \\frac{d \\: PERI}{dt} & = -{k21} {\\times} {PERI}+{k12} {\\times} {CENTRAL} \\\\ {f} & = \\frac{{CENTRAL}}{{scale1}} \\\\ {ipred} & = {f} \\\\ {rescv} & = {RSV} \\\\ {ipred} & \\sim prop({RSV}) \\end{align*}","code":"fit <- as.nlmixr2(mod) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2184 fit"},{"path":"/articles/create-office.html","id":"step-3-create-a-powerpoint-file","dir":"Articles","previous_headings":"","what":"Step 3: Create a PowerPoint file","title":"Create PowerPoint and Word documents using nonmem2rx","text":"PowerPoint can created custom powerpoint templates, example use ones come nlmixr2rpt directly: gives powerpoint ","code":"obnd_pptx = read_template( template = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.pptx\"), mapping = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.yaml\")) obnd_pptx = report_fit( fit = fit, obnd = obnd_pptx) #> #> Attaching package: 'xpose' #> The following object is masked from 'package:stats': #> #> filter #> Registered S3 method overwritten by 'GGally': #> method from #> +.gg ggplot2 #> #> Attaching package: 'ggPMX' #> The following object is masked from 'package:xpose': #> #> get_data #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → calculate jacobian #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate sensitivities #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(f)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(R²)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling inner model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → finding duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → compiling events FD model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → Calculating residuals/tables #> ✔ done #> Warning in xpose.nlmixr2::xpose_data_nlmixr(fit): Added CWRES to fit (using #> nlmixr2::addCwres)... #> Skipping table: skip_table (NA found, not generated) #> Skipping figure: res_vs_pred_idv (NA found, not generated) #> Skipping figure: eta_cont (NA found, not generated) #> Skipping figure: eta_cat (NA found, not generated) #> Skipping figure: skip_figure (NA found, not generated) save_report(obnd_pptx, \"mod-PowerPoint.pptx\") #> $isgood #> [1] TRUE #> #> $msgs #> NULL"},{"path":"/articles/create-office.html","id":"step-4-create-a-word-file","dir":"Articles","previous_headings":"","what":"Step 4: Create a Word file","title":"Create PowerPoint and Word documents using nonmem2rx","text":"Just like PowerPoint, can customizeown custom word templates, example use ones come nlmixr2rpt directly: gives word document ","code":"obnd_docx = read_template( template = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.docx\"), mapping = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.yaml\")) obnd_docx = report_fit( fit = fit, obnd = obnd_docx) #> → Calculating residuals/tables #> ✔ done #> Warning in xpose.nlmixr2::xpose_data_nlmixr(fit): Added CWRES to fit (using #> nlmixr2::addCwres)... #> Skipping figure: res_vs_pred_idv (NA found, not generated) #> Skipping figure: skip_figure (NA found, not generated) #> Skipping figure: eta_cont (NA found, not generated) #> Skipping figure: eta_cat (NA found, not generated) save_report(obnd_docx, \"mod-Word.docx\") #> $isgood #> [1] TRUE #> #> $msgs #> NULL"},{"path":"/articles/create-vpc.html","id":"step-1-convert-the-nonmem-model-to-rxode2","dir":"Articles","previous_headings":"","what":"Step 1: Convert the NONMEM model to rxode2:","title":"Easily Create a VPC using nonmem2rx","text":"","code":"library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/create-vpc.html","id":"step-2-convert-the-rxode2-model-to-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: convert the rxode2 model to nlmixr2","title":"Easily Create a VPC using nonmem2rx","text":"step, convert model nlmixr2 .nlmixr2(mod); may need little manual work get residual specification match nlmixr2 NONMEM. residual specification compatible nlmixr2 object, can convert model, mod, nlmixr2 fit object:","code":"fit <- as.nlmixr2(mod) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2184 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) #> nonmem2rx 15977.28 20185.64 20237.23 -10083.82 335.4129 #> Condition#(Cor) #> nonmem2rx 2.096559 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.042329 0.093 0.011 100.95 2.473 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%) #> theta1 log Cl 1.37 0.0298 2.17 3.94 (3.71, 4.17) 32.6 #> theta2 log Vc 4.2 0.0295 0.703 66.6 (62.8, 70.5) 32.3 #> theta3 log Q 1.38 0.0547 3.96 3.98 (3.57, 4.42) 32.7 #> theta4 log Vp 3.88 0.0348 0.899 48.3 (45.1, 51.7) 27.5 #> RSV RSV 0.196 0.196 #> Shrink(SD)% #> theta1 1.94% #> theta2 2.46% #> theta3 40.5% #> theta4 28.4% #> RSV #> #> Covariance Type (fit$covMethod): nonmem2rx #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION SUCCESSFUL #> NO. OF FUNCTION EVALUATIONS USED: 320 #> NO. OF SIG. DIGITS IN FINAL EST.: 2.5 #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.25e-05, 0.0418); atol=0.00167 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382); atol=6.41e-06 #> nonmem2rx model file: '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 2,280 × 27 #> ID TIME DV PRED RES IPRED IRES IWRES eta1 eta2 eta3 eta4 #> #> 1 1 0.25 1041. 1750. -710. 1215. -175. -0.732 -0.144 0.375 0.0650 0.241 #> 2 1 0.5 1629 1700. -70.8 1192. 437. 1.87 -0.144 0.375 0.0650 0.241 #> 3 1 0.75 878. 1651. -774. 1169. -291. -1.27 -0.144 0.375 0.0650 0.241 #> # ℹ 2,277 more rows #> # ℹ 15 more variables: ipred , CENTRAL , PERI , cl , #> # v , q , v2 , v1 , scale1 , k21 , k12 , #> # f , rescv , tad , dosenum "},{"path":"/articles/create-vpc.html","id":"step-3-perform-the-vpc","dir":"Articles","previous_headings":"","what":"Step 3: Perform the VPC","title":"Easily Create a VPC using nonmem2rx","text":"simply use vpcPlot() conjunction vpc package get regular prediction-corrected VPCs arrange single plot:","code":"library(ggplot2) p1 <- vpcPlot(fit, show=list(obs_dv=TRUE)) #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 p1 <- p1 + ylab(\"Concentrations\") + rxode2::rxTheme() + xlab(\"Time (hr)\") + xgxr::xgx_scale_x_time_units(\"hour\", \"hour\") p1a <- p1 + xgxr::xgx_scale_y_log10() ## A prediction-corrected VPC p2 <- vpcPlot(fit, pred_corr = TRUE, show=list(obs_dv=TRUE)) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 p2 <- p2 + ylab(\"Prediction-Corrected Concentrations\") + rxode2::rxTheme() + xlab(\"Time (hr)\") + xgxr::xgx_scale_x_time_units(\"hour\", \"hour\") p2a <- p2 + xgxr::xgx_scale_y_log10() library(patchwork) (p1 * p1a) / (p2 * p2a)"},{"path":"/articles/import-nonmem.html","id":"setting-up-nonmem2rx-for-your-model","dir":"Articles","previous_headings":"","what":"Setting up nonmem2rx for your model","title":"Importing NONMEM into rxode2","text":"common options may want change importing NONMEM control stream : default NONMEM output extension; default .lst. can set something else, like .res, using following option: options(nonmem2rx.lst=\".res\"). Turn extended control stream support. can turn options(nonmem2rx.extended=TRUE) probably also want change name parameters compartments. easiest way name parameters whatever want pre-specify names. example: checks parameter names make sure length input names, , model skip parameter renaming keep default translation names theta# eta#. note, sigma parameters currently renamed; following model (grabs parameter automatically labels generate variables), sigma simply eps#. can still rename however wish, though, using model piping (rxRename() dplyr::rename() work): model specify residuals way makes sense nlmixr2. want, can still convert rxode2 model nlmixr2 fit.","code":"mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), lst=\".res\", save=FALSE, thetaNames=c(\"lcl\", \"lvc\", \"lq\", \"lvp\", \"prop.sd\"), etaNames=c(\"eta.cl\", \"eta.vc\", \"eta.q\",\"eta.vp\"), cmtNames = c(\"central\", \"perip\")) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> lcl lvc lq lvp prop.sd #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta.cl eta.vc eta.q eta.vp #> eta.cl 0.1012514 0.00000000 0.0000000 0.00000000 #> eta.vc 0.0000000 0.09938724 0.0000000 0.00000000 #> eta.q 0.0000000 0.00000000 0.1013027 0.00000000 #> eta.vp 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 central #> 2 2 perip #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 lcl eta.cl id #> 2 lvc eta.vc id #> 3 lq eta.q id #> 4 lvp eta.vp id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> lcl ~ c(lcl = 0.000887681) #> lvc ~ c(lcl = -0.00010551, lvc = 0.000871409) #> lq ~ c(lcl = 0.000184416, lvc = -0.000106195, lq = 0.00299336) #> lvp ~ c(lcl = -0.000120234, lvc = -5.06663e-05, lq = 0.000165252, #> lvp = 0.00121347) #> prop.sd ~ c(lcl = 5.2783e-08, lvc = -1.56562e-05, lq = 5.99331e-06, #> lvp = -2.53991e-05, prop.sd = 9.94218e-06) #> eps1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0) #> eta.cl ~ c(lcl = -4.71273e-05, lvc = 4.69667e-05, lq = -3.64271e-05, #> lvp = 2.54796e-05, prop.sd = -8.16885e-06, eps1 = 0, #> eta.cl = 0.000169296) #> omega.2.1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0) #> eta.vc ~ c(lcl = -7.37156e-05, lvc = 2.56634e-05, lq = -8.08349e-05, #> lvp = 1.37e-05, prop.sd = -4.36564e-06, eps1 = 0, #> eta.cl = 8.75181e-06, omega.2.1 = 0, eta.vc = 0.00015125) #> omega.3.1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta.q ~ c(lcl = 6.63383e-05, lvc = -8.19002e-05, lq = 0.000548985, #> lvp = 0.000168356, prop.sd = 1.59122e-06, eps1 = 0, #> eta.cl = 3.48714e-05, omega.2.1 = 0, eta.vc = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0.000959029) #> omega.4.1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0, omega.4.1 = 0) #> omega.4.2 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta.vp ~ c(lcl = -9.49661e-06, lvc = 0.000110108, lq = -0.000306537, #> lvp = -9.12897e-05, prop.sd = 3.1877e-06, eps1 = 0, #> eta.cl = 1.36628e-05, omega.2.1 = 0, eta.vc = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta.vp = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> lcl <- 1.37034036528946 #> label(\"log Cl\") #> lvc <- 4.19814911033061 #> label(\"log Vc\") #> lq <- 1.38003493562413 #> label(\"log Q\") #> lvp <- 3.87657341967489 #> label(\"log Vp\") #> prop.sd <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta.cl ~ 0.101251418415006 #> eta.vc ~ 0.0993872449483344 #> eta.q ~ 0.101302674763154 #> eta.vp ~ 0.0730497519364148 #> }) #> model({ #> cmt(central) #> cmt(perip) #> cl <- exp(lcl + eta.cl) #> v <- exp(lvc + eta.vc) #> q <- exp(lq + eta.q) #> v2 <- exp(lvp + eta.vp) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(central) <- k21 * perip - k12 * central - cl * central/v1 #> d/dt(perip) <- -k21 * perip + k12 * central #> f <- central/scale1 #> ipred <- f #> rescv <- prop.sd #> ipred ~ prop(prop.sd) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol mod <- nonmem2rx(system.file(\"Theopd.ctl\", package=\"nonmem2rx\"), save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/Theopd.ctl' #> ℹ reading in lst file #> ℹ seeing if file argument is actually lst file #> ℹ not list file, control stream #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $PRED #> ℹ Processing record $TABLE #> ℹ final parameters not updated, will skip validation #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done mod #> ── rxode2-based Pred model ───────────────────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> POP_E0 POP_EMAX POP_C50 #> 150 200 10 #> #> Omega ($omega): #> PPV_E0 PPV_EMAX PPV_C50 #> PPV_E0 0.5 0.0 0.0 #> PPV_EMAX 0.0 0.5 0.0 #> PPV_C50 0.0 0.0 0.5 #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"theophylline pharmacodynamics standard control stream\" #> sigma <- lotri({ #> eps1 ~ 100 #> }) #> validation <- \"final parameters not updated, validation skipped\" #> ini({ #> POP_E0 <- c(0, 150) #> label(\"POP_E0 1\") #> POP_EMAX <- c(0, 200) #> label(\"POP_EMAX 2\") #> POP_C50 <- c(0.001, 10) #> label(\"POP_C50 3\") #> PPV_E0 ~ 0.5 #> PPV_EMAX ~ 0.5 #> PPV_C50 ~ 0.5 #> }) #> model({ #> e0 <- POP_E0 * exp(PPV_E0) #> emax <- POP_EMAX * exp(PPV_EMAX) #> ec50 <- POP_C50 * exp(PPV_C50) #> y <- e0 + emax * THEO/(THEO + ec50) + eps1 #> }) #> } #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 100 #> #> other properties include: $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol mod <- mod %>% rxRename(add.var=eps1) mod #> ── rxode2-based Pred model ───────────────────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> POP_E0 POP_EMAX POP_C50 #> 150 200 10 #> #> Omega ($omega): #> PPV_E0 PPV_EMAX PPV_C50 #> PPV_E0 0.5 0.0 0.0 #> PPV_EMAX 0.0 0.5 0.0 #> PPV_C50 0.0 0.0 0.5 #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"theophylline pharmacodynamics standard control stream\" #> sigma <- lotri({ #> add.var ~ 100 #> }) #> validation <- \"final parameters not updated, validation skipped\" #> ini({ #> POP_E0 <- c(0, 150) #> label(\"POP_E0 1\") #> POP_EMAX <- c(0, 200) #> label(\"POP_EMAX 2\") #> POP_C50 <- c(0.001, 10) #> label(\"POP_C50 3\") #> PPV_E0 ~ 0.5 #> PPV_EMAX ~ 0.5 #> PPV_C50 ~ 0.5 #> }) #> model({ #> e0 <- POP_E0 * exp(PPV_E0) #> emax <- POP_EMAX * exp(PPV_EMAX) #> ec50 <- POP_C50 * exp(PPV_C50) #> y <- e0 + emax * THEO/(THEO + ec50) + add.var #> }) #> } #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> add.var #> add.var 100 #> #> other properties include: $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/import-nonmem.html","id":"technical-details-about-reading-nonmem-to-rxode2","dir":"Articles","previous_headings":"","what":"Technical details about reading NONMEM to rxode2","title":"Importing NONMEM into rxode2","text":"key files import NONMEM control stream (related file) NONMEM output (often .lst .res extension). import process steps : Read nonmem control stream convert model rxode2 ui function. Try determine endpoint/residual specification model (possible), convert fully qualified ui model can used nlmixr2 rxode2. determined automatically, can manually fix still convert nlmixr2 object (data/estimates available course). available, nonmem2rx read final parameter estimates update model. converter read nonmem input dataset, search output files IPRED, PRED ETA values. translated rxode2 model run population parameters individual parameters. compare results NONMEM rxode2 make sure translation makes sense. works nonmem2rx access input data output IWRES, IPRED, PRED ETA values. Converts upper case NONMEM variables lower case (can turned nonmem2rx(..., toLowerLhs=FALSE))) Replaces NONMEM theta / eta names label-based names like extended control stream (can turned nonmem2rx(thetaNames=FALSE, etaNames=FALSE)) Replaces compartment names defined compartment names control stream (ie COMP=(compartmenName))","code":""},{"path":"/articles/read-rounding.html","id":"step-1-have-a-nonmem-model-with-rounding-errors-and--phi-or-other-information-about-the-etas","dir":"Articles","previous_headings":"","what":"Step 1: Have a NONMEM model with rounding errors (and .phi or other information about the etas)","title":"Reading rounding from NONMEM","text":"first step load model rounding errors using nonmem2rx():","code":"# Unzip example with rounding error # included, but can be accessed with nlmixr2 # # unzip(system.file(\"tests/testthat/pk.turnover.emax3-nonmem.zip\", package=\"babelmixr2\")) # Load the model with `nonmem2rx`: mod <- nonmem2rx(\"pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl\") #> ℹ getting information from 'pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `6.24053043162953e-07` #> ℹ change initial estimate of `theta2` to `-3.00642760553675e-06` #> ℹ change initial estimate of `theta3` to `-2.00405074386117` #> ℹ change initial estimate of `theta4` to `2.05188410700476` #> ℹ change initial estimate of `theta5` to `0.0985804613565218` #> ℹ change initial estimate of `theta6` to `0.511625249037084` #> ℹ change initial estimate of `theta7` to `6.4184983102259` #> ℹ change initial estimate of `theta8` to `0.140763261319656` #> ℹ change initial estimate of `theta9` to `-2.9534704318737` #> ℹ change initial estimate of `theta10` to `4.57045413136592` #> ℹ change initial estimate of `theta11` to `3.71714384851537` #> ℹ change initial estimate of `eta1` to `0.558129815059436` #> ℹ change initial estimate of `eta2` to `0.558402321309217` #> ℹ change initial estimate of `eta3` to `0.0785849119252598` #> ℹ change initial estimate of `eta4` to `0.0508226905750953` #> ℹ change initial estimate of `eta5` to `5e-05` #> ℹ change initial estimate of `eta6` to `0.18426809257979` #> ℹ change initial estimate of `eta7` to `0.0083631531443303` #> ℹ change initial estimate of `eta8` to `0.00274561514766752` #> ℹ read in nonmem input data (for model validation): /home/runner/work/nonmem2rx/nonmem2rx/vignettes/articles/pk.turnover.emax3-nonmem/pk.turnover.emax3.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ renaming 'dvid' to 'nmdvid' #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/nonmem2rx/nonmem2rx/vignettes/articles/pk.turnover.emax3-nonmem/pk.turnover.emax3.pred #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 4-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> tktr tka tcl tv prop.err #> 6.240530e-07 -3.006428e-06 -2.004051e+00 2.051884e+00 9.858046e-02 #> pkadd.err temax tec50 tkout te0 #> 5.116252e-01 6.418498e+00 1.407633e-01 -2.953470e+00 4.570454e+00 #> pdadd.err #> 3.717144e+00 #> #> Omega ($omega): #> eta.ktr eta.ka eta.cl eta.v eta.emax eta.ec50 #> eta.ktr 0.5581298 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.ka 0.0000000 0.5584023 0.00000000 0.00000000 0e+00 0.0000000 #> eta.cl 0.0000000 0.0000000 0.07858491 0.00000000 0e+00 0.0000000 #> eta.v 0.0000000 0.0000000 0.00000000 0.05082269 0e+00 0.0000000 #> eta.emax 0.0000000 0.0000000 0.00000000 0.00000000 5e-05 0.0000000 #> eta.ec50 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.1842681 #> eta.kout 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.e0 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.kout eta.e0 #> eta.ktr 0.000000000 0.000000000 #> eta.ka 0.000000000 0.000000000 #> eta.cl 0.000000000 0.000000000 #> eta.v 0.000000000 0.000000000 #> eta.emax 0.000000000 0.000000000 #> eta.ec50 0.000000000 0.000000000 #> eta.kout 0.008363153 0.000000000 #> eta.e0 0.000000000 0.002745615 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 DEPOT #> 2 2 GUT #> 3 3 CENTER #> 4 4 EFFECT #> ── Model (Normalized Syntax): ── #> function() { #> description <- c(\"translated from babelmixr2\", \"; comments show mu referenced model in ui$getSplitMuModel\") #> dfObs <- 483 #> dfSub <- 32 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.13e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (3.12e-06, 0.000497); atol=6.17e-05\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.18e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (3.79e-07,0.00313) atol=6.18e-06\") #> ini({ #> tktr <- 6.24053043162953e-07 #> label(\"1 - tktr\") #> tka <- -3.00642760553675e-06 #> label(\"2 - tka\") #> tcl <- -2.00405074386117 #> label(\"3 - tcl\") #> tv <- 2.05188410700476 #> label(\"4 - tv\") #> prop.err <- c(0, 0.0985804613565218) #> label(\"5 - prop.err\") #> pkadd.err <- c(0, 0.511625249037084) #> label(\"6 - pkadd.err\") #> temax <- 6.4184983102259 #> label(\"7 - temax\") #> tec50 <- 0.140763261319656 #> label(\"8 - tec50\") #> tkout <- -2.9534704318737 #> label(\"9 - tkout\") #> te0 <- 4.57045413136592 #> label(\"10 - te0\") #> pdadd.err <- c(0, 3.71714384851537) #> label(\"11 - pdadd.err\") #> eta.ktr ~ 0.558129815059436 #> eta.ka ~ 0.558402321309217 #> eta.cl ~ 0.0785849119252598 #> eta.v ~ 0.0508226905750953 #> eta.emax ~ 5e-05 #> eta.ec50 ~ 0.18426809257979 #> eta.kout ~ 0.0083631531443303 #> eta.e0 ~ 0.00274561514766752 #> }) #> model({ #> cmt(DEPOT) #> cmt(GUT) #> cmt(CENTER) #> cmt(EFFECT) #> mu_1 <- tktr #> mu_2 <- tka #> mu_3 <- tcl #> mu_4 <- tv #> mu_5 <- temax #> mu_6 <- tec50 #> mu_7 <- tkout #> mu_8 <- te0 #> ktr <- exp(mu_1 + eta.ktr) #> ka <- exp(mu_2 + eta.ka) #> cl <- exp(mu_3 + eta.cl) #> v <- exp(mu_4 + eta.v) #> emax <- ((1) - (0)) * (1/(1 + exp(-(mu_5 + eta.emax)))) + #> (0) #> ec50 <- exp(mu_6 + eta.ec50) #> kout <- exp(mu_7 + eta.kout) #> e0 <- exp(mu_8 + eta.e0) #> rxini.rxddta4. <- e0 #> EFFECT(0) <- rxini.rxddta4. #> dcp <- CENTER/v #> rxdz001 <- (ec50 + dcp) #> if (rxdz001 >= 0 && rxdz001 <= 1e-06) { #> rxdz001 <- 1e-06 #> } #> if (rxdz001 >= -1e-06 && rxdz001 < 0) { #> rxdz001 <- -1e-06 #> } #> pd <- 1 - emax * dcp/rxdz001 #> kin <- e0 * kout #> d/dt(DEPOT) <- -ktr * DEPOT #> d/dt(GUT) <- ktr * DEPOT - ka * GUT #> d/dt(CENTER) <- ka * GUT - cl/v * CENTER #> d/dt(EFFECT) <- kin * pd - kout * EFFECT #> cp <- CENTER/v #> f <- DEPOT #> rxe_dcp <- CENTER/v #> rxdze001 <- (ec50 + rxe_dcp) #> if (rxdze001 >= 0 && rxdze001 <= 1e-06) { #> rxdze001 <- 1e-06 #> } #> if (rxdze001 >= -1e-06 && rxdze001 < 0) { #> rxdze001 <- -1e-06 #> } #> rxe_pd <- 1 - emax * rxe_dcp/rxdze001 #> rxe_kin <- e0 * kout #> rxe_cp <- CENTER/v #> rx_pf1 <- rxe_cp #> rx_pf2 <- EFFECT #> rx_ip1 <- rx_pf1 #> rx_p1 <- rx_ip1 #> w1 <- sqrt((pkadd.err)^2 + (rx_pf1)^2 * (prop.err)^2) #> if (w1 == 0) #> w1 <- 1 #> rx_ip2 <- rx_pf2 #> rx_p2 <- rx_ip2 #> w2 <- sqrt((pdadd.err)^2) #> if (w2 == 0) #> w2 <- 1 #> ipred <- rx_ip1 #> w <- w1 #> if (nmdvid == 2) { #> ipred <- rx_ip2 #> w <- w2 #> } #> y <- ipred + w * eps1 #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • some etas defaulted to non-mu referenced, possible parsing error: eta.emax as a work-around try putting the mu-referenced expression on a simple line #> • some etas defaulted to non-mu referenced, possible parsing error: eta5 as a work-around try putting the mu-referenced expression on a simple line #> • some NONMEM input has tied times; they are offset by a small offset #> • is.na() applied to non-(list or vector) of type 'language' #> • 'dvid' variable has special meaning in rxode2, renamed to 'nmdvid', rename/copy in your data too #> • $MODEL NCOMPARTMENTS/NEQUILIBRIUM/NPARAMETERS statement(s) ignored #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/read-rounding.html","id":"step-2-convert-rxode2-model-to-model-with-endpointsresiduals-specified-like-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: Convert rxode2 model to model with endpoints/residuals specified like nlmixr2","title":"Reading rounding from NONMEM","text":"example rounding errors isn’t fully qualified nlmixr2 model (even though generated nlmixr2). can use model create equivalent model .nonmem2rx() model , following modifications made: code protecting rounding errors removed Endpoints/residual specifications added Duplicate code NONMEM’s $ERROR block removed imported model rx nlmixr prefixed items removed model. possible removing variables can causenlmixr2 conversion fail. best practice remove completely. Also, good practice make sure model parses correctly trying validate/convert model. find model doesn’t parse correctly definitely won’t validate (error may easy track-). first step validate translation correct. done :","code":"mod2 <- function() { ini({ tktr <- 6.24053043162953e-07 label(\"1 - tktr\") tka <- -3.00642760553675e-06 label(\"2 - tka\") tcl <- -2.00405074386117 label(\"3 - tcl\") tv <- 2.05188410700476 label(\"4 - tv\") prop.err <- c(0, 0.0985804613565218) label(\"5 - prop.err\") pkadd.err <- c(0, 0.511625249037084) label(\"6 - pkadd.err\") temax <- 6.4184983102259 label(\"7 - temax\") tec50 <- 0.140763261319656 label(\"8 - tec50\") tkout <- -2.9534704318737 label(\"9 - tkout\") te0 <- 4.57045413136592 label(\"10 - te0\") pdadd.err <- c(0, 3.71714384851537) label(\"11 - pdadd.err\") eta.ktr ~ 0.558129815059436 eta.ka ~ 0.558402321309217 eta.cl ~ 0.0785849119252598 eta.v ~ 0.0508226905750953 eta.emax ~ 5e-05 eta.ec50 ~ 0.18426809257979 eta.kout ~ 0.0083631531443303 eta.e0 ~ 0.00274561514766752 }) model({ cmt(DEPOT) cmt(GUT) cmt(CENTER) cmt(EFFECT) ktr <- exp(tktr + eta.ktr) ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) emax <- expit(temax + eta.emax) ec50 <- exp(tec50 + eta.ec50) kout <- exp(tkout + eta.kout) e0 <- exp(te0 + eta.e0) EFFECT(0) <- e0 dcp <- CENTER/v pd <- 1 - emax * dcp/(ec50 + dcp) kin <- e0 * kout d/dt(DEPOT) <- -ktr * DEPOT d/dt(GUT) <- ktr * DEPOT - ka * GUT d/dt(CENTER) <- ka * GUT - cl/v * CENTER d/dt(EFFECT) <- kin * pd - kout * EFFECT eff <- EFFECT dcp ~ add(pkadd.err)+prop(prop.err) eff ~ add(pdadd.err) }) } new <- as.nonmem2rx(mod, mod2) #> ℹ parameter labels from comments are typically ignored in non-interactive mode #> ℹ Need to run with the source intact to parse comments #> ℹ copy 'dfSub' to nonmem2rx model #> ℹ copy 'dfObs' to nonmem2rx model #> ℹ merging 'dvid' with nlmixr2 'cmt' definition #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(new) #> ── rxode2-based free-form 4-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> tktr tka tcl tv prop.err #> 6.240530e-07 -3.006428e-06 -2.004051e+00 2.051884e+00 9.858046e-02 #> pkadd.err temax tec50 tkout te0 #> 5.116252e-01 6.418498e+00 1.407633e-01 -2.953470e+00 4.570454e+00 #> pdadd.err #> 3.717144e+00 #> #> Omega ($omega): #> eta.ktr eta.ka eta.cl eta.v eta.emax eta.ec50 #> eta.ktr 0.5581298 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.ka 0.0000000 0.5584023 0.00000000 0.00000000 0e+00 0.0000000 #> eta.cl 0.0000000 0.0000000 0.07858491 0.00000000 0e+00 0.0000000 #> eta.v 0.0000000 0.0000000 0.00000000 0.05082269 0e+00 0.0000000 #> eta.emax 0.0000000 0.0000000 0.00000000 0.00000000 5e-05 0.0000000 #> eta.ec50 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.1842681 #> eta.kout 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.e0 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.kout eta.e0 #> eta.ktr 0.000000000 0.000000000 #> eta.ka 0.000000000 0.000000000 #> eta.cl 0.000000000 0.000000000 #> eta.v 0.000000000 0.000000000 #> eta.emax 0.000000000 0.000000000 #> eta.ec50 0.000000000 0.000000000 #> eta.kout 0.008363153 0.000000000 #> eta.e0 0.000000000 0.002745615 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 DEPOT #> 2 2 GUT #> 3 3 CENTER #> 4 4 EFFECT #> ── Multiple Endpoint Model ($multipleEndpoint): ── #> variable cmt dvid* #> 1 dcp ~ … cmt='dcp' or cmt=5 dvid='dcp' or dvid=1 #> 2 eff ~ … cmt='eff' or cmt=6 dvid='eff' or dvid=2 #> * If dvids are outside this range, all dvids are re-numered sequentially, ie 1,7, 10 becomes 1,2,3 etc #> #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 tktr eta.ktr id #> 2 tka eta.ka id #> 3 tcl eta.cl id #> 4 tv eta.v id #> 5 temax eta.emax id #> 6 tec50 eta.ec50 id #> 7 tkout eta.kout id #> 8 te0 eta.e0 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- c(\"translated from babelmixr2\", \"; comments show mu referenced model in ui$getSplitMuModel\") #> dfObs <- 483 #> dfSub <- 32 #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.13e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (3.12e-06, 0.000497); atol=6.17e-05\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.18e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (3.79e-07,0.00313) atol=6.18e-06\") #> ini({ #> tktr <- 6.24053043162953e-07 #> label(\"1 - tktr\") #> tka <- -3.00642760553675e-06 #> label(\"2 - tka\") #> tcl <- -2.00405074386117 #> label(\"3 - tcl\") #> tv <- 2.05188410700476 #> label(\"4 - tv\") #> prop.err <- c(0, 0.0985804613565218) #> label(\"5 - prop.err\") #> pkadd.err <- c(0, 0.511625249037084) #> label(\"6 - pkadd.err\") #> temax <- 6.4184983102259 #> label(\"7 - temax\") #> tec50 <- 0.140763261319656 #> label(\"8 - tec50\") #> tkout <- -2.9534704318737 #> label(\"9 - tkout\") #> te0 <- 4.57045413136592 #> label(\"10 - te0\") #> pdadd.err <- c(0, 3.71714384851537) #> label(\"11 - pdadd.err\") #> eta.ktr ~ 0.558129815059436 #> eta.ka ~ 0.558402321309217 #> eta.cl ~ 0.0785849119252598 #> eta.v ~ 0.0508226905750953 #> eta.emax ~ 5e-05 #> eta.ec50 ~ 0.18426809257979 #> eta.kout ~ 0.0083631531443303 #> eta.e0 ~ 0.00274561514766752 #> }) #> model({ #> cmt(DEPOT) #> cmt(GUT) #> cmt(CENTER) #> cmt(EFFECT) #> ktr <- exp(tktr + eta.ktr) #> ka <- exp(tka + eta.ka) #> cl <- exp(tcl + eta.cl) #> v <- exp(tv + eta.v) #> emax <- expit(temax + eta.emax) #> ec50 <- exp(tec50 + eta.ec50) #> kout <- exp(tkout + eta.kout) #> e0 <- exp(te0 + eta.e0) #> EFFECT(0) <- e0 #> dcp <- CENTER/v #> pd <- 1 - emax * dcp/(ec50 + dcp) #> kin <- e0 * kout #> d/dt(DEPOT) <- -ktr * DEPOT #> d/dt(GUT) <- ktr * DEPOT - ka * GUT #> d/dt(CENTER) <- ka * GUT - cl/v * CENTER #> d/dt(EFFECT) <- kin * pd - kout * EFFECT #> eff <- EFFECT #> dcp ~ add(pkadd.err) + prop(prop.err) #> eff ~ add(pdadd.err) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData, $thetaMat #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/read-rounding.html","id":"step-3-convert-new-model-to-nlmixr2-fit-with-as-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 3: Convert new model to nlmixr2 fit with as.nlmixr2()","title":"Reading rounding from NONMEM","text":"translation complete, validated, can convert fit full nlmixr2 fit object. Note object rerun estimation, rather imports everything knows fit rerun nlmixr2 table steps calculate things need.","code":"fit <- as.nlmixr2(new) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 21592 #> → compress parHistData in nlmixr2 object, save 5536 # Once it is loaded remove the directory (we don't need the files any # more for this example) # # In this example, we don't remove, but note where it can be removed # # unlink(\"pk.turnover.emax3-nonmem\", recursive = TRUE)"},{"path":"/articles/read-rounding.html","id":"step-4-explore-the-datafit-as-if-it-came-from-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 4: Explore the data/fit as if it came from nlmixr2","title":"Reading rounding from NONMEM","text":"information can see properties model: model can see: High shrinkage temax, ktr, ka moderate shrinkage kout removing parameters, possibly get successful NONMEM run. want, can use model piping remove parameters follows: Since babelmixr2 use babelmixr2 run model NONMEM (setup run NONMEM), even run model nlmixr2 . example choose use nlmixr2 (since babelmixr2 example runs NONMEM shows reduction shrinkage) modifications shrinkage also reduced (just like NONMEM case)","code":"print(fit) #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood #> nonmem2rx 439.2156 1364.91 1444.331 -663.4551 #> #> ── Time (sec $time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.033591 0.078 0.01 320.27 3.673 #> #> ── Population Parameters ($parFixed or $parFixedDf): ── #> #> Parameter Est. Back-transformed BSV(CV% or SD) Shrink(SD)% #> tktr 1 - tktr 6.24e-07 1 86.5 59.8% #> tka 2 - tka -3.01e-06 1 86.5 59.8% #> tcl 3 - tcl -2 0.135 28.6 1.34% #> tv 4 - tv 2.05 7.78 22.8 6.44% #> prop.err 5 - prop.err 0.0986 0.0986 #> pkadd.err 6 - pkadd.err 0.512 0.512 #> temax 7 - temax 6.42 0.998 0.00707 100.% #> tec50 8 - tec50 0.141 1.15 45.0 6.06% #> tkout 9 - tkout -2.95 0.0522 9.16 32.4% #> te0 10 - te0 4.57 96.6 5.24 18.1% #> pdadd.err 11 - pdadd.err 3.72 3.72 #> #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance ($omega) or correlation ($omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in $shrink #> Censoring ($censInformation): No censoring #> Minimization message ($message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION TERMINATED #> DUE TO ROUNDING ERRORS (ERROR=134) #> NO. OF FUNCTION EVALUATIONS USED: 1088 #> NO. OF SIG. DIGITS UNREPORTABLE #> 0PARAMETER ESTIMATE IS NEAR ITS BOUNDARY #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=5.09e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=5.29e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.2e-06, 0.000454); atol=3.03e-05 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (4.72e-07,0.00361); atol=5.29e-06 #> there are solving errors during optimization (see '$prderr') #> nonmem2rx model file: 'pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl' #> #> ── Fit Data (object is a modified tibble): ── #> # A tibble: 483 × 35 #> ID TIME CMT DV PRED RES IPRED IRES IWRES eta.ktr eta.ka eta.cl #> #> 1 1 0.5 dcp 0 1.16 -1.16 0.444 -0.444 -0.864 -0.506 -0.506 0.699 #> 2 1 1 dcp 1.9 3.37 -1.47 1.45 0.446 0.840 -0.506 -0.506 0.699 #> 3 1 2 dcp 3.3 7.51 -4.21 3.96 -0.660 -1.03 -0.506 -0.506 0.699 #> # ℹ 480 more rows #> # ℹ 23 more variables: eta.v , eta.emax , eta.ec50 , #> # eta.kout , eta.e0 , dcp , eff , DEPOT , GUT , #> # CENTER , EFFECT , ktr , ka , cl , v , #> # emax , ec50 , kout , e0 , pd , kin , #> # tad , dosenum mod3 <- fit %>% model(ktr <- exp(tktr)) %>% model(ka <- exp(tka)) %>% model(emax <- expit(temax)) %>% model(kout <- exp(tkout)) #> ! remove between subject variability `eta.ktr` #> ! remove between subject variability `eta.ka` #> ! remove between subject variability `eta.emax` #> ! remove between subject variability `eta.kout` mod3 #> ── rxode2-based free-form 4-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> tktr tka tcl tv prop.err #> 6.240530e-07 -3.006428e-06 -2.004051e+00 2.051884e+00 9.858046e-02 #> pkadd.err temax tec50 tkout te0 #> 5.116252e-01 6.418498e+00 1.407633e-01 -2.953470e+00 4.570454e+00 #> pdadd.err #> 3.717144e+00 #> #> Omega ($omega): #> eta.cl eta.v eta.ec50 eta.e0 #> eta.cl 0.07858491 0.00000000 0.0000000 0.000000000 #> eta.v 0.00000000 0.05082269 0.0000000 0.000000000 #> eta.ec50 0.00000000 0.00000000 0.1842681 0.000000000 #> eta.e0 0.00000000 0.00000000 0.0000000 0.002745615 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 DEPOT #> 2 2 GUT #> 3 3 CENTER #> 4 4 EFFECT #> ── Multiple Endpoint Model ($multipleEndpoint): ── #> variable cmt dvid* #> 1 dcp ~ … cmt='dcp' or cmt=5 dvid='dcp' or dvid=1 #> 2 eff ~ … cmt='eff' or cmt=6 dvid='eff' or dvid=2 #> * If dvids are outside this range, all dvids are re-numered sequentially, ie 1,7, 10 becomes 1,2,3 etc #> #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 tcl eta.cl id #> 2 tv eta.v id #> 3 tec50 eta.ec50 id #> 4 te0 eta.e0 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- c(\"translated from babelmixr2\", \"; comments show mu referenced model in ui$getSplitMuModel\") #> dfObs <- 483 #> dfSub <- 32 #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.13e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (3.12e-06, 0.000497); atol=6.17e-05\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.18e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (3.79e-07,0.00313) atol=6.18e-06\") #> ini({ #> tktr <- 6.24053043162953e-07 #> label(\"1 - tktr\") #> tka <- -3.00642760553675e-06 #> label(\"2 - tka\") #> tcl <- -2.00405074386117 #> label(\"3 - tcl\") #> tv <- 2.05188410700476 #> label(\"4 - tv\") #> prop.err <- c(0, 0.0985804613565218) #> label(\"5 - prop.err\") #> pkadd.err <- c(0, 0.511625249037084) #> label(\"6 - pkadd.err\") #> temax <- 6.4184983102259 #> label(\"7 - temax\") #> tec50 <- 0.140763261319656 #> label(\"8 - tec50\") #> tkout <- -2.9534704318737 #> label(\"9 - tkout\") #> te0 <- 4.57045413136592 #> label(\"10 - te0\") #> pdadd.err <- c(0, 3.71714384851537) #> label(\"11 - pdadd.err\") #> eta.cl ~ 0.0785849119252598 #> eta.v ~ 0.0508226905750953 #> eta.ec50 ~ 0.18426809257979 #> eta.e0 ~ 0.00274561514766752 #> }) #> model({ #> cmt(DEPOT) #> cmt(GUT) #> cmt(CENTER) #> cmt(EFFECT) #> ktr <- exp(tktr) #> ka <- exp(tka) #> cl <- exp(tcl + eta.cl) #> v <- exp(tv + eta.v) #> emax <- expit(temax) #> ec50 <- exp(tec50 + eta.ec50) #> kout <- exp(tkout) #> e0 <- exp(te0 + eta.e0) #> EFFECT(0) <- e0 #> dcp <- CENTER/v #> pd <- 1 - emax * dcp/(ec50 + dcp) #> kin <- e0 * kout #> d/dt(DEPOT) <- -ktr * DEPOT #> d/dt(GUT) <- ktr * DEPOT - ka * GUT #> d/dt(CENTER) <- ka * GUT - cl/v * CENTER #> d/dt(EFFECT) <- kin * pd - kout * EFFECT #> eff <- EFFECT #> dcp ~ add(pkadd.err) + prop(prop.err) #> eff ~ add(pdadd.err) #> }) #> } fit2 <- nlmixr(mod3, new$nonmemData, \"focei\", foceiControl(print=0)) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → calculate jacobian #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate sensitivities #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(f)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(R²)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling inner model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → finding duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → compiling events FD model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> calculating covariance matrix #> [====|====|====|====|====|====|====|====|====|====] 0:00:35 #> done #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 21592 #> → compress parHistData in nlmixr2 object, save 14920 fit2 #> ── nlmixr² FOCEi (outer: nlminb) ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) Condition#(Cor) #> FOCEi 1425.005 2342.699 2405.399 -1156.35 896101.4 262.0511 #> #> ── Time (sec fit2$time): ── #> #> setup optimize covariance table compress other #> elapsed 0.003448 35.97675 35.97676 0.113 0.014 91.73504 #> #> ── Population Parameters (fit2$parFixed or fit2$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%) #> tktr 1 - tktr 0.0978 0.147 150 1.1 (0.827, 1.47) #> tka 2 - tka 0.0229 0.0978 427 1.02 (0.845, 1.24) #> tcl 3 - tcl -2.01 0.05 2.49 0.134 (0.122, 0.148) 27.8 #> tv 4 - tv 2.05 0.0425 2.07 7.79 (7.17, 8.47) 22.7 #> prop.err 5 - prop.err 0.144 0.144 #> pkadd.err 6 - pkadd.err 0.616 0.616 #> temax 7 - temax 188 5.75 3.06 1 (1, 1) #> tec50 8 - tec50 0.143 0.0875 61.1 1.15 (0.972, 1.37) 43.0 #> tkout 9 - tkout -2.96 0.028 0.945 0.0516 (0.0488, 0.0545) #> te0 10 - te0 4.57 0.0105 0.23 96.8 (94.8, 98.8) 5.24 #> pdadd.err 11 - pdadd.err 3.86 3.86 #> Shrink(SD)% #> tktr #> tka #> tcl 1.95% #> tv 6.61% #> prop.err #> pkadd.err #> temax #> tec50 7.90% #> tkout #> te0 19.4% #> pdadd.err #> #> Covariance Type (fit2$covMethod): |r|,|s| #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit2$omega) or correlation (fit2$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit2$shrink #> Information about run found (fit2$runInfo): #> • gradient problems with initial estimate and covariance; see $scaleInfo #> • since sandwich matrix is corrected, you may compare to $covR or $covS if you wish #> • S matrix non-positive definite but corrected by S = sqrtm(S%*%S) #> • R matrix non-positive definite but corrected by R = sqrtm(R%*%R) #> • last objective function was not at minimum, possible problems in optimization #> • ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.)) #> • initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=)) #> Censoring (fit2$censInformation): No censoring #> Minimization message (fit2$message): #> false convergence (8) #> In an ODE system, false convergence may mean \"useless\" evaluations were performed. #> See https://tinyurl.com/yyrrwkce #> It could also mean the convergence is poor, check results before accepting fit #> You may also try a good derivative free optimization: #> nlmixr2(...,control=list(outerOpt=\"bobyqa\")) #> #> ── Fit Data (object fit2 is a modified tibble): ── #> # A tibble: 483 × 33 #> ID TIME CMT DV PRED RES WRES IPRED IRES IWRES CPRED CRES CWRES #> #> 1 1 0.5 dcp 0 1.28 -1.28 -1.82 1.01 -1.01 -1.60 1.25 -1.25 -1.86 #> 2 1 1 dcp 1.9 3.66 -1.76 -1.53 2.89 -0.991 -1.33 3.58 -1.68 -1.71 #> 3 1 2 dcp 3.3 7.91 -4.61 -2.12 6.22 -2.92 -2.68 7.73 -4.43 -2.55 #> # ℹ 480 more rows #> # ℹ 20 more variables: eta.cl , eta.v , eta.ec50 , eta.e0 , #> # DEPOT , GUT , CENTER , EFFECT , ktr , ka , #> # cl , v , emax , ec50 , kout , e0 , pd , #> # kin , tad , dosenum "},{"path":"/articles/read-rounding.html","id":"step-5-get-the-covariance-of-the-model","dir":"Articles","previous_headings":"","what":"Step 5: Get the covariance of the model","title":"Reading rounding from NONMEM","text":"Another thing can helpful fit imported nlmixr2 fit get variance/covariance matrix. can especially helpful diagnose things help simplify model Note covariance step 100% successful since r, s. However, can give insights parameters estimated well. case can see emax parameter poorly estimated parameters, means fixing parameter reducing parameters may help estimate progress NONMEM.","code":"getVarCov(fit) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → calculate jacobian #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate sensitivities #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(f)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling inner model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → finding duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → compiling events FD model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> calculating covariance matrix #> [====|====|====|====|====|====|====|====|====|====] 0:00:05 #> Warning in foceiFitCpp_(.ret): using R matrix to calculate covariance, can #> check sandwich or S matrix with $covRS and $covS #> Warning in foceiFitCpp_(.ret): gradient problems with covariance; see #> $scaleInfo #> → compress origData in nlmixr2 object, save 21592 #> Updated original fit object fit #> tktr tka tcl tv temax #> tktr 1.830060e-02 -1.523057e-02 -2.404755e-05 3.183949e-04 0.0011992673 #> tka -1.523057e-02 1.828061e-02 -2.125855e-05 3.195745e-04 0.0014273042 #> tcl -2.404755e-05 -2.125855e-05 2.479870e-04 1.184906e-05 -0.0008486078 #> tv 3.183949e-04 3.195745e-04 1.184906e-05 3.183331e-04 0.0011376028 #> temax 1.199267e-03 1.427304e-03 -8.486078e-04 1.137603e-03 7.5951592101 #> tec50 1.333848e-04 1.362464e-04 -3.585788e-04 1.232516e-04 0.0485635015 #> tkout 9.641362e-05 1.069037e-04 -9.755546e-05 1.189674e-04 -0.0189321828 #> te0 1.365383e-05 1.343098e-05 -9.855499e-06 1.252947e-05 -0.0004450840 #> tec50 tkout te0 #> tktr 0.0001333848 9.641362e-05 1.365383e-05 #> tka 0.0001362464 1.069037e-04 1.343098e-05 #> tcl -0.0003585788 -9.755546e-05 -9.855499e-06 #> tv 0.0001232516 1.189674e-04 1.252947e-05 #> temax 0.0485635015 -1.893218e-02 -4.450840e-04 #> tec50 0.0018384895 1.539214e-04 -1.360918e-04 #> tkout 0.0001539214 6.316775e-04 5.255583e-05 #> te0 -0.0001360918 5.255583e-05 8.870276e-05 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood #> nonmem2rx 439.2156 1364.91 1444.331 -663.4551 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 covariance #> elapsed 0.033591 0.078 0.01 320.27 3.673 13.826 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) #> tktr 1 - tktr 6.24e-07 0.135 2.17e+07 1 (0.767, 1.3) #> tka 2 - tka -3.01e-06 0.135 4.5e+06 1 (0.767, 1.3) #> tcl 3 - tcl -2 0.0157 0.786 0.135 (0.131, 0.139) #> tv 4 - tv 2.05 0.0178 0.87 7.78 (7.52, 8.06) #> prop.err 5 - prop.err 0.0986 0.0986 #> pkadd.err 6 - pkadd.err 0.512 0.512 #> temax 7 - temax 6.42 2.76 42.9 0.998 (0.734, 1) #> tec50 8 - tec50 0.141 0.0429 30.5 1.15 (1.06, 1.25) #> tkout 9 - tkout -2.95 0.0251 0.851 0.0522 (0.0497, 0.0548) #> te0 10 - te0 4.57 0.00942 0.206 96.6 (94.8, 98.4) #> pdadd.err 11 - pdadd.err 3.72 3.72 #> BSV(CV% or SD) Shrink(SD)% #> tktr 86.5 59.8% #> tka 86.5 59.8% #> tcl 28.6 1.34% #> tv 22.8 6.44% #> prop.err #> pkadd.err #> temax 0.00707 100.% #> tec50 45.0 6.06% #> tkout 9.16 32.4% #> te0 5.24 18.1% #> pdadd.err #> #> Covariance Type (fit$covMethod): r #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION TERMINATED #> DUE TO ROUNDING ERRORS (ERROR=134) #> NO. OF FUNCTION EVALUATIONS USED: 1088 #> NO. OF SIG. DIGITS UNREPORTABLE #> 0PARAMETER ESTIMATE IS NEAR ITS BOUNDARY #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=5.09e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=5.29e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.2e-06, 0.000454); atol=3.03e-05 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (4.72e-07,0.00361); atol=5.29e-06 #> there are solving errors during optimization (see '$prderr') #> nonmem2rx model file: 'pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 483 × 35 #> ID TIME CMT DV PRED RES IPRED IRES IWRES eta.ktr eta.ka eta.cl #> #> 1 1 0.5 dcp 0 1.16 -1.16 0.444 -0.444 -0.864 -0.506 -0.506 0.699 #> 2 1 1 dcp 1.9 3.37 -1.47 1.45 0.446 0.840 -0.506 -0.506 0.699 #> 3 1 2 dcp 3.3 7.51 -4.21 3.96 -0.660 -1.03 -0.506 -0.506 0.699 #> # ℹ 480 more rows #> # ℹ 23 more variables: eta.v , eta.emax , eta.ec50 , #> # eta.kout , eta.e0 , dcp , eff , DEPOT , GUT , #> # CENTER , EFFECT , ktr , ka , cl , v , #> # emax , ec50 , kout , e0 , pd , kin , #> # tad , dosenum "},{"path":"/articles/rxode2-validate.html","id":"comparing-differences-between-nonmem-and-rxode2","dir":"Articles","previous_headings":"","what":"Comparing differences between NONMEM and rxode2","title":"Qualify rxode2 model against NONMEM","text":"may wish see differences predictions NONMEM rxode2. rxode2 generated outputs compared NONMEM generated outputs following items: Population Predictions: shows model translation adequate simulate general trends; validate structural model’s population parameters coupled model structure. Individual Predictions: shows model translation able replicate values subjects within modeling data-set. validates model can reproduce subject variability observed study. Individual Weighted Residuals: one step individual parameter validation, couples individual predictions, observations residual specification generate individual weighted residuals. Since can modify residual specification create nlmixr2-compatible model, step important make sure residual specification . Note: part validated three metrics subject covariance matrix, omega. assume correct long read correctly.","code":""},{"path":"/articles/rxode2-validate.html","id":"comparing-numerically","dir":"Articles","previous_headings":"","what":"Comparing numerically","title":"Qualify rxode2 model against NONMEM","text":"want numerical differences, can also get modified returned ui object. rtol, atol follows : can see exactly match close (say validate). However can explore difference wish looking ipredCompare predCompare datasets: cases can see NONMEM seems round values output (rounding rules based FORMAT option), rxode2 seems keep entire number. Note observation data compared. Dosing predictions excluded comparisons. can also explore NONMEM input dataset used make validation predictions (dosing observations) $nonmemData item:","code":"mod$iwresAtol #> 50% #> 3.64871e-06 mod$iwresRtol #> 50% #> 8.987887e-06 mod$ipredAtol #> 50% #> 0.00166826 mod$ipredRtol #> 50% #> 6.430677e-06 mod$predAtol #> 50% #> 6.406839e-06 mod$predAtol #> 50% #> 6.406839e-06 head(mod$iwresCompare) #> ID TIME nonmemIWRES IWRES #> 1 1 0.25 -0.73154 -0.7315464 #> 2 1 0.50 1.86670 1.8666563 #> 3 1 0.75 -1.26860 -1.2685789 #> 4 1 1.00 0.44442 0.4444172 #> 5 1 1.50 0.55470 0.5546978 #> 6 1 2.00 0.35351 0.3535035 head(mod$ipredCompare) #> ID TIME nonmemIPRED IPRED #> 1 1 0.25 1215.4 1215.358 #> 2 1 0.50 1191.9 1191.924 #> 3 1 0.75 1169.2 1169.164 #> 4 1 1.00 1147.1 1147.057 #> 5 1 1.50 1104.7 1104.721 #> 6 1 2.00 1064.8 1064.759 head(mod$predCompare) #> ID TIME nonmemPRED PRED #> 1 1 0.25 1750.3 1750.290 #> 2 1 0.50 1699.8 1699.834 #> 3 1 0.75 1651.3 1651.349 #> 4 1 1.00 1604.8 1604.752 #> 5 1 1.50 1516.9 1516.913 #> 6 1 2.00 1435.7 1435.723 head(mod$nonmemData) # with nlme loaded you can also use getData(mod) #> ID TIME DV LNDV MDV AMT EVID DOSE V1I CLI QI V2I SSX IIX SD #> 1 1 0.00 0.0 0.0000 1 120000 1 120000 101.5 3.57 6.99 59.19 99 0 1 #> 2 1 0.25 1040.7 6.9476 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 3 1 0.50 1629.0 7.3957 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 4 1 0.75 877.8 6.7774 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 5 1 1.00 1247.2 7.1286 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 6 1 1.50 1225.1 7.1107 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> CMT #> 1 1 #> 2 1 #> 3 1 #> 4 1 #> 5 1 #> 6 1"},{"path":"/articles/rxode2-validate.html","id":"comparing-visually","dir":"Articles","previous_headings":"","what":"Comparing visually","title":"Qualify rxode2 model against NONMEM","text":"easiest way visually compare differences plot method:","code":"plot(mod) # for general plot # you can also see individual comparisons plot(mod, log=\"y\", ncol=2, nrow=2, xlab=\"Time (hr)\", ylab=\"Concentrations\", page=1) # If you want all pages you could use: # plot(mod, log=\"y\", ncol=2, nrow=2, xlab=\"Time (hr)\", ylab=\"Concentrations\", page=TRUE)"},{"path":"/articles/rxode2-validate.html","id":"notes-on-validation","dir":"Articles","previous_headings":"","what":"Notes on validation","title":"Qualify rxode2 model against NONMEM","text":"validation model uses best data available NONMEM estimates. : theta population parameters eta individual parameters omega sigma matrices captured. nlmixr2 model fully qualified, IWRES validation ensures residual errors specified correctly. Otherwise omega sigma values contribute validation. Also overall covariance captured, used validation.","code":""},{"path":"/articles/simulate-extra-items.html","id":"step-1-import-the-model","dir":"Articles","previous_headings":"","what":"Step 1: Import the model","title":"Simulate Derived Variables from imported NONMEM model","text":"","code":"library(nonmem2rx) library(rxode2) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/simulate-extra-items.html","id":"step-2-add-auc-calculation","dir":"Articles","previous_headings":"","what":"Step 2: Add AUC calculation","title":"Simulate Derived Variables from imported NONMEM model","text":"concentration case f model, trick get AUC additional ODE d/dt(AUC) <- f use reset get per dosing period. However, additional parameter part original model. calculation AUC depend number observations model, sparse data wouldn’t terribly accurate. One thing can use model piping append d/dt(AUC) <- f imported model: can also use append=NA pre-pend append=f put ODE right f line model.","code":"modAuc <- mod %>% model(d/dt(AUC) <- f, append=TRUE) #> → significant model change detected #> → kept in model: '$atol', '$nonmemData', '$rtol', '$ssAtol', '$ssRtol' #> → removed from model: '$digest', '$etaData', '$file', '$ipredAtol', '$ipredCompare', '$ipredData', '$ipredRtol', '$iwresAtol', '$iwresCompare', '$iwresRtol', '$notes', '$outputExtension', '$predAtol', '$predCompare', '$predData', '$predRtol', '$sigmaNames' modAuc #> ── rxode2-based free-form 3-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> 3 3 AUC #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> theta1 ~ c(theta1 = 0.000887681) #> theta2 ~ c(theta1 = -0.00010551, theta2 = 0.000871409) #> theta3 ~ c(theta1 = 0.000184416, theta2 = -0.000106195, #> theta3 = 0.00299336) #> theta4 ~ c(theta1 = -0.000120234, theta2 = -5.06663e-05, #> theta3 = 0.000165252, theta4 = 0.00121347) #> RSV ~ c(theta1 = 5.2783e-08, theta2 = -1.56562e-05, theta3 = 5.99331e-06, #> theta4 = -2.53991e-05, RSV = 9.94218e-06) #> eps1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0) #> eta1 ~ c(theta1 = -4.71273e-05, theta2 = 4.69667e-05, #> theta3 = -3.64271e-05, theta4 = 2.54796e-05, RSV = -8.16885e-06, #> eps1 = 0, eta1 = 0.000169296) #> omega.2.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0) #> eta2 ~ c(theta1 = -7.37156e-05, theta2 = 2.56634e-05, #> theta3 = -8.08349e-05, theta4 = 1.37e-05, RSV = -4.36564e-06, #> eps1 = 0, eta1 = 8.75181e-06, omega.2.1 = 0, eta2 = 0.00015125) #> omega.3.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta3 ~ c(theta1 = 6.63383e-05, theta2 = -8.19002e-05, #> theta3 = 0.000548985, theta4 = 0.000168356, RSV = 1.59122e-06, #> eps1 = 0, eta1 = 3.48714e-05, omega.2.1 = 0, eta2 = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0.000959029) #> omega.4.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0) #> omega.4.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta4 ~ c(theta1 = -9.49661e-06, theta2 = 0.000110108, #> theta3 = -0.000306537, theta4 = -9.12897e-05, RSV = 3.1877e-06, #> eps1 = 0, eta1 = 1.36628e-05, omega.2.1 = 0, eta2 = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta4 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> w <- ipred * rescv #> ires <- DV - ipred #> iwres <- ires/w #> y <- ipred + w * eps1 #> d/dt(AUC) <- f #> }) #> } #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData #> captured NONMEM table outputs: #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/simulate-extra-items.html","id":"step-3-setup-event-table-to-calculate-the-auc-for-a-different-dosing-paradigm","dir":"Articles","previous_headings":"","what":"Step 3: Setup event table to calculate the AUC for a different dosing paradigm:","title":"Simulate Derived Variables from imported NONMEM model","text":"Lets say case instead single dose, want see concentration profile single day BID dosing. case done creating quick event table. case since also wanting AUC per dosing period, can add reset dose AUC compartment every time dose given (track AUC current dose):","code":"ev <- et(amt=120000, ii=12, until=24) %>% et(amt=0, ii=12, until=24, cmt=\"AUC\", evid=5) %>% # replace AUC with zero at dosing et(c(0, 4, 8, 11.999, 12, 12.01, 14, 20, 23.999, 24, 24.001, 28, 32, 36)) %>% et(id=1:10)"},{"path":"/articles/simulate-extra-items.html","id":"step-4-solve-using-rxode2","dir":"Articles","previous_headings":"","what":"Step 4: Solve using rxode2","title":"Simulate Derived Variables from imported NONMEM model","text":"step, solve model new event table 10 subjects: Note since derived nonmem2rx model, default solving match tolerances methods specified NONMEM model.","code":"s <- rxSolve(modAuc, ev) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’"},{"path":"/articles/simulate-extra-items.html","id":"step-5-exploring-the-simulation-by-plotting-and-summarizing-dplyr","dir":"Articles","previous_headings":"","what":"Step 5: Exploring the simulation (by plotting), and summarizing (dplyr)","title":"Simulate Derived Variables from imported NONMEM model","text":"solved object acts rxode2 solved object, can use plot() function see individual running AUC profiles simulated: can also select points near dosing get AUC interval:","code":"library(ggplot2) plot(s, AUC) + ylab(\"Running AUC\") library(dplyr) #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:data.table': #> #> between, first, last #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union s %>% filter(time %in% c(11.999, 23.999)) %>% mutate(time=round(time)) %>% select(id, time, AUC) #> id time AUC #> 1 1 12 14933.285 #> 2 1 24 20692.082 #> 3 2 12 11099.596 #> 4 2 24 16694.837 #> 5 3 12 10303.763 #> 6 3 24 14196.023 #> 7 4 12 13015.708 #> 8 4 24 21400.784 #> 9 5 12 11612.369 #> 10 5 24 17944.491 #> 11 6 12 10137.247 #> 12 6 24 15223.973 #> 13 7 12 16532.019 #> 14 7 24 22787.019 #> 15 8 12 10612.266 #> 16 8 24 16781.396 #> 17 9 12 11593.421 #> 18 9 24 17713.529 #> 19 10 12 7972.637 #> 20 10 24 13225.795"},{"path":"/articles/simulate-new-dosing.html","id":"step-1-import-the-model","dir":"Articles","previous_headings":"","what":"Step 1: Import the model","title":"Simulate New dosing from NONMEM model","text":"","code":"library(nonmem2rx) library(rxode2) library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/simulate-new-dosing.html","id":"step-2-look-at-a-different-dosing-paradigm","dir":"Articles","previous_headings":"","what":"Step 2: Look at a different dosing paradigm","title":"Simulate New dosing from NONMEM model","text":"Lets say case instead single dose, want see concentration profile single day BID dosing. case done creating quick event table:","code":"ev <- et(amt=120000, ii=12, until=24) %>% et(list(c(0, 2), # add observations in windows c(4, 6), c(8, 12), c(14, 18), c(20, 26), c(28, 32), c(32, 36), c(36, 44))) %>% et(id=1:10)"},{"path":"/articles/simulate-new-dosing.html","id":"step-3-solve-using-rxode2","dir":"Articles","previous_headings":"","what":"Step 3: solve using rxode2","title":"Simulate New dosing from NONMEM model","text":"step, solve model new event table 10 subjects: Note since nonmem2rx model, default solving match tolerances methods specified NONMEM model.","code":"s <- rxSolve(mod, ev) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12"},{"path":"/articles/simulate-new-dosing.html","id":"step-4-exploring-the-simulation-by-plotting","dir":"Articles","previous_headings":"","what":"Step 4: exploring the simulation (by plotting)","title":"Simulate New dosing from NONMEM model","text":"solved object acts rxode2 solved object, can use plot() function see individual profiles simulated:","code":"library(ggplot2) plot(s, ipred) + ylab(\"Concentrations\")"},{"path":"/articles/simulate-uncertainty.html","id":"step-1-import-the-model","dir":"Articles","previous_headings":"","what":"Step 1: Import the model","title":"Simulate using Parameter Uncertainty","text":"","code":"library(nonmem2rx) library(rxode2) # its best practice to set the seed for the simulations set.seed(42) rxSetSeed(42) # First we need the location of the nonmem control stream Since we are # running an example, we will use one of the built-in examples in # `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/simulate-uncertainty.html","id":"step-2-look-at-a-different-dosing-paradigm","dir":"Articles","previous_headings":"","what":"Step 2: Look at a different dosing paradigm","title":"Simulate using Parameter Uncertainty","text":"Lets say case instead single dose, want see concentration profile single day BID dosing. case done creating quick event table.","code":"ev <- et(amt=120000, ii=12, until=24) %>% et(c(1:6, seq(8, 24, by=2))) %>% et(id=1:100)"},{"path":"/articles/simulate-uncertainty.html","id":"step-3-solve-using-the-uncertainty-in-the-nonmem-model","dir":"Articles","previous_headings":"","what":"Step 3: Solve using the uncertainty in the NONMEM model","title":"Simulate using Parameter Uncertainty","text":"use uncertainty model, simple matter telling many times rxode2() sample nStud=X. case use 100.","code":"s <- rxSolve(mod, ev, nStud=100) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=120 from NONMEM #> ℹ using dfObs=2280 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2', 'omega.4.1', 'omega.4.2', 'omega.4.3' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> [====|====|====|====|====|====|====|====|====|====] 0:00:01 s #> ── Solved rxode2 object ── #> ── Parameters (x$params): ── #> # A tibble: 10,000 × 11 #> sim.id id theta1 theta2 theta3 theta4 RSV eta1 eta2 eta3 #> #> 1 1 1 1.34 4.14 1.34 3.88 0.197 -0.177 -0.0490 0.354 #> 2 1 2 1.34 4.14 1.34 3.88 0.197 0.300 -0.175 -0.000835 #> 3 1 3 1.34 4.14 1.34 3.88 0.197 0.512 0.543 0.0679 #> 4 1 4 1.34 4.14 1.34 3.88 0.197 -0.0557 -0.225 0.464 #> 5 1 5 1.34 4.14 1.34 3.88 0.197 0.0727 0.717 -0.0169 #> 6 1 6 1.34 4.14 1.34 3.88 0.197 -0.0835 -0.221 0.510 #> 7 1 7 1.34 4.14 1.34 3.88 0.197 0.721 -0.147 0.306 #> 8 1 8 1.34 4.14 1.34 3.88 0.197 0.336 0.00156 0.287 #> 9 1 9 1.34 4.14 1.34 3.88 0.197 0.240 -0.00161 -0.246 #> 10 1 10 1.34 4.14 1.34 3.88 0.197 0.368 -0.178 0.171 #> # ℹ 9,990 more rows #> # ℹ 1 more variable: eta4 #> ── Initial Conditions (x$inits): ── #> CENTRAL PERI #> 0 0 #> #> Simulation with uncertainty in: #> • parameters (x$thetaMat for changes) #> • omega matrix (x$omegaList) #> • sigma matrix (x$sigmaList) #> #> ── First part of data (object): ── #> # A tibble: 150,000 × 21 #> sim.id id time cl v q v2 v1 scale1 k21 k12 f #> #> 1 1 1 1 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1749. #> 2 1 1 2 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1549. #> 3 1 1 3 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1391. #> 4 1 1 4 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1265. #> 5 1 1 5 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1164. #> 6 1 1 6 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1081. #> # ℹ 149,994 more rows #> # ℹ 9 more variables: ipred , rescv , w , ires , #> # iwres , y , CENTRAL , PERI , DV "},{"path":"/articles/simulate-uncertainty.html","id":"step-4-summarize-and-plot","dir":"Articles","previous_headings":"","what":"Step 4: Summarize and plot","title":"Simulate using Parameter Uncertainty","text":"Since bunch data, confidence band simulation uncertainty helpful. One way select interesting components, create confidence interval plot confidence bands:","code":"sci <- confint(s, parm=c(\"CENTRAL\", \"PERI\", \"sim\")) #> summarizing data...done sci #> # A tibble: 90 × 7 #> p1 time trt p2.5 p50 p97.5 Percentile #> #> 1 0.0250 1 CENTRAL 89088. 93122. 97785. 2.5% #> 2 0.5 1 CENTRAL 104763. 106382. 107850. 50% #> 3 0.975 1 CENTRAL 111628. 113213. 114778. 97.5% #> 4 0.0250 2 CENTRAL 67932. 73356. 80896. 2.5% #> 5 0.5 2 CENTRAL 91994. 94928. 97428. 50% #> 6 0.975 2 CENTRAL 104126. 107042. 109995. 97.5% #> 7 0.0250 3 CENTRAL 52547. 59414. 67509. 2.5% #> 8 0.5 3 CENTRAL 81661. 85156. 88600. 50% #> 9 0.975 3 CENTRAL 97288. 101479. 105605. 97.5% #> 10 0.0250 4 CENTRAL 41353. 48409. 57328. 2.5% #> # ℹ 80 more rows plot(sci) plot(sci, log=\"y\")"},{"path":"/articles/simulate-with-covs.html","id":"simulation-with-covariates-or-input-parameters","dir":"Articles","previous_headings":"","what":"Simulation with covariates or input parameters","title":"Simulate New dosing with covariates","text":"Sometimes NONMEM model can covariates may wish simulate ; simulation exercise shows methods simulate covariates NONMEM.","code":"library(nonmem2rx) library(rxode2)"},{"path":"/articles/simulate-with-covs.html","id":"step-0-input-the-model","dir":"Articles","previous_headings":"","what":"Step 0: input the model","title":"Simulate New dosing with covariates","text":"case, use Friberg myelosuppresion model originally contributed example Yuan Xiong. simulated data nlmixr2, babelmixr2, manual edits simplify model run NONMEM 7.4.3. Note case PK parameters model require special handling simulate uncertainty even different dosing scenarios. simulation scenario, need import NONMEM model:","code":"# Since this is an included example, we import the model from the # `nonmem2rx` package. This is done by the `system.file()` command: wbcModel <- system.file(\"wbc/wbc.lst\", package=\"nonmem2rx\") wbc <- nonmem2rx(wbcModel) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.lst' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.83169895537931` #> ℹ change initial estimate of `theta2` to `8.37329670479077` #> ℹ change initial estimate of `theta3` to `6.37739634773425` #> ℹ change initial estimate of `theta4` to `-11.558011558` #> ℹ change initial estimate of `theta5` to `0.464650000001741` #> ℹ change initial estimate of `eta1` to `0.0979049999946534` #> ℹ change initial estimate of `eta2` to `2.99999999999372e-06` #> ℹ change initial estimate of `eta3` to `1.99999999999944e-05` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.pred #> ℹ done #> ℹ read in nonmem ETA data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.eta #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(wbc) #> ── rxode2-based free-form 7-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> log_CIRC0 log_MTT log_SLOPU log_GAMMA prop.err #> 1.831699 8.373297 6.377396 -11.558012 0.464650 #> #> Omega ($omega): #> eta.CIRC0 eta.MTT eta.SLOPU #> eta.CIRC0 0.097905 0e+00 0e+00 #> eta.MTT 0.000000 3e-06 0e+00 #> eta.SLOPU 0.000000 0e+00 2e-05 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTR #> 2 2 PERIPH #> 3 3 PROL #> 4 4 TR1 #> 5 5 TR2 #> 6 6 TR3 #> 7 7 c.CIRC #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"wbc\" #> dfObs <- 176 #> dfSub <- 45 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> log_CIRC0 ~ c(log_CIRC0 = 0.00339803) #> log_MTT ~ c(log_CIRC0 = -0.00171728, log_MTT = 0.00224653) #> log_SLOPU ~ c(log_CIRC0 = -0.00142939, log_MTT = 0.00545118, #> log_SLOPU = 0.0311551) #> log_GAMMA ~ c(log_CIRC0 = 0.0107932, log_MTT = -0.0333153, #> log_SLOPU = -0.18915, log_GAMMA = 3.18077) #> prop.err ~ c(log_CIRC0 = 8.44599e-05, log_MTT = -0.000185993, #> log_SLOPU = -0.00110008, log_GAMMA = 0.0241601, prop.err = 0.000189655) #> eps1 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, log_GAMMA = 0, #> prop.err = 0, eps1 = 0) #> eta.CIRC0 ~ c(log_CIRC0 = -0.00103234, log_MTT = 0.00125366, #> log_SLOPU = 0.00108067, log_GAMMA = 0.000599458, #> prop.err = 3.39316e-05, eps1 = 0, eta.CIRC0 = 0.000977024) #> omega.2.1 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, #> log_GAMMA = 0, prop.err = 0, eps1 = 0, eta.CIRC0 = 0, #> omega.2.1 = 0) #> eta.MTT ~ c(log_CIRC0 = 5.9718e-08, log_MTT = -5.65051e-08, #> log_SLOPU = 6.21392e-09, log_GAMMA = 8.42426e-07, #> prop.err = 6.68526e-09, eps1 = 0, eta.CIRC0 = -5.00488e-08, #> omega.2.1 = 0, eta.MTT = 7.54658e-12) #> omega.3.1 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, #> log_GAMMA = 0, prop.err = 0, eps1 = 0, eta.CIRC0 = 0, #> omega.2.1 = 0, eta.MTT = 0, omega.3.1 = 0) #> omega.3.2 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, #> log_GAMMA = 0, prop.err = 0, eps1 = 0, eta.CIRC0 = 0, #> omega.2.1 = 0, eta.MTT = 0, omega.3.1 = 0, omega.3.2 = 0) #> eta.SLOPU ~ c(log_CIRC0 = 3.70943e-07, log_MTT = -1.8945e-07, #> log_SLOPU = 1.25175e-06, log_GAMMA = -1.7346e-06, #> prop.err = 1.59707e-09, eps1 = 0, eta.CIRC0 = -3.13414e-07, #> omega.2.1 = 0, eta.MTT = 5.308e-11, omega.3.1 = 0, #> omega.3.2 = 0, eta.SLOPU = 4.20267e-10) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=7.82e-11\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (4.96e-11, 1.28e-06); atol=5.24e-10\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.72e-11\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.4e-11,4.89e-05) atol=6.72e-11\") #> ini({ #> log_CIRC0 <- 1.83169895537931 #> label(\"1 - log_CIRC0\") #> log_MTT <- 8.37329670479077 #> label(\"2 - log_MTT\") #> log_SLOPU <- 6.37739634773425 #> label(\"3 - log_SLOPU\") #> log_GAMMA <- -11.558011558 #> label(\"4 - log_GAMMA\") #> prop.err <- c(0, 0.464650000001741) #> label(\"5 - prop.err\") #> eta.CIRC0 ~ 0.0979049999946534 #> eta.MTT ~ 2.99999999999372e-06 #> eta.SLOPU ~ 1.99999999999944e-05 #> }) #> model({ #> cmt(CENTR) #> cmt(PERIPH) #> cmt(PROL) #> cmt(TR1) #> cmt(TR2) #> cmt(TR3) #> cmt(c.CIRC) #> mu_1 <- log_CIRC0 #> mu_2 <- log_MTT #> mu_3 <- log_SLOPU #> circ0 <- exp(mu_1 + eta.CIRC0) #> mtt <- exp(mu_2 + eta.MTT) #> slopu <- exp(mu_3 + eta.SLOPU) #> gamma <- exp(log_GAMMA) #> rxini.rxddta3. <- circ0 #> PROL(0) <- rxini.rxddta3. #> rxini.rxddta4. <- circ0 #> TR1(0) <- rxini.rxddta4. #> rxini.rxddta5. <- circ0 #> TR2(0) <- rxini.rxddta5. #> rxini.rxddta6. <- circ0 #> TR3(0) <- rxini.rxddta6. #> rxini.rxddta7. <- circ0 #> c.CIRC(0) <- rxini.rxddta7. #> cl <- CLI #> v1 <- V1I #> v2 <- V2I #> RXR1 <- 204 #> conc <- CENTR/v1 #> NN <- 3 #> ktr <- (NN + 1)/mtt #> edrug <- 1 - slopu * conc #> fdbk <- (circ0/c.CIRC)^gamma #> circ <- c.CIRC #> d/dt(CENTR) <- PERIPH * RXR1/v2 - CENTR * (cl/v1 + RXR1/v1) #> d/dt(PERIPH) <- CENTR * RXR1/v1 - PERIPH * RXR1/v2 #> d/dt(PROL) <- ktr * PROL * edrug * fdbk - ktr * PROL #> d/dt(TR1) <- ktr * PROL - ktr * TR1 #> d/dt(TR2) <- ktr * TR1 - ktr * TR2 #> d/dt(TR3) <- ktr * TR2 - ktr * TR3 #> d/dt(c.CIRC) <- ktr * TR3 - ktr * c.CIRC #> f <- CENTR #> ipred <- c.CIRC #> w <- sqrt((ipred * prop.err)^2) #> if (w == 0) #> w <- 1 #> y <- ipred + w * eps1 #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • some NONMEM input has tied times; they are offset by a small offset #> • $MODEL NCOMPARTMENTS/NEQUILIBRIUM/NPARAMETERS statement(s) ignored #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol # note the NONMEM vs rxode2 models validate well. You can see this in # the validation code: message(paste(wbc$meta$validation, collapse=\"\\n\")) #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=7.82e-11 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (4.96e-11, 1.28e-06); atol=5.24e-10 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.72e-11 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.4e-11,4.89e-05) atol=6.72e-11"},{"path":"/articles/simulate-with-covs.html","id":"option-1-simulate-with-the-same-conditions-as-the-input-model","dir":"Articles","previous_headings":"","what":"Option #1: simulate with the same conditions as the input model","title":"Simulate New dosing with covariates","text":"easiest way simulate uncertainty use original NONMEM input dataset. want simulate covariates , simply add resample=TRUE: case every individual re-samples original dataset’s covariates. particular case, dosing changes per individual may wish share team may way see model performing relative data. Binning may necessary, typical VPC","code":"sim <- rxSolve(wbc, resample=TRUE, nStud=500) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=45 from NONMEM #> ℹ using dfObs=176 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM's data for solving #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> [====|====|====|====|====|====|====|====|====|====] 0:00:05 #> Warning: corrected 'thetaMat' to be a symmetric, positive definite matrix"},{"path":"/articles/simulate-with-covs.html","id":"option-2-simulate-with-a-different-condition-with-resampled-pk-parameterscovariates","dir":"Articles","previous_headings":"","what":"Option 2: simulate with a different condition (with resampled PK parameters/covariates)","title":"Simulate New dosing with covariates","text":"case, may wish simulate study similar covariates NONMEM model general (also resampling) First lets simulate 410 every 20 days. can easily add creating event table input PK parameters NONMEM dataset. may closer constant theoretical dosing regimen may wish explore.","code":"# first create the base event table with the nubmer of individuals # matching the NONMEM dataset: ev <- et(amt=410, ii=20*24, until=365*24) %>% # Add dosing 20 days apart for a year et(seq(0, 365*24, by=7*24)) %>% # Assume weekly observations et(id=seq_along(unique(wbc$nonmemData$ID))) %>% # Match the number of subjects modeled as.data.frame # convert to data.frame # Now create the PK covariates library(dplyr) #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:data.table': #> #> between, first, last #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union pkCov <- wbc$nonmemData %>% filter(!duplicated(ID)) %>% # only get one observation per id select(CLI, V1I, V2I) # select the covariates pkCov$id <- seq_along(pkCov$CLI) # add the covariates per id # Then merge the PK covariates to the original event table ev <- merge(pkCov, ev) # Last simulate with replacement with the new data frame sim <- rxSolve(wbc, ev, resample=TRUE, nStud=100) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=45 from NONMEM #> ℹ using dfObs=176 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> Warning: corrected 'thetaMat' to be a symmetric, positive definite matrix ci <- confint(sim, \"y\") #> summarizing data... #> done plot(ci)"},{"path":"/articles/simulate-with-covs.html","id":"option-3-simulate-a-larger-study-with-a-different-condition-resampled-pk-parameterscovariates","dir":"Articles","previous_headings":"","what":"Option 3: simulate a larger study with a different condition (resampled PK parameters/covariates)","title":"Simulate New dosing with covariates","text":"Another option create larger dataset (multiple original dataset). case, assume new study 225 patients, 5 fold increase subjects compared NONMEM input.","code":"# first create the base event table with the nubmer of individuals # matching the NONMEM dataset: ev <- et(amt=410, ii=20*24, until=365*24) %>% # Add dosing 20 days apart for a year et(seq(0, 365*24, by=7*24)) %>% # Assume weekly observations et(id=seq(1, max(wbc$nonmemData$ID)*5)) %>% # Match the number of subjects modeled as.data.frame # convert to data.frame # Now create the PK covariates library(dplyr) pkCov <- wbc$nonmemData %>% filter(!duplicated(ID)) %>% # only get one observation per id select(CLI, V1I, V2I) # select the covariates # expand the covariates by 5 pkCov <- do.call(\"rbind\", lapply(1:5, function(i) { pkCov })) pkCov$id <- seq_along(pkCov$CLI) # add the covariates per id # Then merge the PK covariates to the original event table ev <- merge(pkCov, ev) # Last simulate with replacement with the new data frame sim <- rxSolve(wbc, ev, resample=TRUE, nStud=100) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=45 from NONMEM #> ℹ using dfObs=176 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> [====|====|====|====|====|====|====|====|====|====] 0:01:39 #> Warning: corrected 'thetaMat' to be a symmetric, positive definite matrix ci <- confint(sim, \"y\") #> summarizing data... #> done plot(ci)"},{"path":"/articles/simulate-with-covs.html","id":"other-options","dir":"Articles","previous_headings":"","what":"Other options","title":"Simulate New dosing with covariates","text":"can also simulation without uncertainty use covariates resampling hand (even simulating new covariates manually). believe reampling keeps hidden correlations covariates, used whenever possible. time writing, resampling can occur new event table multiple input dataest. Eventually feature may added resample input dataset directly. Note resampling also work time-varying covariates. time-varying covariates imputed based input times per subject.","code":""},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Matthew Fidler. Author, maintainer. Philip Delff. Contributor. Gabriel Staples. Contributor. string insensitive compare","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Fidler M (2024). nonmem2rx: 'nonmem2rx' Converts 'NONMEM' Models 'rxode2'. R package version 0.1.5, https://github.com/nlmixr2/nonmem2rx/, https://nlmixr2.github.io/nonmem2rx/.","code":"@Manual{, title = {nonmem2rx: 'nonmem2rx' Converts 'NONMEM' Models to 'rxode2'}, author = {Matthew Fidler}, year = {2024}, note = {R package version 0.1.5, https://github.com/nlmixr2/nonmem2rx/}, url = {https://nlmixr2.github.io/nonmem2rx/}, }"},{"path":"/index.html","id":"nonmem2rx","dir":"","previous_headings":"","what":"nonmem2rx Converts NONMEM Models to rxode2","title":"nonmem2rx Converts NONMEM Models to rxode2","text":"goal nonmem2rx convert NONMEM control stream rxode2 (even nlmixr2 fit) easy clinical trial simulation R.","code":""},{"path":"/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"nonmem2rx Converts NONMEM Models to rxode2","text":"can install development version nonmem2rx GitHub r-universe: CRAN, can also get CRAN version :","code":"install.packages('nonmem2rx', repos = c('https://nlmixr2.r-universe.dev', 'https://cloud.r-project.org')) install.packages('nonmem2rx')"},{"path":"/index.html","id":"what-you-can-do-with-nonmem2rxbabelmixr2","dir":"","previous_headings":"","what":"What you can do with nonmem2rx/babelmixr2","title":"nonmem2rx Converts NONMEM Models to rxode2","text":"can many useful tasks directly converting nlmixr2 NONMEM models; can: Convert NONMEM model rxode2 model development nlmixr2 run NONMEM nlmixr2 model reviewers want know NONMEM results. conversions, automatically make sure model translated correctly (babelmixr2) nlmixr2 fit models nonmem2rx models coming conversions, can: Perform simulations new dosing NONMEM model even simulate using uncertainty model simulate new scenarios Modify model calculate derived parameters (like AUC). parameters slow NONMEM’s optimization, can help simulation scenario. Simulating Covariates/Input PK parameters. example shows approaches resample input dataset covariate selection. nonmem2rx babelmixr2, convert imported rxode2 model nlmixr2 object, allowing: Generation Word PowerPoint plots nlmixr2rpt Easy VPC creation (vpcPlot()) Easy Individual plots extra solved points. show curvature individual population fits sparse data-sets (augPred()) can even use conversion help debug NONMEM model (even try nlmixr2 instead) Understand simplify NONMEM model avoid rounding errors Run nlmixr2’s covariance step NONMEMs covariance step failed (linked example, covariance step rounding errors)","code":""},{"path":"/index.html","id":"simple-example","dir":"","previous_headings":"","what":"Simple example","title":"nonmem2rx Converts NONMEM Models to rxode2","text":"nonmem2rx loaded, simply type location nonmem control stream parser start. example: can see automatically validates NONMEM rxode2 outputs couple metrics.","code":"library(nonmem2rx) # First we need the location of the nonmem control stream Since we are # running an example, we will use one of the built-in examples in # `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/tmp/RtmphCfr0E/temp_libpathaf275a605b00/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $THETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /tmp/RtmphCfr0E/temp_libpathaf275a605b00/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0’ #> In file included from /usr/share/R/include/R.h:71, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2/include/rxode2.h:9, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_shared.h:3, #> from rx_d16f021bc9a6b4f5e2be95cdc7bf3d57_.c:115: #> /usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions [-Wpedantic] #> 80 | }; #> | ^ #> ℹ read in nonmem IPRED data (for model validation): /tmp/RtmphCfr0E/temp_libpathaf275a605b00/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0’ #> In file included from /usr/share/R/include/R.h:71, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2/include/rxode2.h:9, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_shared.h:3, #> from rx_edd6c2bb8fc0df18bd2c37d123e584da_.c:115: #> /usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions [-Wpedantic] #> 80 | }; #> | ^ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> ipred ~ prop(RSV) #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • there are duplicate eta names, not renaming duplicate parameters #> • there are duplicate theta names, not renaming duplicate parameters #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData, $thetaMat, $dfSub, $dfObs #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/index.html","id":"external-projects-that-contributed-to-the-tools-validation","dir":"","previous_headings":"","what":"External projects that contributed to the tool’s validation","title":"nonmem2rx Converts NONMEM Models to rxode2","text":"nonmem2rx tool validated : PsN library test suite NONMEM listings (https://github.com/UUPharmacometrics/PsN/tree/master/test) ddmore model scrapings (https://github.com/dpastoor/ddmore_scraping). Models NONMEM design tutorial Bauer 2021 https://doi.org/10.1002/psp4.12713 Models NONMEM tutorial 1 (Bauer 2019) https://doi.org/10.1002/psp4.12404 Models NONMEM tutorial 2 (Bauer 2019) https://doi.org/10.1002/psp4.12422 Due sheer size zipped models nonmem control stream sources, excluded keep binary 3 mgs (CRAN requirement). However, like acknowledge helped projects. projects NONMEM conversion rxode2 made much robust. Still, tests /CRAN binaries, can test : Downloading repository Running tests devtools::test()","code":""},{"path":"/reference/as.nonmem2rx.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert a model to a nonmem2rx model — as.nonmem2rx","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"Convert model nonmem2rx model","code":""},{"path":"/reference/as.nonmem2rx.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"","code":"as.nonmem2rx(model1, model2, compress = TRUE)"},{"path":"/reference/as.nonmem2rx.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"model1 Input model 1 model2 Input model 2 compress boolean compress ui end","code":""},{"path":"/reference/as.nonmem2rx.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"nonmem2rx model","code":""},{"path":"/reference/as.nonmem2rx.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"Matthew L. Fidler","code":""},{"path":"/reference/as.nonmem2rx.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"","code":"# \\donttest{ mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), determineError=FALSE, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod2 <-function() { ini({ lcl <- 1.37034036528946 lvc <- 4.19814911033061 lq <- 1.38003493562413 lvp <- 3.87657341967489 RSV <- c(0, 0.196446108190896, 1) eta.cl ~ 0.101251418415006 eta.v ~ 0.0993872449483344 eta.q ~ 0.101302674763154 eta.v2 ~ 0.0730497519364148 }) model({ cmt(CENTRAL) cmt(PERI) cl <- exp(lcl + eta.cl) v <- exp(lvc + eta.v) q <- exp(lq + eta.q) v2 <- exp(lvp + eta.v2) v1 <- v scale1 <- v k21 <- q/v2 k12 <- q/v d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL f <- CENTRAL/scale1 f ~ prop(RSV) }) } new <- try(as.nonmem2rx(mod2, mod)) #> #> #> ℹ parameter labels from comments are typically ignored in non-interactive mode #> ℹ Need to run with the source intact to parse comments #> ℹ copy 'dfSub' to nonmem2rx model #> ℹ copy 'thetaMat' to nonmem2rx model #> ℹ copy 'dfObs' to nonmem2rx model #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done if (!inherits(new, \"try-error\")) print(new, page=1) #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> lcl lvc lq lvp RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta.cl eta.v eta.q eta.v2 #> eta.cl 0.1012514 0.00000000 0.0000000 0.00000000 #> eta.v 0.0000000 0.09938724 0.0000000 0.00000000 #> eta.q 0.0000000 0.00000000 0.1013027 0.00000000 #> eta.v2 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 lcl eta.cl id #> 2 lvc eta.v id #> 3 lq eta.q id #> 4 lvp eta.v2 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> thetaMat <- lotri({ #> lcl ~ c(lcl = 0.000887681) #> lvc ~ c(lcl = -0.00010551, lvc = 0.000871409) #> lq ~ c(lcl = 0.000184416, lvc = -0.000106195, lq = 0.00299336) #> lvp ~ c(lcl = -0.000120234, lvc = -5.06663e-05, lq = 0.000165252, #> lvp = 0.00121347) #> RSV ~ c(lcl = 5.2783e-08, lvc = -1.56562e-05, lq = 5.99331e-06, #> lvp = -2.53991e-05, RSV = 9.94218e-06) #> eta.cl ~ c(lcl = -4.71273e-05, lvc = 4.69667e-05, lq = -3.64271e-05, #> lvp = 2.54796e-05, RSV = -8.16885e-06, eta.cl = 0.000169296) #> eta.v ~ c(lcl = -7.37156e-05, lvc = 2.56634e-05, lq = -8.08349e-05, #> lvp = 1.37e-05, RSV = -4.36564e-06, eta.cl = 8.75181e-06, #> eta.v = 0.00015125) #> eta.q ~ c(lcl = 6.63383e-05, lvc = -8.19002e-05, lq = 0.000548985, #> lvp = 0.000168356, RSV = 1.59122e-06, eta.cl = 3.48714e-05, #> eta.v = 4.31593e-07, eta.q = 0.000959029) #> eta.v2 ~ c(lcl = -9.49661e-06, lvc = 0.000110108, lq = -0.000306537, #> lvp = -9.12897e-05, RSV = 3.1877e-06, eta.cl = 1.36628e-05, #> eta.v = -1.95096e-05, eta.q = -0.00012977, eta.v2 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> lcl <- 1.37034036528946 #> lvc <- 4.19814911033061 #> lq <- 1.38003493562413 #> lvp <- 3.87657341967489 #> RSV <- c(0, 0.196446108190896, 1) #> eta.cl ~ 0.101251418415006 #> eta.v ~ 0.0993872449483344 #> eta.q ~ 0.101302674763154 #> eta.v2 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(lcl + eta.cl) #> v <- exp(lvc + eta.v) #> q <- exp(lq + eta.q) #> v2 <- exp(lvp + eta.v2) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> f ~ prop(RSV) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol # }"},{"path":"/reference/autoplot.nonmem2rx.html","id":null,"dir":"Reference","previous_headings":"","what":"Autoplot nonmem2rx object — autoplot.nonmem2rx","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"Autoplot nonmem2rx object","code":""},{"path":"/reference/autoplot.nonmem2rx.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"","code":"# S3 method for class 'nonmem2rx' autoplot( object, ..., ncol = 3, nrow = 3, log = \"\", xlab = \"Time\", ylab = \"Predictions\", page = FALSE )"},{"path":"/reference/autoplot.nonmem2rx.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"object object, whose class determine behaviour autoplot ... ignored parameters nonmem2rx objects nrow, ncol Number rows columns log \"\" (neither x y), \"x\", \"y\", \"xy\" (\"yx\") log-scale? xlab, ylab x y axis labels page number page(s) individual plots, default (FALSE) pages print; can use TRUE pages print, list pages want print","code":""},{"path":"/reference/autoplot.nonmem2rx.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"ggplot2 object","code":""},{"path":"/reference/nmcov.html","id":null,"dir":"Reference","previous_headings":"","what":"Read in data file — nmcov","title":"Read in data file — nmcov","text":"Read data file","code":""},{"path":"/reference/nmcov.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read in data file — nmcov","text":"","code":"nmcov(file, ...)"},{"path":"/reference/nmcov.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read in data file — nmcov","text":"file file name read results ... parameters passed data.table::fread","code":""},{"path":"/reference/nmcov.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read in data file — nmcov","text":"matrix covariance step NONMEM","code":""},{"path":"/reference/nmcov.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Read in data file — nmcov","text":"Philip Delff Matthew L. Fidler","code":""},{"path":"/reference/nmcov.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read in data file — nmcov","text":"","code":"nmcov(system.file(\"mods/cpt/runODE032.cov\", package=\"nonmem2rx\")) #> THETA1 THETA2 THETA3 THETA4 THETA5 #> THETA1 8.87681e-04 -1.05510e-04 1.84416e-04 -1.20234e-04 5.27830e-08 #> THETA2 -1.05510e-04 8.71409e-04 -1.06195e-04 -5.06663e-05 -1.56562e-05 #> THETA3 1.84416e-04 -1.06195e-04 2.99336e-03 1.65252e-04 5.99331e-06 #> THETA4 -1.20234e-04 -5.06663e-05 1.65252e-04 1.21347e-03 -2.53991e-05 #> THETA5 5.27830e-08 -1.56562e-05 5.99331e-06 -2.53991e-05 9.94218e-06 #> SIGMA(1,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(1,1) -4.71273e-05 4.69667e-05 -3.64271e-05 2.54796e-05 -8.16885e-06 #> OMEGA(2,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(2,2) -7.37156e-05 2.56634e-05 -8.08349e-05 1.37000e-05 -4.36564e-06 #> OMEGA(3,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(3,2) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(3,3) 6.63383e-05 -8.19002e-05 5.48985e-04 1.68356e-04 1.59122e-06 #> OMEGA(4,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(4,2) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(4,3) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(4,4) -9.49661e-06 1.10108e-04 -3.06537e-04 -9.12897e-05 3.18770e-06 #> SIGMA(1,1) OMEGA(1,1) OMEGA(2,1) OMEGA(2,2) OMEGA(3,1) #> THETA1 0 -4.71273e-05 0 -7.37156e-05 0 #> THETA2 0 4.69667e-05 0 2.56634e-05 0 #> THETA3 0 -3.64271e-05 0 -8.08349e-05 0 #> THETA4 0 2.54796e-05 0 1.37000e-05 0 #> THETA5 0 -8.16885e-06 0 -4.36564e-06 0 #> SIGMA(1,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(1,1) 0 1.69296e-04 0 8.75181e-06 0 #> OMEGA(2,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(2,2) 0 8.75181e-06 0 1.51250e-04 0 #> OMEGA(3,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(3,2) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(3,3) 0 3.48714e-05 0 4.31593e-07 0 #> OMEGA(4,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(4,2) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(4,3) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(4,4) 0 1.36628e-05 0 -1.95096e-05 0 #> OMEGA(3,2) OMEGA(3,3) OMEGA(4,1) OMEGA(4,2) OMEGA(4,3) #> THETA1 0 6.63383e-05 0 0 0 #> THETA2 0 -8.19002e-05 0 0 0 #> THETA3 0 5.48985e-04 0 0 0 #> THETA4 0 1.68356e-04 0 0 0 #> THETA5 0 1.59122e-06 0 0 0 #> SIGMA(1,1) 0 0.00000e+00 0 0 0 #> OMEGA(1,1) 0 3.48714e-05 0 0 0 #> OMEGA(2,1) 0 0.00000e+00 0 0 0 #> OMEGA(2,2) 0 4.31593e-07 0 0 0 #> OMEGA(3,1) 0 0.00000e+00 0 0 0 #> OMEGA(3,2) 0 0.00000e+00 0 0 0 #> OMEGA(3,3) 0 9.59029e-04 0 0 0 #> OMEGA(4,1) 0 0.00000e+00 0 0 0 #> OMEGA(4,2) 0 0.00000e+00 0 0 0 #> OMEGA(4,3) 0 0.00000e+00 0 0 0 #> OMEGA(4,4) 0 -1.29770e-04 0 0 0 #> OMEGA(4,4) #> THETA1 -9.49661e-06 #> THETA2 1.10108e-04 #> THETA3 -3.06537e-04 #> THETA4 -9.12897e-05 #> THETA5 3.18770e-06 #> SIGMA(1,1) 0.00000e+00 #> OMEGA(1,1) 1.36628e-05 #> OMEGA(2,1) 0.00000e+00 #> OMEGA(2,2) -1.95096e-05 #> OMEGA(3,1) 0.00000e+00 #> OMEGA(3,2) 0.00000e+00 #> OMEGA(3,3) -1.29770e-04 #> OMEGA(4,1) 0.00000e+00 #> OMEGA(4,2) 0.00000e+00 #> OMEGA(4,3) 0.00000e+00 #> OMEGA(4,4) 5.10190e-04"},{"path":"/reference/nmext.html","id":null,"dir":"Reference","previous_headings":"","what":"Reads the NONMEM .ext file for final parameter information — nmext","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"Reads NONMEM .ext file final parameter information","code":""},{"path":"/reference/nmext.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"","code":"nmext(file)"},{"path":"/reference/nmext.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"file File list located","code":""},{"path":"/reference/nmext.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"return list $theta, $eta $eps","code":""},{"path":"/reference/nmext.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"Matthew L. Fidler","code":""},{"path":"/reference/nmext.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"","code":"nmext(system.file(\"run001.ext\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 theta6 #> 26.29090000 1.34809000 4.20364000 0.20795800 0.20461000 0.01055270 #> theta7 #> 0.00717161 #> #> $omega #> eta1 eta2 eta3 #> eta1 0.0729525 0.0000000 0.00000 #> eta2 0.0000000 0.0380192 0.00000 #> eta3 0.0000000 0.0000000 1.90699 #> #> $sigma #> eps1 #> eps1 1 #> #> $objf #> [1] -1403.905 #>"},{"path":"/reference/nminfo.html","id":null,"dir":"Reference","previous_headings":"","what":"Get the most accurate information you can get from NONMEM — nminfo","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"Get accurate information can get NONMEM","code":""},{"path":"/reference/nminfo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"","code":"nminfo( file, mod = \".mod\", xml = \".xml\", ext = \".ext\", cov = \".cov\", phi = \".phi\", lst = \".lst\", useXml = TRUE, useExt = TRUE, useCov = TRUE, usePhi = TRUE, useLst = TRUE, strictLst = FALSE, verbose = FALSE )"},{"path":"/reference/nminfo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"file nonmem file, like control stream, phi. function remove extension try get right information. preferentially selects accurate estimates file. mod NONMEM output extension, defaults .mod xml NONMEM xml file extension , defaults .xml ext NONMEM ext file extension, defaults .ext cov NONMEM covariance file extension, defaults .cov phi NONMEM eta/phi file extension, defaults .phi lst NONMEM output extension, defaults .lst useXml present, use NONMEM xml file import much NONMEM information useExt present, use NONMEM ext file extract parameter estimates (default TRUE), otherwise defaults parameter estimates extracted NONMEM output useCov present, use NONMEM cov file import covariance, otherwise import covariance list file usePhi present, use NONMEM phi file extract etas (default TRUE), otherwise defaults etas tables (present) useLst present, use NONMEM lst file extract NONMEM information strictLst list parsing needs correct successful load (default FALSE). verbose flag verbose reading information , default FALSE","code":""},{"path":"/reference/nminfo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"list NONMEM information","code":""},{"path":"/reference/nminfo.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"Matthew L. Fidler","code":""},{"path":"/reference/nminfo.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"","code":"nminfo(system.file(\"mods/cpt/runODE032.res\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> $cov #> theta1 theta2 theta3 theta4 theta5 #> theta1 8.876810e-04 -1.055098e-04 1.844162e-04 -1.202337e-04 5.278300e-08 #> theta2 -1.055098e-04 8.714095e-04 -1.061946e-04 -5.066632e-05 -1.565618e-05 #> theta3 1.844162e-04 -1.061946e-04 2.993363e-03 1.652516e-04 5.993313e-06 #> theta4 -1.202337e-04 -5.066632e-05 1.652516e-04 1.213465e-03 -2.539912e-05 #> theta5 5.278300e-08 -1.565618e-05 5.993313e-06 -2.539912e-05 9.942182e-06 #> eta1 -4.712728e-05 4.696667e-05 -3.642709e-05 2.547962e-05 -8.168847e-06 #> omega.1.2 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta2 -7.371560e-05 2.566338e-05 -8.083493e-05 1.369999e-05 -4.365635e-06 #> omega.2.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.2.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta3 6.633832e-05 -8.190016e-05 5.489848e-04 1.683555e-04 1.591222e-06 #> omega.3.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta4 -9.496613e-06 1.101079e-04 -3.065372e-04 -9.128974e-05 3.187703e-06 #> eps1 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta1 omega.1.2 omega.1.3 omega.1.4 eta2 omega.2.3 #> theta1 -4.712728e-05 0 0 0 -7.371560e-05 0 #> theta2 4.696667e-05 0 0 0 2.566338e-05 0 #> theta3 -3.642709e-05 0 0 0 -8.083493e-05 0 #> theta4 2.547962e-05 0 0 0 1.369999e-05 0 #> theta5 -8.168847e-06 0 0 0 -4.365635e-06 0 #> eta1 1.692964e-04 0 0 0 8.751806e-06 0 #> omega.1.2 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta2 8.751806e-06 0 0 0 1.512503e-04 0 #> omega.2.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta3 3.487139e-05 0 0 0 4.315929e-07 0 #> omega.3.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta4 1.366281e-05 0 0 0 -1.950959e-05 0 #> eps1 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 eta3 omega.3.4 eta4 eps1 #> theta1 0 6.633832e-05 0 -9.496613e-06 0 #> theta2 0 -8.190016e-05 0 1.101079e-04 0 #> theta3 0 5.489848e-04 0 -3.065372e-04 0 #> theta4 0 1.683555e-04 0 -9.128974e-05 0 #> theta5 0 1.591222e-06 0 3.187703e-06 0 #> eta1 0 3.487139e-05 0 1.366281e-05 0 #> omega.1.2 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.4 0 0.000000e+00 0 0.000000e+00 0 #> eta2 0 4.315929e-07 0 -1.950959e-05 0 #> omega.2.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.2.4 0 0.000000e+00 0 0.000000e+00 0 #> eta3 0 9.590290e-04 0 -1.297699e-04 0 #> omega.3.4 0 0.000000e+00 0 0.000000e+00 0 #> eta4 0 -1.297699e-04 0 5.101895e-04 0 #> eps1 0 0.000000e+00 0 0.000000e+00 0 #> #> $objf #> [1] 20167.64 #> #> $nobs #> [1] 2280 #> #> $nsub #> [1] 120 #> #> $nmtran #> [1] \"\\n\\n WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\\n\" #> #> $termInfo #> [1] \"\\n0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 320\\n NO. OF SIG. DIGITS IN FINAL EST.: 2.5\\n\" #> #> $nonmem #> [1] \"7.4.3\" #> #> $time #> [1] 100.95 #> #> $tere #> [1] \" Elapsed estimation time in seconds: 71.95\\n Elapsed covariance time in seconds: 28.38\\n Elapsed postprocess time in seconds: 0.43\" #> #> $control #> [1] \"\" #> [2] \"$PROB BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> [3] \"$INPUT ID TIME DV LNDV MDV AMT EVID DOSE V1I CLI QI V2I SSX IIX SD CMT\" #> [4] \"$DATA BOLUS_2CPT.csv IGNORE=@ IGNORE (SD.EQ.0)\" #> [5] \"$SUBR ADVAN13 TOL=6\" #> [6] \"$MODEL\" #> [7] \" COMP=(CENTRAL,DEFOBS,DEFDOSE)\" #> [8] \" COMP=(PERI)\" #> [9] \"$PK\" #> [10] \" CL=EXP(THETA(1)+ETA(1))\" #> [11] \" V=EXP(THETA(2)+ETA(2))\" #> [12] \" Q=EXP(THETA(3)+ETA(3))\" #> [13] \" V2=EXP(THETA(4)+ETA(4))\" #> [14] \" V1=V\" #> [15] \" S1=V\" #> [16] \"\\t\\t K21=Q/V2\" #> [17] \"\\t\\t K12=Q/V\" #> [18] \"$DES\" #> [19] \" DADT(1)= K21*A(2)-K12*A(1)-CL*A(1)/V1\" #> [20] \" DADT(2)=-K21*A(2)+K12*A(1) \\t\\t\" #> [21] \"$ERROR\" #> [22] \" IPRED = F\" #> [23] \" RESCV = THETA(5)\" #> [24] \" W = IPRED*RESCV\" #> [25] \" IRES = DV-IPRED\" #> [26] \" IWRES = IRES/W\" #> [27] \" Y = IPRED+W*EPS(1)\" #> [28] \"$THETA 1.6 ;log Cl\" #> [29] \"$THETA 4.5 ;log Vc\" #> [30] \"$THETA 1.6 ;log Q\" #> [31] \"$THETA 4 ;log Vp\" #> [32] \"$THETA (0,0.3,1) ;RSV\" #> [33] \"$OMEGA 0.15 0.15 0.15 0.15\" #> [34] \"$SIGMA 1 FIX\" #> [35] \"$EST NSIG=2 SIGL=6 PRINT=5 MAX=9999 NOABORT POSTHOC METHOD=COND INTER NOOBT\" #> [36] \"$COV\" #> [37] \"$TABLE ID TIME LNDV MDV AMT EVID DOSE V1I CLI QI V2I CL V Q V2 ETA1 ETA2 ETA3 ETA4\" #> [38] \" IPRED IRES IWRES CWRESI\" #> [39] \" ONEHEADER NOPRINT FILE=runODE032.csv\" #> #> $eta #> ID eta1 eta2 eta3 eta4 #> 1 1 -0.14424000 0.37464400 0.06501120 0.240662000 #> 2 2 0.56765200 -0.17515700 0.35129700 0.068655100 #> 3 3 0.47739800 -0.05753220 -0.07838230 -0.029594800 #> 4 4 -0.59588800 0.40511500 0.06595780 -0.104262000 #> 5 5 -0.32363600 0.27545000 0.02914670 0.251918000 #> 6 6 0.23277900 0.16120000 -0.00238193 0.064909600 #> 7 7 0.60699200 0.01759660 0.11880500 -0.028699900 #> 8 8 0.31283200 -0.53217800 -0.06375310 -0.221174000 #> 9 9 0.29495300 0.05832140 0.10949400 0.231407000 #> 10 10 0.14195300 -0.24786400 -0.17256300 -0.254001000 #> 11 11 -0.27053800 -0.23474000 -0.15745700 0.170349000 #> 12 12 -0.42602800 0.42758100 0.07017320 -0.075792800 #> 13 13 0.08017620 0.75176000 -0.00136251 0.045172700 #> 14 14 -0.12636300 -0.10582300 -0.08585340 0.020315600 #> 15 15 0.38692100 0.15867700 -0.00800554 0.108208000 #> 16 16 0.27036200 0.18321400 -0.00419876 0.374298000 #> 17 17 0.23923600 -0.32492200 -0.40412600 0.249456000 #> 18 18 -0.00269962 0.15345600 0.08357370 0.229613000 #> 19 19 0.13841300 -0.54122300 -0.03773240 0.296767000 #> 20 20 -0.46801300 -0.20000400 0.22992100 0.519881000 #> 21 21 0.28046300 0.19223800 -0.24784800 -0.053553600 #> 22 22 -0.00235221 0.10750900 -0.01570640 -0.170039000 #> 23 23 0.43714700 -0.09834960 0.20282200 -0.291774000 #> 24 24 -0.22670500 0.10172000 -0.06534150 0.019352400 #> 25 25 0.33364600 0.05095240 0.12533900 -0.284328000 #> 26 26 -0.15186700 -0.26233000 0.02811900 -0.065962400 #> 27 27 -0.28479700 -0.07478660 -0.02914140 -0.074459200 #> 28 28 0.04748590 0.17603800 0.11330300 0.116149000 #> 29 29 0.11232300 -0.42770200 -0.12393100 0.112370000 #> 30 30 -0.10120700 0.24156700 0.18911800 0.022527100 #> 31 31 0.26038200 -0.31787200 -0.46396000 -0.057012300 #> 32 32 0.02265670 -0.12159100 0.09948040 -0.044713800 #> 33 33 -0.31068700 -0.50537800 0.11857700 -0.072940000 #> 34 34 0.15974200 -0.00581950 -0.14293700 0.026960100 #> 35 35 0.05689450 -0.18707700 0.13855200 -0.038802000 #> 36 36 -0.04149100 0.01467420 0.24871300 0.235971000 #> 37 37 -0.28270600 0.18864700 -0.14675500 0.002239020 #> 38 38 -0.39544100 -0.17566300 0.03086270 0.160316000 #> 39 39 -0.44801000 -0.23339500 -0.05457800 0.034569300 #> 40 40 -0.40352400 0.71639900 0.03388700 -0.050975100 #> 41 41 -0.09660390 0.37159800 -0.14032900 -0.163309000 #> 42 42 0.40655200 -0.19898700 0.09422060 0.014364700 #> 43 43 0.06365490 -0.23971500 0.18403100 0.024279300 #> 44 44 0.73216500 0.15155300 0.08640920 -0.070061900 #> 45 45 0.69482300 -0.33599300 -0.45285800 0.327398000 #> 46 46 -0.15903400 -0.49138700 0.08631480 -0.326643000 #> 47 47 -0.32692500 0.52906500 0.15525900 -0.002167200 #> 48 48 0.34205600 0.43590800 0.10205300 0.117408000 #> 49 49 0.15624900 0.12570800 -0.18659000 0.162904000 #> 50 50 0.20167200 -0.27862400 -0.10363700 -0.611866000 #> 51 51 0.28569900 -0.05298130 -0.31277400 0.482237000 #> 52 52 -0.17925200 0.23186600 0.13349000 0.110341000 #> 53 53 -0.20669600 -0.28473000 0.14233500 0.082932900 #> 54 54 -0.14132400 0.37939300 -0.05261020 0.029393800 #> 55 55 -0.11181300 -0.32678600 0.16299000 -0.070609600 #> 56 56 -0.63672900 0.58485000 0.10498900 0.013498600 #> 57 57 -0.21507100 -0.22916600 -0.28756200 0.178900000 #> 58 58 0.35806700 -0.05416930 0.40838100 -0.276384000 #> 59 59 0.05910530 -0.44828200 -0.12018000 0.218146000 #> 60 60 0.10759500 -0.04209500 0.29418100 -0.106099000 #> 61 61 0.37837000 -0.07172710 -0.08466650 0.199045000 #> 62 62 -0.27696000 -0.14019400 -0.10502100 0.037360700 #> 63 63 -0.72832600 0.33906900 0.15471800 -0.157963000 #> 64 64 0.38560500 -0.12710600 0.12557100 -0.306528000 #> 65 65 0.16094300 -0.16399700 -0.15446100 0.044445100 #> 66 66 0.69667500 0.34464000 0.13533300 -0.455244000 #> 67 67 0.44275200 0.12776100 0.36124600 -0.412007000 #> 68 68 -0.19654600 0.11443100 0.10645000 -0.590975000 #> 69 69 -0.05818240 -0.08413010 -0.05650970 0.263846000 #> 70 70 0.14952100 0.39368100 -0.04981730 0.191504000 #> 71 71 -0.33740700 0.10570800 0.19619900 0.155928000 #> 72 72 -0.69872100 -0.51533700 0.04396320 0.000846648 #> 73 73 0.01076690 0.61540700 0.09002220 0.178556000 #> 74 74 0.20712900 -0.21042600 -0.05817590 0.137012000 #> 75 75 0.36452900 0.00945768 0.01538820 -0.102007000 #> 76 76 -0.06147530 -0.01864860 0.03956850 0.025404600 #> 77 77 0.14755500 -0.33821000 0.08060850 -0.104637000 #> 78 78 0.05043080 -0.14039200 -0.06552990 0.037271100 #> 79 79 -0.13078600 -0.28282800 0.17856900 -0.255775000 #> 80 80 -0.04714240 0.13484500 0.18002800 0.108969000 #> 81 81 0.03155160 -0.21060600 0.14035000 0.089137500 #> 82 82 0.37108300 -0.31208900 -0.23774900 0.026305200 #> 83 83 0.25148300 0.61218800 0.10758100 -0.176849000 #> 84 84 -0.18963100 0.04943880 -0.04214050 0.102070000 #> 85 85 0.33298700 0.27384800 0.16310000 0.033666000 #> 86 86 -0.23812200 -0.16038400 -0.08634300 -0.058731500 #> 87 87 0.38391600 0.04119620 -0.27643800 0.147468000 #> 88 88 -0.10298800 0.19976700 -0.15661500 -0.200062000 #> 89 89 -0.15166600 0.41495400 0.09549760 -0.065032300 #> 90 90 0.01407440 0.29514700 0.19409100 0.135821000 #> 91 91 -0.41928800 -0.60078300 -0.32863400 0.113174000 #> 92 92 -0.06073560 -0.19536500 0.16977300 -0.191269000 #> 93 93 -0.08957630 0.22526300 0.09766250 0.051171900 #> 94 94 -0.59527900 0.44926000 0.09443550 -0.091018700 #> 95 95 -0.52511800 0.04418750 -0.49548800 -0.187676000 #> 96 96 0.00218837 -0.08893150 0.05216140 -0.087904800 #> 97 97 -0.01221490 -0.62926800 -0.21896700 0.167880000 #> 98 98 -0.06611430 -0.48380600 0.25682800 0.089878300 #> 99 99 0.28847000 -0.12401300 0.31547400 -0.042283500 #> 100 100 0.16767600 -0.18271000 0.12634200 -0.288271000 #> 101 101 0.13754700 -0.01918670 0.28368400 0.137620000 #> 102 102 0.27452300 0.47222900 0.07034760 0.106941000 #> 103 103 -0.11568100 0.11760300 0.18951200 -0.043268100 #> 104 104 0.06801260 0.05801770 -0.04669300 -0.144975000 #> 105 105 -0.16200900 0.16523000 0.48384200 0.205917000 #> 106 106 -0.10389900 0.39249200 -0.01162800 0.112158000 #> 107 107 -0.46541000 -0.16248700 -0.22631000 0.026516500 #> 108 108 -0.56156500 -0.20425100 0.08323350 -0.067884700 #> 109 109 -0.02578220 0.29599700 -0.03974570 0.154768000 #> 110 110 0.05554480 -0.76315700 -0.49552200 0.011846900 #> 111 111 -0.50922900 0.07079820 -0.10147900 -0.116094000 #> 112 112 -0.19079300 0.30565000 -0.02401360 -0.072402000 #> 113 113 -0.03288730 -0.26397800 0.41920200 -0.419513000 #> 114 114 0.17266700 -0.21803900 -0.23855700 -0.024368500 #> 115 115 0.07875010 0.12835600 0.11664400 -0.218375000 #> 116 116 -0.32527700 0.16564300 -0.00834690 0.059186700 #> 117 117 -0.05887220 -0.37614800 0.09676570 -0.281402000 #> 118 118 -0.13482900 0.25191100 -0.22708900 -0.139859000 #> 119 119 0.10252400 -0.40742900 -0.28432200 0.146728000 #> 120 120 0.55679800 -0.17809900 -0.18922100 -0.178665000 #> #> $uses #> [1] \"xml\" \"ext\" \"phi\" \"lst\" #> #> $thetaSource #> [1] \"xml\" #> #> $omegaSource #> [1] \"xml\" #> #> $covSource #> [1] \"xml\" #> #> $objfSource #> [1] \"xml\" #> #> $sigma #> eps1 #> eps1 1 #> #> $sigmaSource #> [1] \"ext\" #>"},{"path":"/reference/nmlst.html","id":null,"dir":"Reference","previous_headings":"","what":"Reads the NONMEM .lst file for final parameter information — nmlst","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"Reads NONMEM .lst file final parameter information","code":""},{"path":"/reference/nmlst.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"","code":"nmlst(file, strictLst = FALSE)"},{"path":"/reference/nmlst.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"file File list located strictLst list parsing needs correct successful load (default FALSE).","code":""},{"path":"/reference/nmlst.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"return list $theta, $eta $eps information control stream","code":""},{"path":"/reference/nmlst.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"Matthew L. Fidler","code":""},{"path":"/reference/nmlst.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"","code":"nmlst(system.file(\"mods/DDMODEL00000322/HCQ1CMT.lst\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 15.700 861.000 9.300 0.746 1.380 #> #> $omega #> eta1 eta2 #> eta1 0.149 0.000 #> eta2 0.000 0.272 #> #> $sigma #> eps1 #> eps1 0.0286 #> #> $cov #> NULL #> #> $objf #> [1] 865.901 #> #> $nobs #> [1] 76 #> #> $nsub #> [1] 48 #> #> $nmtran #> [1] \"WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n(WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\" #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\nNO. OF FUNCTION EVALUATIONS USED: 120\\nNO. OF SIG. DIGITS IN FINAL EST.: 3.1\" #> #> $nonmem #> [1] \"7.3.0\" #> #> $time #> [1] 68.17 #> #> $tere #> [1] \"Elapsed estimation time in seconds: 26.44\\n0R MATRIX ALGORITHMICALLY SINGULAR\\nAND ALGORITHMICALLY NON-POSITIVE-SEMIDEFINITE\\n0R MATRIX IS OUTPUT\\n0COVARIANCE STEP ABORTED\\nElapsed covariance time in seconds: 41.73\" #> #> $control #> [1] \";; Description:\" #> [2] \";; Author: user\" #> [3] \"$PROBLEM HCQ 1CMT ORAL PK MODEL (BASED ON CARMICHAEL ET AL (2003))\" #> [4] \"; ------------dataset------------\" #> [5] \"$INPUT ID SEX WT AGE TIME AMT ADDL II CMT DV MDV EVID\" #> [6] \"$DATA HCQdata5.csv IGNORE=@\" #> [7] \"\" #> [8] \"; ------------model------------\" #> [9] \"$SUBROUTINE ADVAN2 TRANS2\" #> [10] \"$PK\" #> [11] \"\" #> [12] \"TVCL=THETA(1)*((WT/80)**THETA(5));*((AGE/57)**THETA(5));\" #> [13] \"TVV=THETA(2)\" #> [14] \"TVKA=THETA(3)\" #> [15] \"TVF1=THETA(4)\" #> [16] \"; TVALAG1=THETA(4)\" #> [17] \"\" #> [18] \"\" #> [19] \"CL=TVCL*EXP(ETA(1))\" #> [20] \"V=TVV*EXP(ETA(2))\" #> [21] \"KA=TVKA;*EXP(ETA(3))\" #> [22] \"F1=TVF1;*EXP(ETA(4))\" #> [23] \"; ALAG1=TVALAG1;*EXP(ETA(3))\" #> [24] \"\" #> [25] \"\" #> [26] \"; scaling factor\" #> [27] \"KE=CL/V\" #> [28] \"S2=V/1000 ; dose [mg] and conc. [ng/mL]\" #> [29] \"\" #> [30] \"\" #> [31] \"$ERROR\" #> [32] \"Y=F*(1+EPS(1));+EPS(2)\" #> [33] \"W=F\" #> [34] \"\" #> [35] \"IPRED=F ; prediction individuelle\" #> [36] \"IRES=DV-IPRED ; (individual-specific residual)\" #> [37] \"IWRES=IRES/W ; (individual-specific weighted residual)\" #> [38] \"\" #> [39] \"\" #> [40] \"\" #> [41] \"$THETA (0,14.9207) ; CL\" #> [42] \"$THETA (0,861.385) ; V\" #> [43] \"$THETA (0,9.3023,10) ; KA\" #> [44] \"$THETA (0,0.746) FIX ; F1\" #> [45] \";$THETA (0,0.00445) ; ALAG1\" #> [46] \"$THETA 1.20407 ; WTonCL\" #> [47] \"$OMEGA 0.163126 ; IIVCL\" #> [48] \"0.27101 ; IIVV\" #> [49] \"; 0.94 ; IVVKA\" #> [50] \"; 0.004 FIXED ; IIVF\" #> [51] \"; 0.02 ; IIVALAG\" #> [52] \"$SIGMA 0.0290039 ; epsPROP1\" #> [53] \";0.000365773 ; epsADD1\" #> [54] \"$ESTIMATION METHOD=1 INTER MAXEVAL=9999 PRINT=5 SIG=3 POSTHOC\" #> [55] \"; standard error of estimates :\" #> [56] \"$COVARIANCE\" #> [57] \"$TABLE ID SEX WT AGE TIME DV PRED CPRED IPRED EVID RES WRES IRES\" #> [58] \"IWRES CWRES NPDE ESAMPLE=300 NOPRINT FILE=pred\" #> [59] \"; population and individual predictions and residuals\" #> [60] \"$TABLE ID SEX WT AGE CL V KA ETA(1) ETA(2) NOPRINT NOAPPEND\" #> [61] \"FIRSTONLY FILE=param\" #> [62] \"; individual PK parameters (bayesiens,posthoc)\" #> [63] \"\" #> [64] \"\" #> nmlst(system.file(\"mods/DDMODEL00000302/run1.lst\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> -4.5300 -9.6900 -0.3270 0.0145 0.4340 #> #> $omega #> eta1 #> eta1 0 #> #> $sigma #> NULL #> #> $cov #> theta1 theta2 theta3 theta4 theta5 eta1 #> theta1 0.199000 -0.219000 3.45e-02 -2.73e-04 -2.53e-03 0 #> theta2 -0.219000 0.262000 -3.84e-02 1.42e-04 -1.24e-02 0 #> theta3 0.034500 -0.038400 8.26e-03 -3.99e-05 9.20e-04 0 #> theta4 -0.000273 0.000142 -3.99e-05 1.76e-05 2.31e-05 0 #> theta5 -0.002530 -0.012400 9.20e-04 2.31e-05 2.36e-02 0 #> eta1 0.000000 0.000000 0.00e+00 0.00e+00 0.00e+00 0 #> #> $objf #> [1] 2515.122 #> #> $nobs #> [1] 693 #> #> $nsub #> [1] 693 #> #> $nmtran #> [1] \"WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n(WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\\n\\n(WARNING 3) THERE MAY BE AN ERROR IN THE ABBREVIATED CODE. THE FOLLOWING\\nONE OR MORE RANDOM VARIABLES ARE DEFINED WITH \\\"IF\\\" STATEMENTS THAT DO NOT\\nPROVIDE DEFINITIONS FOR BOTH THE \\\"THEN\\\" AND \\\"ELSE\\\" CASES. IF ALL\\nCONDITIONS FAIL, THE VALUES OF THESE VARIABLES WILL BE ZERO.\\n\\nY\\n\\n\\n(WARNING 90) WITH \\\"NUMERICAL\\\", \\\"SLOW\\\" IS ALSO REQUIRED ON $ESTIM RECORD.\\nNM-TRAN HAS SUPPLIED THIS OPTION.\\n\\n(WARNING 97) A RANDOM QUANTITY IS RAISED TO A POWER. IF THE RESULT AFFECTS\\nTHE VALUE OF THE OBJECTIVE FUNCTION, THE USER SHOULD ENSURE THAT THE\\nRANDOM QUANTITY IS NEVER 0 WHEN THE POWER IS < 1.\\n\\n(WARNING 48) DES-DEFINED ITEMS ARE COMPUTED ONLY WHEN EVENT TIME\\nINCREASES. E.G., DISPLAYED VALUES ASSOCIATED WITH THE FIRST EVENT RECORD\\nOF AN INDIVIDUAL RECORD ARE COMPUTED WITH (THE LAST ADVANCE TO) AN EVENT\\nTIME OF THE PRIOR INDIVIDUAL RECORD.\\n\\n(WARNING 27) THE ABBREVIATED CODE CONTAINS A SIMULATION BLOCK BUT THERE IS\\nNO $SIMULATION RECORD.\" #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\nHOWEVER, PROBLEMS OCCURRED WITH THE MINIMIZATION.\\nREGARD THE RESULTS OF THE ESTIMATION STEP CAREFULLY, AND ACCEPT THEM ONLY\\nAFTER CHECKING THAT THE COVARIANCE STEP PRODUCES REASONABLE OUTPUT.\\nNO. OF FUNCTION EVALUATIONS USED: 74\\nNO. OF SIG. DIGITS IN FINAL EST.: 3.4\" #> #> $nonmem #> [1] \"7.3.0\" #> #> $time #> [1] 4.43 #> #> $tere #> [1] \"Elapsed estimation time in seconds: 3.72\\nElapsed covariance time in seconds: 0.71\" #> #> $control #> [1] \";; 1. Based on: run200\" #> [2] \";; 2. Description: Final model, posthoc PK based on published unified model. Prityfied code\" #> [3] \";; x1. Author: Matts\" #> [4] \"$SIZES NO=3000 LIM6=1000\" #> [5] \"$PROBLEM PN survival model With individual PK\" #> [6] \"; Implemented flip comments using PsN (e.g. sim_start and sim_end to define code to be used for VPC simulations).\" #> [7] \"\" #> [8] \";Sim_start\" #> [9] \"$INPUT MID TIME DUR RATE AMT EVID CMT DV CENS CENSD STUD ADC NDOS\" #> [10] \"NAMT_MAX PL_DOSE AV_DOSE CUMDOSE DFREQ ;18\" #> [11] \"RITUX SEXX AGE BW BHT RACE BMI BSA CTYPE ALB BUN BSLD=DROP\" #> [12] \"PDUR=DROP PCPLAT PCTAX PCVINCA PCPROT ;34\" #> [13] \"PPN DIAB ECOG1 DSBUILD=DROP PK ID ET1 ET2 ET3 ET4 ET5 ET6 ;48\" #> [14] \"$DATA nonmem_gr2_Nov13_2018.csv IGNORE=@ IGNORE(TIME.LT.0)\" #> [15] \"IGNORE(STUD.EQ.29006) IGNORE(ID.EQ.639)\" #> [16] \"; 13 patients\" #> [17] \"; Unrealistic PK\" #> [18] \"\" #> [19] \";$INPUT MID TIME DUR RATE AMT EVID CMT DV CENS CENSD STUD ADC NDOS NAMT_MAX PL_DOSE AV_DOSE CUMDOSE DFREQ\" #> [20] \"\" #> [21] \"; RITUX SEXX AGE BW BHT RACE BMI BSA CTYPE ALB BUN BSLD=DROP PDUR=DROP PCPLAT PCTAX PCVINCA PCPROT\" #> [22] \"\" #> [23] \"; PPN DIAB ECOG1 DSBUILD=DROP ET1 ET2 ET3 ET4 ET5 ET6 PK ID\" #> [24] \"\" #> [25] \";\" #> [26] \"\" #> [27] \"; $DATA ../data/nonmem_gr2_Nov13_2018_sim.csv IGNORE=@\" #> [28] \"\" #> [29] \"; IGNORE(TIME.LT.0)\" #> [30] \"\" #> [31] \"; IGNORE(STUD.EQ.29006) ; 13 patients\" #> [32] \"\" #> [33] \"; IGNORE(ID.EQ.639) ; Unrealistic PK\" #> [34] \"\" #> [35] \";Sim_end\" #> [36] \"$SUBROUTINE ADVAN13 TRANS1 TOL=6\" #> [37] \"$MODEL COMP=(central) COMP=(peri) COMP=(effcpt) COMP=(cumhaz)\" #> [38] \"COMP=(trcpt) COMP(AUC)\" #> [39] \"$PK\" #> [40] \";for simulation\" #> [41] \"RTTE=0\" #> [42] \";end for simulation\" #> [43] \"\" #> [44] \"; Covariate imputations etc\" #> [45] \"ageRef = 65\" #> [46] \"albref=4.0\" #> [47] \"bunref=16\" #> [48] \"bodyWeightRef=85 ; Male\" #> [49] \"\" #> [50] \"IF(SEXX.EQ.1) SEX=1 ; Male\" #> [51] \"IF(SEXX.EQ.2) THEN\" #> [52] \"SEX=0 ; Female\" #> [53] \"bodyWeightRef=68\" #> [54] \"ENDIF\" #> [55] \"\" #> [56] \"BWT=BW\" #> [57] \"IF(BW.EQ.-99) BWT=bodyWeightRef\" #> [58] \"\" #> [59] \"; PK parameters\" #> [60] \"\" #> [61] \"THETA1=0.312;1 CL\" #> [62] \"THETA2=1.21;2 V1\" #> [63] \"THETA3= 0.957;3 V2\" #> [64] \"THETA4= -1.02;4 Q\" #> [65] \"THETA5= 1.48;5 KDES\" #> [66] \"THETA6= 1.02;6 CLT\" #> [67] \"THETA7= 0.476;7 WT to CLinf\" #> [68] \"THETA8= 0.527;8 WT to V1\" #> [69] \"THETA9= 0.484;9 WT to 2\" #> [70] \"THETA10= 0.303;10 WT to Q\" #> [71] \"THETA11= 0.149;11 SEX to V1\" #> [72] \"THETA12= 0.223;12 SEX to V\" #> [73] \"THETA13= -0.212;13 power NDOS to CL\" #> [74] \"\" #> [75] \"LWT75 = LOG(BWT/75)\" #> [76] \"MUX1 = THETA1+THETA7*LWT75 +THETA13*LOG(NDOS/2.4)\" #> [77] \"MUX2 = THETA2+THETA8*LWT75+THETA11*SEX\" #> [78] \"MUX3 = THETA3+THETA9*LWT75+THETA12*SEX\" #> [79] \"MUX4 = THETA4+THETA10*LWT75\" #> [80] \"MUX5 = THETA5\" #> [81] \"MUX6 = THETA6\" #> [82] \"\" #> [83] \"CLINF = EXP(MUX1+ET1)\" #> [84] \"V1 = EXP(MUX2+ET2)\" #> [85] \"V2 = EXP(MUX3+ET3)\" #> [86] \"Q = EXP(MUX4+ET4)\" #> [87] \"KDES = EXP(MUX5+ET5)\" #> [88] \"CLT = EXP(MUX6+ET6)\" #> [89] \"\" #> [90] \"S1 = V1/1000\" #> [91] \"\" #> [92] \";Reparameterization\" #> [93] \"K12 = Q/V1\" #> [94] \"K21 = Q/V2\" #> [95] \"\" #> [96] \"; PD parameters\" #> [97] \"LOGKTR = THETA(1)+ETA(1) ; Eta1 Fixed to zero\" #> [98] \"KTR = EXP(LOGKTR) ; first order transit rate to and from transit and effect compartment\" #> [99] \"ALPHA = EXP(THETA(2)) ; slope of drug effect\" #> [100] \"BETA = EXP(THETA(3)) ; weibul function parameter\" #> [101] \"\" #> [102] \"covar = THETA(4) * (BWT - 75) + THETA(5) * PPN ; covariate effects on Hazard\" #> [103] \"\" #> [104] \"$DES\" #> [105] \"; PK model\" #> [106] \"CL = CLT * EXP(-KDES * T) + CLINF\" #> [107] \"K10 = CL / V1\" #> [108] \"\" #> [109] \"DADT(1) = K21 * A(2) - K12 * A(1) - K10 * A(1)\" #> [110] \"DADT(2) = -K21 * A(2) + K12 * A(1)\" #> [111] \"CPT = A(1) / S1\" #> [112] \"\" #> [113] \"; PD model\" #> [114] \"DADT(5) = KTR * CPT - KTR * A(5) ; Transit compartment\" #> [115] \"DADT(3) = KTR * A(5) - KTR * A(3) ; Effect compartment\" #> [116] \"A5=A(5)\" #> [117] \"A3=A(3)\" #> [118] \"\" #> [119] \"EDRUGT = ALPHA * A(3)\" #> [120] \"HAZT = 0\" #> [121] \"IF(T > 0) HAZT = BETA * (EDRUGT**BETA) * (T**(BETA - 1)) * EXP(covar); WEIBULL (not defined at time zero)\" #> [122] \"DADT(4) = HAZT ; Cumulative Hazard\" #> [123] \"DADT(6) = CPT ; Cumulative AUC\" #> [124] \"AUCT=A(6) ; AUC up to time T\" #> [125] \"CAV=AUCT/T ; Average concentration up to time T\" #> [126] \"\" #> [127] \"$ERROR\" #> [128] \"CP = A(1) / S1\" #> [129] \"EDRUG = ALPHA * A(3) ; Drug effect\" #> [130] \"HAZ = 0 ; redefine Hazard in $Error. Needed to compute pdf\" #> [131] \"IF(TIME > 0) HAZ = BETA * (EDRUG**BETA) * (TIME**(BETA - 1)) * EXP(covar); WEIBULL\" #> [132] \"SURV = EXP(-A(4)) ; Survival probability\" #> [133] \"PDF=SURV*HAZ\" #> [134] \"\" #> [135] \";Estimation (defined by sim start and end)\" #> [136] \";Sim_start\" #> [137] \"IF(DV.EQ.0) THEN\" #> [138] \"Y=SURV\" #> [139] \"CHLAST=A(4)\" #> [140] \"ELSE\" #> [141] \"CHLAST=CHLAST ; Keep nmtran happy\" #> [142] \"ENDIF\" #> [143] \"\" #> [144] \"IF(DV.EQ.1) THEN\" #> [145] \"Y=PDF ;pdf\" #> [146] \"ENDIF\" #> [147] \";Sim_end\" #> [148] \"\" #> [149] \"\" #> [150] \";Simulation\" #> [151] \"IF(ICALL.EQ.4) THEN\" #> [152] \"IF (NEWIND.NE.2) CALL RANDOM (2,R) ; random uniform distribution\" #> [153] \"DV=0 ; NO EVENT OCCURS\" #> [154] \"RTTE=0 ; NO EVENT OCCURS\" #> [155] \"IF(CENS.EQ.1) RTTE=1 ; RTTE set to 1 for censoring and event rows\" #> [156] \"IF(R.GT.SURV) THEN ; Event when R > SURV\" #> [157] \"DV=1 ; DV set to 1 at time of event\" #> [158] \"RTTE=1 ; RTTE set to 1 for censoring and event rows\" #> [159] \"ENDIF\" #> [160] \"Y=DV\" #> [161] \"ENDIF\" #> [162] \"\" #> [163] \"\" #> [164] \"$THETA -4.53 ; 1 LOGKE0\" #> [165] \"-9.69 ; 2 LOGALPHA\" #> [166] \"-0.327 ; 3 LOGBETA\" #> [167] \"0.0145 ; 4 BWT\" #> [168] \"0.434 ; 5 PPN 1/0\" #> [169] \"$OMEGA 0 FIX\" #> [170] \";Sim_start\" #> [171] \";$SIGMA\" #> [172] \";0 FIXED\" #> [173] \"$ESTIMATION MAXEVAL=9999 PRINT=1 LIKE METHOD=1 LAPLACE NUMERICAL\" #> [174] \"NOABORT SIG=3\" #> [175] \";$SIMULATION(123456) (23000 UNIFORM) ONLYSIM ; Uncomment this for VPC generation\" #> [176] \"\" #> [177] \";Sim_end\" #> [178] \"$COVARIANCE MATRIX=S UNCONDITIONAL\" #> [179] \"$TABLE TIME ID MID EVID AV_DOSE CAV AUCT CP A5 A3 HAZ SURV\" #> [180] \"FORMAT=s1PE15.9 ONEHEADER NOPRINT FILE=HZtab202\" #> [181] \"\" #> [182] \"\" #> nmlst(system.file(\"mods/DDMODEL00000301/run3.lst\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 theta6 theta7 theta8 theta9 theta10 #> 7.940 0.722 13.600 0.949 6.730 4.080 8.220 10.100 1.040 249.000 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.126 0.00 0.00 0.000 #> eta2 0.000 0.14 0.00 0.000 #> eta3 0.000 0.00 1.76 0.000 #> eta4 0.000 0.00 0.00 0.187 #> #> $sigma #> eps1 eps2 eps3 #> eps1 0.024 0.000 0.000 #> eps2 0.000 0.208 0.000 #> eps3 0.000 0.000 0.404 #> #> $cov #> NULL #> #> $objf #> [1] 1488.719 #> #> $nobs #> [1] 434 #> #> $nsub #> [1] 60 #> #> $nmtran #> [1] \" WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n \\n (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\" #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 1024\\n NO. OF SIG. DIGITS IN FINAL EST.: 3.6\" #> #> $nonmem #> [1] \"7.3.0\" #> #> $time #> [1] 41.6 #> #> $tere #> [1] \" Elapsed estimation time in seconds: 14.83\\n Elapsed covariance time in seconds: 26.77\" #> #> $control #> [1] \";; 1. based on run1.mod \" #> [2] \";; 2. Description: covariate model + WT on V2 + CPRED in pred3 ($TABLE)\" #> [3] \";; x1. Author: user\" #> [4] \"$PROBLEM MEROPENEM IV INFUSION 3COMP DESCRIPTION PLASMA AND ELF\" #> [5] \"; CONCENTRATIONS FINAL COV MODEL\" #> [6] \"\" #> [7] \"; ------------dataset------------\" #> [8] \"$INPUT ID AGE WT GFRC GFR DV TIME MDV CMT AMT RATE SS II EVID GRP\" #> [9] \"; WT [kg], GFRC [0: poor hepatic function, 1: good hepatic function], \" #> [10] \"; GFR [mL/min], DV [mg/L], TIME [h], CMT [1: plasma conc., 2: ELF conc],\" #> [11] \"; AMT (DOSE) [g], RATE (K) [g/h], II (T) [h], GRP=AMT/RATE (delta) [h]\" #> [12] \"\" #> [13] \"; CL [L/h], V1 V2 V3 [L], Q2 Q3 [L/h], S1 S2 [L]\" #> [14] \"$DATA promessePK1.csv IGNORE=@\" #> [15] \"\" #> [16] \"; ------------model------------\" #> [17] \"$SUBROUTINE ADVAN11 TRANS4\" #> [18] \"$PK \" #> [19] \" ; parmacokinetic parameters\" #> [20] \"\\tTVCL=THETA(1)*((GFR/65)**THETA(2)) ; CENTRAL\" #> [21] \"\\tTVV1=THETA(3)*((WT/75)**THETA(4))\" #> [22] \" TVQ2=THETA(5) ; ELF\" #> [23] \"\\tTVV2=THETA(6)*((WT/75)**THETA(9))\" #> [24] \"\\tTVQ3=THETA(7) ; PERIPHERAL\" #> [25] \"\\tTVV3=THETA(8)\" #> [26] \"\" #> [27] \"\\t; interindividual variance model\" #> [28] \"\\tCL=TVCL*EXP(ETA(1))\" #> [29] \"\\tV1=TVV1*EXP(ETA(2))\" #> [30] \"\\tQ2=TVQ2\" #> [31] \"\\tV2=TVV2*EXP(ETA(3))\" #> [32] \"\\tQ3=TVQ3*EXP(ETA(4))\" #> [33] \"\\tV3=TVV3 \" #> [34] \"\" #> [35] \"\\t; scaling factor\" #> [36] \"\\tS1=V1/1000 ; dose [g] and conc. [mg/L]\" #> [37] \"\\tS2=V2/THETA(10)\" #> [38] \"\" #> [39] \"\" #> [40] \"\" #> [41] \"\" #> [42] \"$ERROR \" #> [43] \"; calcultate de result (i.e. model prediction) \" #> [44] \"\\tH1=0\" #> [45] \"\\tH2=0\" #> [46] \"\\tIF(CMT.EQ.1) H1=1\" #> [47] \"\\tIF(CMT.EQ.2) H2=1\" #> [48] \"\\tY=H1*(F*(1+EPS(1))+EPS(2))+H2*(F*(1+EPS(3))) ; +EPS(4)\" #> [49] \"\\tW=F\" #> [50] \"\\t\" #> [51] \"\\tIPRED=F ; prediction individuelle \" #> [52] \"\\tIRES=DV-IPRED ; (individual-specific residual) \" #> [53] \"\\tIWRES=IRES/W ; (individual-specific weighted residual)\" #> [54] \"\\t\" #> [55] \"\" #> [56] \"\" #> [57] \"; Initial estimates\" #> [58] \"$THETA (0,9.81355436018442) ; CL\" #> [59] \"$THETA 0.653109400662184 ; GFRCL\" #> [60] \"$THETA (0,4.53480721643241) ; V1\" #> [61] \"$THETA 1.12475365584077 ; WTV1\" #> [62] \"$THETA (0,11.7186301905937) ; Q2; ELF\" #> [63] \"$THETA (0,9.69726252224871) ; V2\" #> [64] \"$THETA (0,8.41511798967717) ; Q3; PERIPHERAL\" #> [65] \"$THETA (0,10.8162112974179) ; V3\" #> [66] \"$THETA 0.805863122538834 ; WTV2\" #> [67] \"$THETA 231.229833848399 ; V2/S2\" #> [68] \"$OMEGA BLOCK(4)\" #> [69] \" 0.19808195049767 ; IIVCL\" #> [70] \" 0 0.195893036337555 ; IIVV1\" #> [71] \" 0 0 0.184676645216004 ; IIVV2\" #> [72] \" 0 0 0 0.181094660002612 ; IIVQ3\" #> [73] \"$SIGMA 0.0198701414556805 ; epsPROP1\" #> [74] \" 0.203004721167207 ; epsADD1\" #> [75] \" 0.501989282726501 ; epsPROP2\" #> [76] \"$ESTIMATION METHOD=1 INTER MAXEVAL=9999 SIGDIGITS=3 POSTHOC PRINT=5 ; PRINT=1 ; \" #> [77] \"\" #> [78] \"; precision des estimation? standard error of estimates & matrice de correlation\" #> [79] \"$COVARIANCE PRINT=E \" #> [80] \"\" #> [81] \"\" #> [82] \"$TABLE ID AGE WT GFRC GFR TIME MDV CMT RATE PRED CPRED RES WRES\" #> [83] \" IPRED IRES IWRES CWRES EVID NOPRINT FILE=pred3 ; population and individual predictions and residuals\" #> [84] \"$TABLE ID AGE WT GFRC GFR CL V1 Q2 V2 Q3 V3 ETA(1) ETA(2) ETA(3)\" #> [85] \" ETA(4) TVCL TVV1 TVQ2 TVV2 TVQ3 TVV3 NOPRINT NOAPPEND\" #> [86] \" FIRSTONLY FILE=param3 ; individual PK parameters (bayesiens,posthoc)\" #> [87] \"\" #> [88] \"\" #> nmlst(system.file(\"mods/cpt/runODE032.res\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 1.370 4.200 1.380 3.880 0.196 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.101 0.0000 0.000 0.000 #> eta2 0.000 0.0994 0.000 0.000 #> eta3 0.000 0.0000 0.101 0.000 #> eta4 0.000 0.0000 0.000 0.073 #> #> $sigma #> eps1 #> eps1 1 #> #> $cov #> theta1 theta2 theta3 theta4 theta5 eta1 omega1.2 #> theta1 8.88e-04 -1.06e-04 1.84e-04 -1.20e-04 5.28e-08 -4.71e-05 0 #> theta2 -1.06e-04 8.71e-04 -1.06e-04 -5.07e-05 -1.57e-05 4.70e-05 0 #> theta3 1.84e-04 -1.06e-04 2.99e-03 1.65e-04 5.99e-06 -3.64e-05 0 #> theta4 -1.20e-04 -5.07e-05 1.65e-04 1.21e-03 -2.54e-05 2.55e-05 0 #> theta5 5.28e-08 -1.57e-05 5.99e-06 -2.54e-05 9.94e-06 -8.17e-06 0 #> eta1 -4.71e-05 4.70e-05 -3.64e-05 2.55e-05 -8.17e-06 1.69e-04 0 #> omega1.2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega1.3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega1.4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> eta2 -7.37e-05 2.57e-05 -8.08e-05 1.37e-05 -4.37e-06 8.75e-06 0 #> omega2.3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega2.4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> eta3 6.63e-05 -8.19e-05 5.49e-04 1.68e-04 1.59e-06 3.49e-05 0 #> omega3.4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> eta4 -9.50e-06 1.10e-04 -3.07e-04 -9.13e-05 3.19e-06 1.37e-05 0 #> eps1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega1.3 omega1.4 eta2 omega2.3 omega2.4 eta3 omega3.4 #> theta1 0 0 -7.37e-05 0 0 6.63e-05 0 #> theta2 0 0 2.57e-05 0 0 -8.19e-05 0 #> theta3 0 0 -8.08e-05 0 0 5.49e-04 0 #> theta4 0 0 1.37e-05 0 0 1.68e-04 0 #> theta5 0 0 -4.37e-06 0 0 1.59e-06 0 #> eta1 0 0 8.75e-06 0 0 3.49e-05 0 #> omega1.2 0 0 0.00e+00 0 0 0.00e+00 0 #> omega1.3 0 0 0.00e+00 0 0 0.00e+00 0 #> omega1.4 0 0 0.00e+00 0 0 0.00e+00 0 #> eta2 0 0 1.51e-04 0 0 4.32e-07 0 #> omega2.3 0 0 0.00e+00 0 0 0.00e+00 0 #> omega2.4 0 0 0.00e+00 0 0 0.00e+00 0 #> eta3 0 0 4.32e-07 0 0 9.59e-04 0 #> omega3.4 0 0 0.00e+00 0 0 0.00e+00 0 #> eta4 0 0 -1.95e-05 0 0 -1.30e-04 0 #> eps1 0 0 0.00e+00 0 0 0.00e+00 0 #> eta4 eps1 #> theta1 -9.50e-06 0 #> theta2 1.10e-04 0 #> theta3 -3.07e-04 0 #> theta4 -9.13e-05 0 #> theta5 3.19e-06 0 #> eta1 1.37e-05 0 #> omega1.2 0.00e+00 0 #> omega1.3 0.00e+00 0 #> omega1.4 0.00e+00 0 #> eta2 -1.95e-05 0 #> omega2.3 0.00e+00 0 #> omega2.4 0.00e+00 0 #> eta3 -1.30e-04 0 #> omega3.4 0.00e+00 0 #> eta4 5.10e-04 0 #> eps1 0.00e+00 0 #> #> $objf #> [1] 20167.64 #> #> $nobs #> [1] 2280 #> #> $nsub #> [1] 120 #> #> $nmtran #> NULL #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 320\\n NO. OF SIG. DIGITS IN FINAL EST.: 2.5\" #> #> $nonmem #> [1] \"7.4.3\" #> #> $time #> [1] 100.76 #> #> $tere #> [1] \" Elapsed estimation time in seconds: 71.95\\n Elapsed covariance time in seconds: 28.38\\n Elapsed postprocess time in seconds: 0.43\" #> #> $control #> NULL #>"},{"path":"/reference/nmtab.html","id":null,"dir":"Reference","previous_headings":"","what":"Read nonmem table file — nmtab","title":"Read nonmem table file — nmtab","text":"Read nonmem table file","code":""},{"path":"/reference/nmtab.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read nonmem table file — nmtab","text":"","code":"nmtab(file, ...)"},{"path":"/reference/nmtab.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read nonmem table file — nmtab","text":"file file name read results ... parameters passed data.table::fread","code":""},{"path":"/reference/nmtab.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read nonmem table file — nmtab","text":"data frame read table","code":""},{"path":"/reference/nmtab.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Read nonmem table file — nmtab","text":"Philip Delff, Matthew L. Fidler","code":""},{"path":"/reference/nmtab.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read nonmem table file — nmtab","text":"","code":"nmtab(system.file(\"mods/cpt/runODE032.csv\", package=\"nonmem2rx\")) #> ID TIME LNDV MDV AMT EVID DOSE V1I CLI QI V2I CL #> 1 1 0.00 0.0000 1 120000 1 120000 101.50 3.57 6.99 59.19 3.4079 #> 2 1 0.25 6.9476 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 3 1 0.50 7.3957 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 4 1 0.75 6.7774 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 5 1 1.00 7.1286 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 6 1 1.50 7.1107 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 7 1 2.00 7.0376 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 8 1 2.50 6.8380 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 9 1 3.00 6.8474 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 10 1 4.00 6.5433 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 11 1 6.00 6.7541 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 12 1 8.00 6.6344 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 13 1 12.00 6.5386 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 14 1 16.00 6.2858 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 15 1 20.00 5.6579 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 16 1 24.00 5.8842 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 17 1 36.00 5.5941 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 18 1 48.00 5.2090 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 19 1 60.00 5.4190 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 20 1 71.99 5.1407 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 21 2 0.00 0.0000 1 10000 1 10000 56.71 7.09 3.95 41.15 6.9448 #> 22 2 0.25 4.9934 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 23 2 0.50 5.3968 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 24 2 0.75 5.1326 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 25 2 1.00 4.6972 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 26 2 1.50 4.9281 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 27 2 2.00 4.8820 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 28 2 2.50 4.3337 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 29 2 3.00 4.1356 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 30 2 4.00 4.2869 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 31 2 6.00 4.1910 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 32 2 8.00 3.6676 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 33 2 12.00 3.4010 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 34 2 16.00 3.0565 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 35 2 20.00 2.8793 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 36 2 24.00 2.8001 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 37 2 36.00 2.4265 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 38 2 48.00 1.3469 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 39 2 60.00 0.9837 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 40 2 71.99 0.4864 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 41 3 0.00 0.0000 1 120000 1 120000 64.14 5.99 1.98 46.45 6.3455 #> 42 3 0.25 7.8638 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 43 3 0.50 7.2579 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 44 3 0.75 7.0859 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 45 3 1.00 7.3051 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 46 3 1.50 7.3756 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 47 3 2.00 6.9851 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 48 3 2.50 7.3667 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 49 3 3.00 6.7243 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 50 3 4.00 7.1200 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 51 3 6.00 6.8140 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 52 3 8.00 6.2594 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 53 3 12.00 6.1897 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 54 3 16.00 5.8763 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 55 3 20.00 5.2523 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 56 3 24.00 5.2604 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 57 3 36.00 4.7663 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 58 3 48.00 3.8227 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 59 3 60.00 4.0046 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 60 3 71.99 3.0860 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 61 4 0.00 0.0000 1 10000 1 10000 99.43 2.23 4.10 33.50 2.1694 #> 62 4 0.25 4.8497 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 63 4 0.50 4.4635 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 64 4 0.75 4.4608 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 65 4 1.00 4.4340 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 66 4 1.50 4.5846 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 67 4 2.00 4.2166 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 68 4 2.50 4.4541 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 69 4 3.00 4.2333 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 70 4 4.00 4.4218 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 71 4 6.00 4.2820 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 72 4 8.00 4.5829 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 73 4 12.00 3.6253 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 74 4 16.00 3.9968 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 75 4 20.00 3.8980 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 76 4 24.00 3.7141 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 77 4 36.00 3.8196 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 78 4 48.00 3.6313 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 79 4 60.00 3.3010 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 80 4 71.99 3.1479 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 81 5 0.00 0.0000 1 30000 1 30000 86.80 2.65 4.61 82.10 2.8482 #> 82 5 0.25 5.5756 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 83 5 0.50 6.0193 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 84 5 0.75 5.6722 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 85 5 1.00 5.6860 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 86 5 1.50 5.7456 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 87 5 2.00 5.7279 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 88 5 2.50 5.7803 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 89 5 3.00 5.6303 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 90 5 4.00 5.6763 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 91 5 6.00 5.4383 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 92 5 8.00 5.2471 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 93 5 12.00 5.3085 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 94 5 16.00 4.8061 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 95 5 20.00 4.6669 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 96 5 24.00 4.4059 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 97 5 36.00 4.2791 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 98 5 48.00 4.3194 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 99 5 60.00 4.0334 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 100 5 71.99 4.0593 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 101 6 0.00 0.0000 1 30000 1 30000 81.70 4.89 6.08 52.69 4.9685 #> 102 6 0.25 6.0141 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 103 6 0.50 5.7236 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 104 6 0.75 5.6736 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 105 6 1.00 5.8283 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 106 6 1.50 5.9462 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 107 6 2.00 5.8651 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 108 6 2.50 5.7491 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 109 6 3.00 5.6202 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 110 6 4.00 5.2078 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 111 6 6.00 5.6047 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 112 6 8.00 5.1806 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 113 6 12.00 4.7172 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 114 6 16.00 4.4701 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 115 6 20.00 4.5169 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 116 6 24.00 4.2736 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 117 6 36.00 3.9950 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 118 6 48.00 3.4056 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 119 6 60.00 3.0746 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 120 6 71.99 2.8175 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 121 7 0.00 0.0000 1 60000 1 60000 72.09 6.88 3.45 40.29 7.2234 #> 122 7 0.25 6.8267 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 123 7 0.50 6.8342 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 124 7 0.75 6.7381 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 125 7 1.00 6.6243 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 126 7 1.50 6.4994 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 127 7 2.00 6.4780 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 128 7 2.50 6.0738 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 129 7 3.00 6.3963 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 130 7 4.00 5.9866 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 131 7 6.00 5.9275 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 132 7 8.00 5.6788 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 133 7 12.00 5.2015 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 134 7 16.00 4.7602 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 135 7 20.00 4.8800 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 136 7 24.00 4.6287 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 137 7 36.00 3.6986 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 138 7 48.00 3.1705 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 139 7 60.00 2.7309 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 140 7 71.99 2.3731 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 141 8 0.00 0.0000 1 60000 1 60000 34.09 5.15 3.50 36.16 5.3826 #> 142 8 0.25 7.1024 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 143 8 0.50 7.1420 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 144 8 0.75 7.0289 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 145 8 1.00 7.5199 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 146 8 1.50 7.1340 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 147 8 2.00 6.8216 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 148 8 2.50 6.8317 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 149 8 3.00 6.5187 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 150 8 4.00 6.5826 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 151 8 6.00 6.2806 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 152 8 8.00 5.7072 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 153 8 12.00 5.5437 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 154 8 16.00 5.0414 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 155 8 20.00 5.0771 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 156 8 24.00 4.7295 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 157 8 36.00 3.9660 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 158 8 48.00 3.4001 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 159 8 60.00 2.5570 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 160 8 71.99 2.5974 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 161 9 0.00 0.0000 1 10000 1 10000 61.59 5.02 7.68 87.44 5.2872 #> 162 9 0.25 5.0367 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 163 9 0.50 4.9310 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 164 9 0.75 5.0682 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 165 9 1.00 4.7352 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 166 9 1.50 4.5571 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 167 9 2.00 4.6917 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 168 9 2.50 4.4261 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 169 9 3.00 4.5436 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 170 9 4.00 4.6741 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 171 9 6.00 4.1345 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 172 9 8.00 3.6328 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 173 9 12.00 3.6460 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 174 9 16.00 3.6512 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 175 9 20.00 2.8978 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 176 9 24.00 2.8758 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 177 9 36.00 2.5922 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 178 9 48.00 2.4291 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 179 9 60.00 1.9376 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 180 9 71.99 1.5378 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 181 10 0.00 0.0000 1 10000 1 10000 50.63 4.76 4.46 48.25 4.5371 #> 182 10 0.25 5.1004 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 183 10 0.50 5.0821 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 184 10 0.75 5.3185 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 185 10 1.00 4.7058 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 186 10 1.50 5.1565 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 187 10 2.00 5.0514 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 188 10 2.50 5.1421 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 189 10 3.00 4.8673 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 190 10 4.00 4.6682 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 191 10 6.00 4.7381 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 192 10 8.00 4.1684 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 193 10 12.00 3.5258 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 194 10 16.00 3.7202 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 195 10 20.00 3.7076 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 196 10 24.00 3.3004 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 197 10 36.00 2.4725 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 198 10 48.00 1.9024 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 199 10 60.00 1.6270 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 200 10 71.99 1.4732 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 201 11 0.00 0.0000 1 30000 1 30000 51.15 2.55 3.64 94.20 3.0036 #> 202 11 0.25 6.3033 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 203 11 0.50 6.1572 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 204 11 0.75 6.3166 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 205 11 1.00 6.3299 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 206 11 1.50 5.8540 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 207 11 2.00 6.2730 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 208 11 2.50 6.3132 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 209 11 3.00 6.0281 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 210 11 4.00 5.7868 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 211 11 6.00 5.8980 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 212 11 8.00 5.5829 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 213 11 12.00 5.0346 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 214 11 16.00 4.7807 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 215 11 20.00 5.0527 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 216 11 24.00 4.3704 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 217 11 36.00 4.0733 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 218 11 48.00 4.0862 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 219 11 60.00 3.9761 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 220 11 71.99 3.5709 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 221 12 0.00 0.0000 1 60000 1 60000 100.20 2.38 3.03 55.47 2.5710 #> 222 12 0.25 6.4785 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 223 12 0.50 6.3384 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 224 12 0.75 6.3908 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 225 12 1.00 6.4089 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 226 12 1.50 5.9862 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 227 12 2.00 6.0811 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 228 12 2.50 6.3060 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 229 12 3.00 6.1292 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 230 12 4.00 6.2549 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 231 12 6.00 5.9550 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 232 12 8.00 6.0164 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 233 12 12.00 5.8570 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 234 12 16.00 5.7665 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 235 12 20.00 5.5503 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 236 12 24.00 5.7534 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 237 12 36.00 5.2744 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 238 12 48.00 5.1692 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 239 12 60.00 4.6501 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 240 12 71.99 4.8855 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 241 13 0.00 0.0000 1 30000 1 30000 132.40 4.62 5.86 69.77 4.2653 #> 242 13 0.25 5.0773 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 243 13 0.50 5.2947 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 244 13 0.75 5.6118 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 245 13 1.00 5.0436 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 246 13 1.50 5.3625 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 247 13 2.00 5.3036 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 248 13 2.50 5.1362 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 249 13 3.00 5.1550 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 250 13 4.00 4.9180 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 251 13 6.00 4.9776 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 252 13 8.00 5.1387 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 253 13 12.00 4.6667 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 254 13 16.00 4.8138 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 255 13 20.00 4.6362 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 256 13 24.00 4.4797 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 257 13 36.00 4.0563 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 258 13 48.00 3.3639 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 259 13 60.00 3.8376 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 260 13 71.99 3.4348 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 261 14 0.00 0.0000 1 60000 1 60000 65.09 3.36 3.79 59.62 3.4694 #> 262 14 0.25 7.0566 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 263 14 0.50 6.7805 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 264 14 0.75 6.7784 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 265 14 1.00 6.8961 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 266 14 1.50 6.6444 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 267 14 2.00 6.6453 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 268 14 2.50 6.5601 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 269 14 3.00 6.8081 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 270 14 4.00 6.2636 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 271 14 6.00 6.1898 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 272 14 8.00 6.4488 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 273 14 12.00 5.8810 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 274 14 16.00 5.4317 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 275 14 20.00 5.1686 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 276 14 24.00 5.3704 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 277 14 36.00 5.0655 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 278 14 48.00 4.6464 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 279 14 60.00 4.3269 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 280 14 71.99 4.0154 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 281 15 0.00 0.0000 1 120000 1 120000 69.23 5.27 6.22 52.79 5.7965 #> 282 15 0.25 7.2710 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 283 15 0.50 7.4747 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 284 15 0.75 7.3487 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 285 15 1.00 7.1496 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 286 15 1.50 6.8545 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 287 15 2.00 7.1130 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 288 15 2.50 7.2018 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 289 15 3.00 6.9304 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 290 15 4.00 6.6878 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 291 15 6.00 6.7175 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 292 15 8.00 6.5973 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 293 15 12.00 5.9599 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 294 15 16.00 5.9590 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 295 15 20.00 5.4704 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 296 15 24.00 5.6291 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 297 15 36.00 4.8745 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 298 15 48.00 4.5856 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 299 15 60.00 4.1763 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 300 15 71.99 3.8798 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 301 16 0.00 0.0000 1 120000 1 120000 71.12 4.68 4.18 85.28 5.1588 #> 302 16 0.25 7.2521 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 303 16 0.50 7.3373 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 304 16 0.75 7.2248 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 305 16 1.00 7.2384 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 306 16 1.50 7.2828 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 307 16 2.00 6.9505 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 308 16 2.50 6.9466 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 309 16 3.00 7.0987 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 310 16 4.00 6.6295 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 311 16 6.00 6.7845 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 312 16 8.00 6.6392 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 313 16 12.00 6.3702 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 314 16 16.00 5.5340 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 315 16 20.00 5.3497 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 316 16 24.00 5.3668 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 317 16 36.00 4.9657 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 318 16 48.00 4.7732 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 319 16 60.00 4.8028 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 320 16 71.99 4.0540 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 321 17 0.00 0.0000 1 30000 1 30000 45.81 4.90 2.64 56.10 5.0007 #> 322 17 0.25 6.5813 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 323 17 0.50 6.4934 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 324 17 0.75 6.4358 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 325 17 1.00 6.3452 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 326 17 1.50 5.8391 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 327 17 2.00 6.0720 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 328 17 2.50 5.8876 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 329 17 3.00 6.1928 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 330 17 4.00 5.5424 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 331 17 6.00 5.3531 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 332 17 8.00 5.2099 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 333 17 12.00 5.2264 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 334 17 16.00 4.3193 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 335 17 20.00 3.6861 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 336 17 24.00 3.4566 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 337 17 36.00 3.3542 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 338 17 48.00 3.2383 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 339 17 60.00 2.8254 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 340 17 71.99 2.5215 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 341 18 0.00 0.0000 1 60000 1 60000 73.15 4.24 5.01 65.06 3.9261 #> 342 18 0.25 6.5006 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 343 18 0.50 6.6114 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 344 18 0.75 6.6065 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 345 18 1.00 6.4344 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 346 18 1.50 6.7557 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 347 18 2.00 6.2443 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 348 18 2.50 6.6308 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 349 18 3.00 6.3200 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 350 18 4.00 6.2916 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 351 18 6.00 6.1088 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 352 18 8.00 5.9206 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 353 18 12.00 5.6146 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 354 18 16.00 5.0709 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 355 18 20.00 5.4190 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 356 18 24.00 4.9657 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 357 18 36.00 4.9938 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 358 18 48.00 4.3035 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 359 18 60.00 4.3434 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 360 18 71.99 4.1000 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 361 19 0.00 0.0000 1 30000 1 30000 33.88 4.46 4.15 54.69 4.5211 #> 362 19 0.25 6.8803 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 363 19 0.50 6.4658 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 364 19 0.75 6.3589 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 365 19 1.00 6.3769 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 366 19 1.50 6.5083 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 367 19 2.00 6.2020 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 368 19 2.50 5.8435 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 369 19 3.00 6.3113 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 370 19 4.00 5.7686 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 371 19 6.00 5.5602 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 372 19 8.00 4.9479 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 373 19 12.00 4.6895 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 374 19 16.00 4.4680 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 375 19 20.00 4.3470 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 376 19 24.00 4.1898 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 377 19 36.00 3.4336 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 378 19 48.00 3.2272 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 379 19 60.00 2.8220 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 380 19 71.99 2.9652 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 381 20 0.00 0.0000 1 120000 1 120000 55.11 2.15 4.10 99.72 2.4653 #> 382 20 0.25 7.6675 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 383 20 0.50 7.6283 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 384 20 0.75 7.5580 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 385 20 1.00 7.6666 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 386 20 1.50 7.7052 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 387 20 2.00 7.4487 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 388 20 2.50 7.3724 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 389 20 3.00 7.4076 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 390 20 4.00 7.2091 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 391 20 6.00 7.1130 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 392 20 8.00 6.7095 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 393 20 12.00 6.2998 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 394 20 16.00 6.0921 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 395 20 20.00 6.1283 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 396 20 24.00 6.0338 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 397 20 36.00 5.5540 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 398 20 48.00 5.8444 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 399 20 60.00 5.4540 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 400 20 71.99 5.6380 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 401 21 0.00 0.0000 1 10000 1 10000 85.77 5.62 3.70 46.54 5.2112 #> 402 21 0.25 4.7454 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 403 21 0.50 4.5345 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 404 21 0.75 4.9869 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 405 21 1.00 4.5907 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 406 21 1.50 4.6582 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 407 21 2.00 4.3188 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 408 21 2.50 4.3093 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 409 21 3.00 4.6646 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 410 21 4.00 4.3291 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 411 21 6.00 4.7011 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 412 21 8.00 3.8293 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 413 21 12.00 3.8261 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 414 21 16.00 3.7090 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 415 21 20.00 3.0953 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 416 21 24.00 3.1036 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 417 21 36.00 2.8589 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 418 21 48.00 1.8998 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 419 21 60.00 1.6159 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 420 21 71.99 1.6118 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 421 22 0.00 0.0000 1 10000 1 10000 82.32 4.10 2.50 32.10 3.9274 #> 422 22 0.25 4.9659 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 423 22 0.50 4.7820 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 424 22 0.75 4.4453 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 425 22 1.00 5.0078 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 426 22 1.50 4.4442 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 427 22 2.00 4.5138 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 428 22 2.50 4.7066 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 429 22 3.00 4.8143 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 430 22 4.00 4.7646 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 431 22 6.00 4.4325 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 432 22 8.00 3.8532 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 433 22 12.00 3.9229 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 434 22 16.00 3.7311 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 435 22 20.00 3.9596 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 436 22 24.00 3.5981 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 437 22 36.00 3.0143 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 438 22 48.00 2.3676 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 439 22 60.00 2.3101 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 440 22 71.99 2.1421 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 441 23 0.00 0.0000 1 60000 1 60000 59.65 5.80 3.69 29.13 6.0951 #> 442 23 0.25 6.9433 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 443 23 0.50 7.0623 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 444 23 0.75 6.7340 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 445 23 1.00 6.5078 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 446 23 1.50 6.7142 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 447 23 2.00 6.4597 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 448 23 2.50 6.3421 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 449 23 3.00 6.2965 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 450 23 4.00 6.3034 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 451 23 6.00 6.1572 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 452 23 8.00 5.9452 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 453 23 12.00 5.0963 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 454 23 16.00 5.3963 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 455 23 20.00 4.9552 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 456 23 24.00 4.8991 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 457 23 36.00 4.2246 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 458 23 48.00 3.2048 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 459 23 60.00 2.4155 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 460 23 71.99 2.4389 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 461 24 0.00 0.0000 1 120000 1 120000 77.73 2.99 4.44 56.72 3.1382 #> 462 24 0.25 7.2208 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 463 24 0.50 7.6644 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 464 24 0.75 7.3433 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 465 24 1.00 7.2794 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 466 24 1.50 7.1142 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 467 24 2.00 6.9359 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 468 24 2.50 6.9787 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 469 24 3.00 6.5660 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 470 24 4.00 7.4146 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 471 24 6.00 7.0538 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 472 24 8.00 6.8090 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 473 24 12.00 6.4517 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 474 24 16.00 6.4578 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 475 24 20.00 5.8143 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 476 24 24.00 6.3840 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 477 24 36.00 5.6340 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 478 24 48.00 5.4081 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 479 24 60.00 5.2691 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 480 24 71.99 5.1053 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 481 25 0.00 0.0000 1 120000 1 120000 70.60 5.41 2.80 36.73 5.4958 #> 482 25 0.25 7.4726 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 483 25 0.50 7.4901 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 484 25 0.75 7.3126 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 485 25 1.00 7.3200 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 486 25 1.50 7.4084 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 487 25 2.00 7.1693 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 488 25 2.50 6.9465 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 489 25 3.00 6.8833 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 490 25 4.00 6.8699 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 491 25 6.00 6.4366 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 492 25 8.00 6.8214 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 493 25 12.00 6.3517 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 494 25 16.00 6.2206 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 495 25 20.00 5.8991 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 496 25 24.00 5.3571 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 497 25 36.00 5.0675 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 498 25 48.00 4.6462 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 499 25 60.00 4.0263 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 500 25 71.99 3.4626 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 501 26 0.00 0.0000 1 30000 1 30000 60.39 3.55 3.38 32.82 3.3820 #> 502 26 0.25 6.1301 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 503 26 0.50 6.5154 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 504 26 0.75 6.5752 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 505 26 1.00 5.9235 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 506 26 1.50 6.1725 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 507 26 2.00 5.9135 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 508 26 2.50 5.8187 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 509 26 3.00 5.7920 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 510 26 4.00 6.1592 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 511 26 6.00 5.5591 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 512 26 8.00 5.6354 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 513 26 12.00 5.0306 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 514 26 16.00 5.0001 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 515 26 20.00 4.8230 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 516 26 24.00 4.4902 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 517 26 36.00 4.4648 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 518 26 48.00 4.1184 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 519 26 60.00 3.3899 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 520 26 71.99 3.2431 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 521 27 0.00 0.0000 1 30000 1 30000 67.83 3.28 3.27 47.22 2.9610 #> 522 27 0.25 5.9780 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 523 27 0.50 6.2990 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 524 27 0.75 5.9880 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 525 27 1.00 5.8185 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 526 27 1.50 5.8759 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 527 27 2.00 5.8989 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 528 27 2.50 6.2765 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 529 27 3.00 6.1690 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 530 27 4.00 5.6929 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 531 27 6.00 5.5882 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 532 27 8.00 5.4639 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 533 27 12.00 5.0597 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 534 27 16.00 5.3014 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 535 27 20.00 4.7382 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 536 27 24.00 4.8186 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 537 27 36.00 4.0731 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 538 27 48.00 4.5415 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 539 27 60.00 3.7717 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 540 27 71.99 3.4646 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 541 28 0.00 0.0000 1 10000 1 10000 92.18 4.49 3.98 64.87 4.1281 #> 542 28 0.25 4.7086 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 543 28 0.50 4.8565 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 544 28 0.75 4.8982 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 545 28 1.00 4.6940 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 546 28 1.50 4.4585 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 547 28 2.00 4.8408 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 548 28 2.50 4.6474 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 549 28 3.00 4.6402 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 550 28 4.00 4.4304 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 551 28 6.00 4.0723 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 552 28 8.00 4.1654 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 553 28 12.00 3.7348 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 554 28 16.00 3.4491 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 555 28 20.00 3.6951 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 556 28 24.00 3.4041 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 557 28 36.00 2.7162 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 558 28 48.00 2.9125 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 559 28 60.00 2.2805 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 560 28 71.99 2.1544 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 561 29 0.00 0.0000 1 120000 1 120000 43.08 4.30 2.96 38.36 4.4047 #> 562 29 0.25 7.8331 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 563 29 0.50 7.9506 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 564 29 0.75 7.8918 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 565 29 1.00 7.8587 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 566 29 1.50 7.5142 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 567 29 2.00 7.1144 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 568 29 2.50 7.8343 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 569 29 3.00 7.4541 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 570 29 4.00 7.2383 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 571 29 6.00 6.8365 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 572 29 8.00 6.7164 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 573 29 12.00 6.1785 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 574 29 16.00 6.1735 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 575 29 20.00 5.5850 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 576 29 24.00 5.5337 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 577 29 36.00 5.2305 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 578 29 48.00 4.7795 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 579 29 60.00 4.2957 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 580 29 71.99 4.1974 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 581 30 0.00 0.0000 1 10000 1 10000 78.38 3.85 6.72 66.28 3.5578 #> 582 30 0.25 4.6156 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 583 30 0.50 4.5869 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 584 30 0.75 4.4850 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 585 30 1.00 4.7952 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 586 30 1.50 5.0335 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 587 30 2.00 4.6495 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 588 30 2.50 4.5787 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 589 30 3.00 4.3541 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 590 30 4.00 4.4129 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 591 30 6.00 4.0085 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 592 30 8.00 4.0216 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 593 30 12.00 3.5540 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 594 30 16.00 3.9105 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 595 30 20.00 3.8403 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 596 30 24.00 3.4785 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 597 30 36.00 3.0483 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 598 30 48.00 3.0675 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 599 30 60.00 2.9026 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 600 30 71.99 2.0393 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 601 31 0.00 0.0000 1 60000 1 60000 52.36 5.38 2.75 48.20 5.1076 #> 602 31 0.25 7.0597 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 603 31 0.50 7.1730 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 604 31 0.75 7.3320 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 605 31 1.00 6.8316 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 606 31 1.50 6.5810 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 607 31 2.00 6.7866 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 608 31 2.50 6.5622 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 609 31 3.00 6.9812 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 610 31 4.00 6.2241 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 611 31 6.00 6.2689 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 612 31 8.00 5.9078 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 613 31 12.00 5.7987 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 614 31 16.00 5.2262 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 615 31 20.00 4.9723 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 616 31 24.00 4.6180 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 617 31 36.00 3.9604 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 618 31 48.00 3.5537 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 619 31 60.00 3.2546 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 620 31 71.99 3.0596 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 621 32 0.00 0.0000 1 60000 1 60000 56.64 3.93 5.68 53.25 4.0269 #> 622 32 0.25 7.0114 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 623 32 0.50 6.9664 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 624 32 0.75 6.7043 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 625 32 1.00 6.8213 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 626 32 1.50 6.9444 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 627 32 2.00 6.6287 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 628 32 2.50 6.4455 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 629 32 3.00 6.6206 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 630 32 4.00 6.3181 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 631 32 6.00 6.1684 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 632 32 8.00 5.7279 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 633 32 12.00 5.9018 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 634 32 16.00 5.6330 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 635 32 20.00 5.2752 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 636 32 24.00 5.4816 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 637 32 36.00 4.4679 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 638 32 48.00 4.0964 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 639 32 60.00 3.8487 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 640 32 71.99 3.8745 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 641 33 0.00 0.0000 1 30000 1 30000 43.59 2.94 5.29 39.75 2.8854 #> 642 33 0.25 6.5950 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 643 33 0.50 6.5897 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 644 33 0.75 6.6104 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 645 33 1.00 6.4869 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 646 33 1.50 6.6312 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 647 33 2.00 6.2811 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 648 33 2.50 6.1824 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 649 33 3.00 5.8880 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 650 33 4.00 6.0076 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 651 33 6.00 5.4391 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 652 33 8.00 5.6618 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 653 33 12.00 5.3339 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 654 33 16.00 5.2728 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 655 33 20.00 4.9183 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 656 33 24.00 4.6592 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 657 33 36.00 4.3572 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 658 33 48.00 4.3954 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 659 33 60.00 3.6765 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 660 33 71.99 3.4386 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 661 34 0.00 0.0000 1 120000 1 120000 63.56 4.43 3.96 41.76 4.6186 #> 662 34 0.25 7.6044 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 663 34 0.50 7.6223 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 664 34 0.75 7.4341 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 665 34 1.00 7.2437 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 666 34 1.50 7.1908 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 667 34 2.00 7.0267 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 668 34 2.50 7.3891 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 669 34 3.00 7.1281 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 670 34 4.00 7.0433 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 671 34 6.00 6.9652 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 672 34 8.00 6.6870 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 673 34 12.00 6.2232 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 674 34 16.00 6.3545 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 675 34 20.00 5.9176 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 676 34 24.00 5.3039 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 677 34 36.00 5.2567 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 678 34 48.00 4.8332 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 679 34 60.00 4.5101 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 680 34 71.99 4.2201 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 681 35 0.00 0.0000 1 120000 1 120000 57.82 3.91 4.13 34.72 4.1672 #> 682 35 0.25 7.8072 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 683 35 0.50 7.7153 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 684 35 0.75 7.6465 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 685 35 1.00 7.6008 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 686 35 1.50 7.1958 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 687 35 2.00 7.4606 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 688 35 2.50 6.9925 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 689 35 3.00 6.9768 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 690 35 4.00 7.3763 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 691 35 6.00 7.0062 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 692 35 8.00 6.4081 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 693 35 12.00 6.5508 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 694 35 16.00 5.9589 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 695 35 20.00 5.9062 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 696 35 24.00 5.9931 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 697 35 36.00 5.5638 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 698 35 48.00 5.1014 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 699 35 60.00 4.4688 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 700 35 71.99 4.2778 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 701 36 0.00 0.0000 1 60000 1 60000 71.30 3.45 3.78 75.03 3.7767 #> 702 36 0.25 7.0272 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 703 36 0.50 6.4889 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 704 36 0.75 6.6961 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 705 36 1.00 6.6150 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 706 36 1.50 6.5604 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 707 36 2.00 6.3693 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 708 36 2.50 6.4703 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 709 36 3.00 6.6260 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 710 36 4.00 6.5618 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 711 36 6.00 5.8810 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 712 36 8.00 5.7570 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 713 36 12.00 5.6616 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 714 36 16.00 5.1983 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 715 36 20.00 4.9585 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 716 36 24.00 5.2480 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 717 36 36.00 5.1878 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 718 36 48.00 4.6152 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 719 36 60.00 3.9521 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 720 36 71.99 4.1598 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 721 37 0.00 0.0000 1 30000 1 30000 96.04 3.02 3.26 44.53 2.9672 #> 722 37 0.25 5.8235 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 723 37 0.50 5.3459 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 724 37 0.75 6.1586 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 725 37 1.00 5.5200 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 726 37 1.50 5.6285 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 727 37 2.00 5.6620 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 728 37 2.50 5.8429 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 729 37 3.00 5.4116 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 730 37 4.00 5.9159 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 731 37 6.00 5.7577 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 732 37 8.00 5.4736 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 733 37 12.00 5.2424 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 734 37 16.00 4.9603 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 735 37 20.00 4.8790 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 736 37 24.00 4.6298 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 737 37 36.00 4.5311 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 738 37 48.00 4.2463 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 739 37 60.00 4.0540 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 740 37 71.99 3.6979 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 741 38 0.00 0.0000 1 10000 1 10000 55.94 2.83 5.75 49.74 2.6509 #> 742 38 0.25 5.3596 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 743 38 0.50 5.1534 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 744 38 0.75 5.1882 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 745 38 1.00 5.0176 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 746 38 1.50 5.0758 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 747 38 2.00 4.7700 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 748 38 2.50 4.9096 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 749 38 3.00 4.7519 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 750 38 4.00 4.9793 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 751 38 6.00 4.6438 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 752 38 8.00 4.1270 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 753 38 12.00 4.2496 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 754 38 16.00 4.0133 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 755 38 20.00 3.8868 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 756 38 24.00 3.3280 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 757 38 36.00 3.2666 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 758 38 48.00 3.3525 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 759 38 60.00 3.0052 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 760 38 71.99 2.7888 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 761 39 0.00 0.0000 1 10000 1 10000 57.13 2.20 2.79 72.87 2.5151 #> 762 39 0.25 5.3332 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 763 39 0.50 5.0766 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 764 39 0.75 5.1899 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 765 39 1.00 4.9628 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 766 39 1.50 5.1944 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 767 39 2.00 5.0318 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 768 39 2.50 4.9082 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 769 39 3.00 5.0205 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 770 39 4.00 5.1199 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 771 39 6.00 4.8045 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 772 39 8.00 4.1423 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 773 39 12.00 3.8986 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 774 39 16.00 4.0024 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 775 39 20.00 4.1780 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 776 39 24.00 3.5325 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 777 39 36.00 3.4566 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 778 39 48.00 3.2448 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 779 39 60.00 3.1269 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 780 39 71.99 2.7641 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 781 40 0.00 0.0000 1 60000 1 60000 139.90 2.11 2.01 80.92 2.6296 #> 782 40 0.25 6.1004 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 783 40 0.50 6.0465 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 784 40 0.75 5.7349 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 785 40 1.00 6.1273 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 786 40 1.50 5.9266 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 787 40 2.00 5.7333 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 788 40 2.50 6.0843 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 789 40 3.00 5.8062 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 790 40 4.00 6.2257 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 791 40 6.00 5.8136 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 792 40 8.00 5.7959 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 793 40 12.00 5.6479 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 794 40 16.00 5.4242 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 795 40 20.00 5.6761 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 796 40 24.00 5.1588 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 797 40 36.00 5.4377 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 798 40 48.00 5.0146 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 799 40 60.00 4.8654 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 800 40 71.99 4.8415 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 801 41 0.00 0.0000 1 60000 1 60000 92.35 4.17 5.04 34.55 3.5742 #> 802 41 0.25 6.4703 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 803 41 0.50 6.4368 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 804 41 0.75 6.2760 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 805 41 1.00 6.1297 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 806 41 1.50 6.5143 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 807 41 2.00 6.0127 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 808 41 2.50 6.2713 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 809 41 3.00 5.9527 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 810 41 4.00 5.8566 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 811 41 6.00 6.0901 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 812 41 8.00 6.3597 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 813 41 12.00 5.8861 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 814 41 16.00 5.6282 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 815 41 20.00 5.5533 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 816 41 24.00 5.2994 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 817 41 36.00 5.1272 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 818 41 48.00 4.6033 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 819 41 60.00 4.6174 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 820 41 71.99 3.9160 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 821 42 0.00 0.0000 1 120000 1 120000 50.76 5.97 4.85 48.60 5.9115 #> 822 42 0.25 7.6134 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 823 42 0.50 7.6030 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 824 42 0.75 7.5568 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 825 42 1.00 7.7043 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 826 42 1.50 7.6714 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 827 42 2.00 7.1815 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 828 42 2.50 7.0027 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 829 42 3.00 7.0148 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 830 42 4.00 7.1943 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 831 42 6.00 6.6666 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 832 42 8.00 6.4370 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 833 42 12.00 6.0664 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 834 42 16.00 5.6754 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 835 42 20.00 5.6090 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 836 42 24.00 5.5095 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 837 42 36.00 4.8168 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 838 42 48.00 4.2769 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 839 42 60.00 3.8980 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 840 42 71.99 3.4135 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 841 43 0.00 0.0000 1 10000 1 10000 55.19 4.65 4.87 52.84 4.1954 #> 842 43 0.25 5.1619 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 843 43 0.50 5.3135 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 844 43 0.75 5.1655 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 845 43 1.00 4.8539 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 846 43 1.50 4.4963 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 847 43 2.00 5.4096 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 848 43 2.50 4.8184 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 849 43 3.00 4.5243 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 850 43 4.00 4.4605 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 851 43 6.00 4.2812 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 852 43 8.00 4.3456 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 853 43 12.00 3.6406 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 854 43 16.00 3.2741 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 855 43 20.00 3.4860 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 856 43 24.00 3.6178 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 857 43 36.00 2.8490 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 858 43 48.00 2.6424 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 859 43 60.00 2.1467 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 860 43 71.99 1.6990 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 861 44 0.00 0.0000 1 60000 1 60000 75.89 8.06 4.02 48.26 8.1867 #> 862 44 0.25 6.8316 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 863 44 0.50 6.5160 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 864 44 0.75 6.3447 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 865 44 1.00 6.4773 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 866 44 1.50 6.5333 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 867 44 2.00 6.2331 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 868 44 2.50 6.1793 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 869 44 3.00 6.0274 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 870 44 4.00 6.2637 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 871 44 6.00 5.6768 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 872 44 8.00 5.5726 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 873 44 12.00 5.2241 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 874 44 16.00 4.8151 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 875 44 20.00 4.5672 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 876 44 24.00 4.3321 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 877 44 36.00 3.8802 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 878 44 48.00 2.6379 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 879 44 60.00 2.5992 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 880 44 71.99 1.9689 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 881 45 0.00 0.0000 1 120000 1 120000 49.04 7.82 1.95 63.47 7.8866 #> 882 45 0.25 7.8298 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 883 45 0.50 7.7098 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 884 45 0.75 7.3302 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 885 45 1.00 7.3381 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 886 45 1.50 7.7827 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 887 45 2.00 7.4666 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 888 45 2.50 7.4144 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 889 45 3.00 7.3551 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 890 45 4.00 6.8070 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 891 45 6.00 6.6979 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 892 45 8.00 6.1436 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 893 45 12.00 5.4533 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 894 45 16.00 4.9949 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 895 45 20.00 4.6316 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 896 45 24.00 4.3898 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 897 45 36.00 3.6515 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 898 45 48.00 3.7051 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 899 45 60.00 2.8404 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 900 45 71.99 3.1205 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 901 46 0.00 0.0000 1 10000 1 10000 50.49 3.49 3.65 38.15 3.3579 #> 902 46 0.25 5.6775 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 903 46 0.50 4.8331 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 904 46 0.75 5.4971 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 905 46 1.00 5.3280 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 906 46 1.50 5.2557 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 907 46 2.00 5.2511 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 908 46 2.50 5.3071 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 909 46 3.00 4.9705 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 910 46 4.00 4.6388 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 911 46 6.00 4.2955 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 912 46 8.00 4.6815 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 913 46 12.00 4.2091 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 914 46 16.00 4.1630 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 915 46 20.00 3.5421 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 916 46 24.00 3.7979 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 917 46 36.00 3.0208 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 918 46 48.00 2.7197 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 919 46 60.00 2.3776 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 920 46 71.99 1.7519 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 921 47 0.00 0.0000 1 30000 1 30000 117.20 2.34 4.00 44.69 2.8389 #> 922 47 0.25 5.6196 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 923 47 0.50 5.7513 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 924 47 0.75 5.2007 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 925 47 1.00 5.1891 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 926 47 1.50 5.4605 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 927 47 2.00 5.7076 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 928 47 2.50 5.3388 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 929 47 3.00 5.3531 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 930 47 4.00 5.5577 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 931 47 6.00 5.0832 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 932 47 8.00 5.0472 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 933 47 12.00 5.1046 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 934 47 16.00 4.7097 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 935 47 20.00 4.6979 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 936 47 24.00 4.7100 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 937 47 36.00 4.7092 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 938 47 48.00 4.4988 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 939 47 60.00 4.0994 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 940 47 71.99 3.9247 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 941 48 0.00 0.0000 1 30000 1 30000 110.30 5.25 3.93 46.92 5.5422 #> 942 48 0.25 5.5037 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 943 48 0.50 5.7650 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 944 48 0.75 5.7135 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 945 48 1.00 5.7565 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 946 48 1.50 5.4829 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 947 48 2.00 5.1788 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 948 48 2.50 5.4059 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 949 48 3.00 5.3633 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 950 48 4.00 5.3632 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 951 48 6.00 5.1734 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 952 48 8.00 5.0605 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 953 48 12.00 4.7710 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 954 48 16.00 4.5637 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 955 48 20.00 4.1996 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 956 48 24.00 4.1052 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 957 48 36.00 3.8684 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 958 48 48.00 3.5975 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 959 48 60.00 3.0782 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 960 48 71.99 2.7412 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 961 49 0.00 0.0000 1 30000 1 30000 73.55 4.68 7.60 72.48 4.6025 #> 962 49 0.25 6.1189 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 963 49 0.50 5.6370 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 964 49 0.75 5.5902 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 965 49 1.00 5.9276 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 966 49 1.50 6.0087 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 967 49 2.00 5.9422 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 968 49 2.50 5.5965 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 969 49 3.00 5.5604 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 970 49 4.00 5.2295 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 971 49 6.00 5.8010 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 972 49 8.00 4.9868 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 973 49 12.00 5.0902 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 974 49 16.00 4.4386 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 975 49 20.00 4.4150 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 976 49 24.00 4.4372 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 977 49 36.00 3.5147 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 978 49 48.00 3.4111 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 979 49 60.00 3.4190 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 980 49 71.99 2.8884 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 981 50 0.00 0.0000 1 30000 1 30000 54.58 4.89 3.29 24.21 4.8163 #> 982 50 0.25 6.0447 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 983 50 0.50 6.2685 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 984 50 0.75 6.4609 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 985 50 1.00 6.2203 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 986 50 1.50 5.9954 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 987 50 2.00 6.1809 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 988 50 2.50 6.2621 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 989 50 3.00 5.4671 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 990 50 4.00 5.6458 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 991 50 6.00 5.3956 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 992 50 8.00 5.9023 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 993 50 12.00 5.0968 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 994 50 16.00 4.5267 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 995 50 20.00 4.5347 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 996 50 24.00 4.4376 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 997 50 36.00 3.6042 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 998 50 48.00 2.9977 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 999 50 60.00 2.3229 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 1000 50 71.99 1.8225 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 1001 51 0.00 0.0000 1 120000 1 120000 62.71 5.98 3.06 82.96 5.2385 #> 1002 51 0.25 7.6251 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1003 51 0.50 7.6755 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1004 51 0.75 7.5143 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1005 51 1.00 7.4752 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1006 51 1.50 7.2077 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1007 51 2.00 7.1688 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1008 51 2.50 7.1740 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1009 51 3.00 7.1922 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1010 51 4.00 7.0249 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1011 51 6.00 6.9624 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1012 51 8.00 6.3051 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1013 51 12.00 6.1378 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1014 51 16.00 6.0565 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1015 51 20.00 5.2958 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1016 51 24.00 5.4062 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1017 51 36.00 4.5032 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1018 51 48.00 4.0893 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1019 51 60.00 3.7218 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1020 51 71.99 4.3397 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1021 52 0.00 0.0000 1 60000 1 60000 92.70 3.20 4.00 87.57 3.2907 #> 1022 52 0.25 6.5479 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1023 52 0.50 6.5100 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1024 52 0.75 6.5912 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1025 52 1.00 6.2271 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1026 52 1.50 6.6801 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1027 52 2.00 6.2589 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1028 52 2.50 6.0867 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1029 52 3.00 6.6513 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1030 52 4.00 6.1965 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1031 52 6.00 5.7945 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1032 52 8.00 6.0669 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1033 52 12.00 5.7802 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1034 52 16.00 5.2683 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1035 52 20.00 5.4662 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1036 52 24.00 5.1675 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1037 52 36.00 5.2654 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1038 52 48.00 4.6696 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1039 52 60.00 4.8388 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1040 52 71.99 4.0905 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1041 53 0.00 0.0000 1 10000 1 10000 50.12 3.45 5.36 56.90 3.2016 #> 1042 53 0.25 5.3464 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1043 53 0.50 5.1426 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1044 53 0.75 5.2642 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1045 53 1.00 5.2374 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1046 53 1.50 5.2116 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1047 53 2.00 4.7265 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1048 53 2.50 5.0013 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1049 53 3.00 5.1133 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1050 53 4.00 4.7636 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1051 53 6.00 4.4087 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1052 53 8.00 4.0785 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1053 53 12.00 4.0433 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1054 53 16.00 3.8608 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1055 53 20.00 3.8363 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1056 53 24.00 3.6008 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1057 53 36.00 3.2105 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1058 53 48.00 3.0489 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1059 53 60.00 2.6127 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1060 53 71.99 2.4007 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1061 54 0.00 0.0000 1 10000 1 10000 110.10 2.73 2.91 64.76 3.4179 #> 1062 54 0.25 4.5847 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1063 54 0.50 4.0556 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1064 54 0.75 4.7864 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1065 54 1.00 4.6218 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1066 54 1.50 4.3310 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1067 54 2.00 4.6653 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1068 54 2.50 4.4119 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1069 54 3.00 4.5562 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1070 54 4.00 4.2389 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1071 54 6.00 4.2434 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1072 54 8.00 4.1875 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1073 54 12.00 4.0191 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1074 54 16.00 3.8873 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1075 54 20.00 3.6104 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1076 54 24.00 3.6965 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1077 54 36.00 3.1504 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1078 54 48.00 2.7703 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1079 54 60.00 2.8008 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1080 54 71.99 2.5955 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1081 55 0.00 0.0000 1 60000 1 60000 51.18 3.91 4.62 44.01 3.5202 #> 1082 55 0.25 7.1950 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1083 55 0.50 6.8521 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1084 55 0.75 7.3424 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1085 55 1.00 6.9670 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1086 55 1.50 6.7517 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1087 55 2.00 6.6640 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1088 55 2.50 6.6420 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1089 55 3.00 6.8715 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1090 55 4.00 6.5614 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1091 55 6.00 6.2040 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1092 55 8.00 6.0568 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1093 55 12.00 5.8737 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1094 55 16.00 5.5537 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1095 55 20.00 5.7690 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1096 55 24.00 5.2693 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1097 55 36.00 4.7863 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1098 55 48.00 4.3883 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1099 55 60.00 4.4400 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1100 55 71.99 3.6769 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1101 56 0.00 0.0000 1 120000 1 120000 113.10 2.33 6.55 45.26 2.0826 #> 1102 56 0.25 7.1168 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1103 56 0.50 6.7783 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1104 56 0.75 6.5532 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1105 56 1.00 6.9022 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1106 56 1.50 6.5594 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1107 56 2.00 6.9363 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1108 56 2.50 6.7665 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1109 56 3.00 6.9571 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1110 56 4.00 6.7233 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1111 56 6.00 6.5895 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1112 56 8.00 6.6102 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1113 56 12.00 6.5646 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1114 56 16.00 6.2483 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1115 56 20.00 6.0853 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1116 56 24.00 6.2767 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1117 56 36.00 5.9207 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1118 56 48.00 6.1409 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1119 56 60.00 5.6440 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1120 56 71.99 5.8884 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1121 57 0.00 0.0000 1 120000 1 120000 48.41 3.16 2.71 55.80 3.1749 #> 1122 57 0.25 7.6456 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1123 57 0.50 7.5567 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1124 57 0.75 7.8053 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1125 57 1.00 7.4704 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1126 57 1.50 7.6487 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1127 57 2.00 7.4787 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1128 57 2.50 7.5101 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1129 57 3.00 7.4475 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1130 57 4.00 7.4583 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1131 57 6.00 7.1363 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1132 57 8.00 7.2276 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1133 57 12.00 6.1547 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1134 57 16.00 6.2523 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1135 57 20.00 6.0832 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1136 57 24.00 6.0454 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1137 57 36.00 5.6501 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1138 57 48.00 4.9208 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1139 57 60.00 5.0886 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1140 57 71.99 4.9772 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1141 58 0.00 0.0000 1 10000 1 10000 68.92 6.17 6.07 38.69 5.6317 #> 1142 58 0.25 5.3360 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1143 58 0.50 4.8485 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1144 58 0.75 4.7396 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1145 58 1.00 5.1042 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1146 58 1.50 4.6117 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1147 58 2.00 4.6849 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1148 58 2.50 4.4597 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1149 58 3.00 4.3787 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1150 58 4.00 4.4404 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1151 58 6.00 4.0853 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1152 58 8.00 4.2419 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1153 58 12.00 3.7586 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1154 58 16.00 3.4019 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1155 58 20.00 3.5230 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1156 58 24.00 3.0670 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1157 58 36.00 2.7789 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1158 58 48.00 2.0232 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1159 58 60.00 1.1144 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1160 58 71.99 0.7284 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1161 59 0.00 0.0000 1 60000 1 60000 45.23 4.57 3.77 53.06 4.1764 #> 1162 59 0.25 7.2775 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1163 59 0.50 7.0904 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1164 59 0.75 6.7567 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1165 59 1.00 6.8698 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1166 59 1.50 7.2533 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1167 59 2.00 6.9888 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1168 59 2.50 6.8353 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1169 59 3.00 7.0684 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1170 59 4.00 6.6422 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1171 59 6.00 6.0648 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1172 59 8.00 5.9537 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1173 59 12.00 5.5361 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1174 59 16.00 5.2410 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1175 59 20.00 5.1186 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1176 59 24.00 4.8611 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1177 59 36.00 4.4276 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1178 59 48.00 4.1843 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1179 59 60.00 4.1541 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1180 59 71.99 3.2933 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1181 60 0.00 0.0000 1 120000 1 120000 65.13 4.48 5.50 43.81 4.3839 #> 1182 60 0.25 7.4300 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1183 60 0.50 7.6252 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1184 60 0.75 7.3492 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1185 60 1.00 7.4672 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1186 60 1.50 7.1185 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1187 60 2.00 7.4189 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1188 60 2.50 7.3430 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1189 60 3.00 7.2887 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1190 60 4.00 6.9483 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1191 60 6.00 6.1146 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1192 60 8.00 6.4955 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1193 60 12.00 6.2457 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1194 60 16.00 6.2211 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1195 60 20.00 6.1830 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1196 60 24.00 5.8329 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1197 60 36.00 5.7066 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1198 60 48.00 4.9998 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1199 60 60.00 4.5057 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1200 60 71.99 4.1271 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1201 61 0.00 0.0000 1 10000 1 10000 65.83 5.53 4.25 58.22 5.7472 #> 1202 61 0.25 5.1268 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1203 61 0.50 5.1010 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1204 61 0.75 4.8334 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1205 61 1.00 5.0289 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1206 61 1.50 4.4169 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1207 61 2.00 5.0137 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1208 61 2.50 4.5095 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1209 61 3.00 4.8064 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1210 61 4.00 4.4994 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1211 61 6.00 4.2374 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1212 61 8.00 4.1515 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1213 61 12.00 3.2935 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1214 61 16.00 3.3403 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1215 61 20.00 3.0518 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1216 61 24.00 2.8858 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1217 61 36.00 2.3145 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1218 61 48.00 1.9880 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1219 61 60.00 1.5794 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1220 61 71.99 1.3347 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1221 62 0.00 0.0000 1 30000 1 30000 58.96 2.70 4.66 45.59 2.9843 #> 1222 62 0.25 6.2645 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1223 62 0.50 6.0633 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1224 62 0.75 6.2762 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1225 62 1.00 6.1781 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1226 62 1.50 6.2401 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1227 62 2.00 6.0031 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1228 62 2.50 5.9071 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1229 62 3.00 5.9517 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1230 62 4.00 5.7287 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1231 62 6.00 6.0441 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1232 62 8.00 5.2871 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1233 62 12.00 5.1459 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1234 62 16.00 4.9494 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1235 62 20.00 4.8955 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1236 62 24.00 4.8868 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1237 62 36.00 4.2554 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1238 62 48.00 4.1529 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1239 62 60.00 3.9118 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1240 62 71.99 3.6340 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1241 63 0.00 0.0000 1 30000 1 30000 92.46 1.24 4.49 62.20 1.9003 #> 1242 63 0.25 5.6900 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1243 63 0.50 6.0102 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1244 63 0.75 5.5634 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1245 63 1.00 5.8814 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1246 63 1.50 5.5665 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1247 63 2.00 5.2352 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1248 63 2.50 5.3819 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1249 63 3.00 5.7270 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1250 63 4.00 5.2623 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1251 63 6.00 5.6353 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1252 63 8.00 5.1365 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1253 63 12.00 5.2470 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1254 63 16.00 5.2071 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1255 63 20.00 5.3691 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1256 63 24.00 4.8018 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1257 63 36.00 4.9007 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1258 63 48.00 4.8203 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1259 63 60.00 4.5645 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1260 63 71.99 4.4584 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1261 64 0.00 0.0000 1 60000 1 60000 61.60 5.86 5.18 29.59 5.7889 #> 1262 64 0.25 6.6046 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1263 64 0.50 7.1043 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1264 64 0.75 6.6614 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1265 64 1.00 6.9764 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1266 64 1.50 6.6408 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1267 64 2.00 6.3033 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1268 64 2.50 6.5626 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1269 64 3.00 6.3354 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1270 64 4.00 6.3817 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1271 64 6.00 6.1609 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1272 64 8.00 6.0324 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1273 64 12.00 5.4267 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1274 64 16.00 5.2045 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1275 64 20.00 5.1011 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1276 64 24.00 4.9313 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1277 64 36.00 4.0274 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1278 64 48.00 3.6144 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1279 64 60.00 3.2314 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1280 64 71.99 1.7787 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1281 65 0.00 0.0000 1 120000 1 120000 55.44 4.57 4.51 54.51 4.6241 #> 1282 65 0.25 7.6616 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1283 65 0.50 7.5771 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1284 65 0.75 7.5260 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1285 65 1.00 7.4872 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1286 65 1.50 7.4506 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1287 65 2.00 7.5624 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1288 65 2.50 7.5997 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1289 65 3.00 6.9559 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1290 65 4.00 7.0030 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1291 65 6.00 6.6599 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1292 65 8.00 7.0128 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1293 65 12.00 6.2679 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1294 65 16.00 5.9396 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1295 65 20.00 5.8724 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1296 65 24.00 5.3196 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1297 65 36.00 5.2307 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1298 65 48.00 4.8385 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1299 65 60.00 4.6236 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1300 65 71.99 3.7997 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1301 66 0.00 0.0000 1 10000 1 10000 84.54 7.25 4.91 48.94 7.9012 #> 1302 66 0.25 4.5454 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1303 66 0.50 4.5087 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1304 66 0.75 4.5245 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1305 66 1.00 4.6243 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1306 66 1.50 4.4338 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1307 66 2.00 4.3753 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1308 66 2.50 4.3949 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1309 66 3.00 4.2381 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1310 66 4.00 4.1043 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1311 66 6.00 4.0370 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1312 66 8.00 4.0406 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1313 66 12.00 3.5795 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1314 66 16.00 3.5399 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1315 66 20.00 3.0914 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1316 66 24.00 2.4945 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1317 66 36.00 2.1243 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1318 66 48.00 1.2484 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1319 66 60.00 0.5118 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1320 66 71.99 0.1625 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1321 67 0.00 0.0000 1 60000 1 60000 73.64 6.16 3.87 27.80 6.1294 #> 1322 67 0.25 6.2278 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1323 67 0.50 6.6103 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1324 67 0.75 6.5052 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1325 67 1.00 6.8195 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1326 67 1.50 6.4912 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1327 67 2.00 6.3579 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1328 67 2.50 6.2287 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1329 67 3.00 6.0533 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1330 67 4.00 6.3342 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1331 67 6.00 5.8486 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1332 67 8.00 5.6573 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1333 67 12.00 5.1534 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1334 67 16.00 5.3720 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1335 67 20.00 5.4303 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1336 67 24.00 4.8981 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1337 67 36.00 4.0911 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1338 67 48.00 3.9021 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1339 67 60.00 2.9687 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1340 67 71.99 1.8471 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1341 68 0.00 0.0000 1 120000 1 120000 79.87 3.39 7.42 25.25 3.2342 #> 1342 68 0.25 7.2975 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1343 68 0.50 7.0680 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1344 68 0.75 6.8829 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1345 68 1.00 7.3092 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1346 68 1.50 7.1881 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1347 68 2.00 7.4657 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1348 68 2.50 6.9789 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1349 68 3.00 6.9447 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1350 68 4.00 7.1009 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1351 68 6.00 6.7331 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1352 68 8.00 6.8049 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1353 68 12.00 7.2253 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1354 68 16.00 6.3232 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1355 68 20.00 6.2646 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1356 68 24.00 6.4302 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1357 68 36.00 5.9408 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1358 68 48.00 5.6455 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1359 68 60.00 4.9464 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1360 68 71.99 4.5966 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1361 69 0.00 0.0000 1 30000 1 30000 69.03 3.76 4.57 74.42 3.7142 #> 1362 69 0.25 6.1249 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1363 69 0.50 6.1885 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1364 69 0.75 6.0714 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1365 69 1.00 5.8112 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1366 69 1.50 5.8986 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1367 69 2.00 6.1800 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1368 69 2.50 5.9125 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1369 69 3.00 5.9697 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1370 69 4.00 6.0268 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1371 69 6.00 5.5365 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1372 69 8.00 5.3293 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1373 69 12.00 5.0162 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1374 69 16.00 4.3515 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1375 69 20.00 4.2694 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1376 69 24.00 4.6888 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1377 69 36.00 3.9104 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1378 69 48.00 3.8499 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1379 69 60.00 3.5478 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1380 69 71.99 3.4103 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1381 70 0.00 0.0000 1 30000 1 30000 101.70 4.64 3.93 65.82 4.5716 #> 1382 70 0.25 5.6711 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1383 70 0.50 5.7779 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1384 70 0.75 5.5084 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1385 70 1.00 5.6085 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1386 70 1.50 5.4554 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1387 70 2.00 5.6845 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1388 70 2.50 5.4785 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1389 70 3.00 5.7388 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1390 70 4.00 5.1743 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1391 70 6.00 5.4597 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1392 70 8.00 4.5655 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1393 70 12.00 4.7783 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1394 70 16.00 4.9278 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1395 70 20.00 4.3700 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1396 70 24.00 4.2201 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1397 70 36.00 3.9793 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1398 70 48.00 3.6186 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1399 70 60.00 3.3047 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1400 70 71.99 3.2858 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1401 71 0.00 0.0000 1 60000 1 60000 78.37 2.88 5.13 64.43 2.8093 #> 1402 71 0.25 6.8545 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1403 71 0.50 6.4937 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1404 71 0.75 6.6630 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1405 71 1.00 6.6701 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1406 71 1.50 6.7309 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1407 71 2.00 6.4990 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1408 71 2.50 6.4134 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1409 71 3.00 6.2547 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1410 71 4.00 6.5166 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1411 71 6.00 5.7479 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1412 71 8.00 6.0572 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1413 71 12.00 5.9347 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1414 71 16.00 5.5208 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1415 71 20.00 5.3124 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1416 71 24.00 5.5756 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1417 71 36.00 5.1101 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1418 71 48.00 5.0829 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1419 71 60.00 4.9540 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1420 71 71.99 4.4869 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1421 72 0.00 0.0000 1 10000 1 10000 41.94 1.84 4.20 60.63 1.9574 #> 1422 72 0.25 5.5801 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1423 72 0.50 5.3442 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1424 72 0.75 4.9871 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1425 72 1.00 5.4857 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1426 72 1.50 5.0280 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1427 72 2.00 5.4836 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1428 72 2.50 5.6270 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1429 72 3.00 5.0586 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1430 72 4.00 4.9538 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1431 72 6.00 4.6162 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1432 72 8.00 4.5158 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1433 72 12.00 4.1231 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1434 72 16.00 3.8723 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1435 72 20.00 4.4642 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1436 72 24.00 3.8827 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1437 72 36.00 3.5404 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1438 72 48.00 3.6473 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1439 72 60.00 3.3350 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1440 72 71.99 3.1487 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1441 73 0.00 0.0000 1 60000 1 60000 121.10 3.95 2.87 34.36 3.9793 #> 1442 73 0.25 5.9986 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1443 73 0.50 6.0917 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1444 73 0.75 5.8988 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1445 73 1.00 6.4694 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1446 73 1.50 6.1652 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1447 73 2.00 5.6670 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1448 73 2.50 6.0231 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1449 73 3.00 6.0107 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1450 73 4.00 6.0844 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1451 73 6.00 5.7938 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1452 73 8.00 5.9040 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1453 73 12.00 5.4132 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1454 73 16.00 5.2736 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1455 73 20.00 5.0042 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1456 73 24.00 5.1073 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1457 73 36.00 4.9045 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1458 73 48.00 4.6645 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1459 73 60.00 4.5004 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1460 73 71.99 4.2531 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1461 74 0.00 0.0000 1 10000 1 10000 48.66 5.10 3.48 71.54 4.8427 #> 1462 74 0.25 5.2822 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1463 74 0.50 4.9554 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1464 74 0.75 5.1979 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1465 74 1.00 4.9408 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1466 74 1.50 5.1134 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1467 74 2.00 4.9307 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1468 74 2.50 5.0822 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1469 74 3.00 4.8082 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1470 74 4.00 4.6382 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1471 74 6.00 4.2486 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1472 74 8.00 4.2028 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1473 74 12.00 3.4535 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1474 74 16.00 3.4149 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1475 74 20.00 3.3740 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1476 74 24.00 3.2289 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1477 74 36.00 2.3821 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1478 74 48.00 2.1721 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1479 74 60.00 1.6245 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1480 74 71.99 1.7081 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1481 75 0.00 0.0000 1 120000 1 120000 75.64 5.36 3.39 40.57 5.6682 #> 1482 75 0.25 7.1633 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1483 75 0.50 7.3380 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1484 75 0.75 7.6405 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1485 75 1.00 7.2343 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1486 75 1.50 7.2755 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1487 75 2.00 7.2042 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1488 75 2.50 7.3035 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1489 75 3.00 7.0007 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1490 75 4.00 7.2017 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1491 75 6.00 6.6467 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1492 75 8.00 6.3820 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1493 75 12.00 6.1260 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1494 75 16.00 6.1413 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1495 75 20.00 5.6674 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1496 75 24.00 5.3296 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1497 75 36.00 5.0982 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1498 75 48.00 4.5567 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1499 75 60.00 4.0205 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1500 75 71.99 3.5335 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1501 76 0.00 0.0000 1 120000 1 120000 74.67 3.85 2.95 46.17 3.7020 #> 1502 76 0.25 7.5344 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1503 76 0.50 7.3792 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1504 76 0.75 7.4963 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1505 76 1.00 7.2482 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1506 76 1.50 7.6447 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1507 76 2.00 7.3519 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1508 76 2.50 7.0765 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1509 76 3.00 7.2385 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1510 76 4.00 7.1056 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1511 76 6.00 6.6969 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1512 76 8.00 6.6821 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1513 76 12.00 6.6867 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1514 76 16.00 6.2576 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1515 76 20.00 5.8448 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1516 76 24.00 6.0572 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1517 76 36.00 5.5831 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1518 76 48.00 5.2131 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1519 76 60.00 5.1962 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1520 76 71.99 4.4236 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1521 77 0.00 0.0000 1 10000 1 10000 51.95 4.70 4.63 46.92 4.5626 #> 1522 77 0.25 5.2489 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1523 77 0.50 4.9818 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1524 77 0.75 5.5718 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1525 77 1.00 5.0758 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1526 77 1.50 4.5403 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1527 77 2.00 5.2295 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1528 77 2.50 4.9953 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1529 77 3.00 4.8182 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1530 77 4.00 4.6706 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1531 77 6.00 4.4896 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1532 77 8.00 4.1505 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1533 77 12.00 3.9035 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1534 77 16.00 3.5764 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1535 77 20.00 3.1387 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1536 77 24.00 3.2317 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1537 77 36.00 2.9154 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1538 77 48.00 2.4816 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1539 77 60.00 1.7742 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1540 77 71.99 1.1345 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1541 78 0.00 0.0000 1 30000 1 30000 54.61 3.77 3.43 65.63 4.1403 #> 1542 78 0.25 5.8734 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1543 78 0.50 6.1779 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1544 78 0.75 6.1460 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1545 78 1.00 6.1925 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1546 78 1.50 5.7845 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1547 78 2.00 5.8704 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1548 78 2.50 6.3344 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1549 78 3.00 5.9697 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1550 78 4.00 5.9029 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1551 78 6.00 5.5660 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1552 78 8.00 5.1900 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1553 78 12.00 4.9823 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1554 78 16.00 4.6560 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1555 78 20.00 4.5285 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1556 78 24.00 4.4518 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1557 78 36.00 4.2256 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1558 78 48.00 3.4462 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1559 78 60.00 3.2020 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1560 78 71.99 3.0217 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1561 79 0.00 0.0000 1 30000 1 30000 51.31 3.64 2.87 31.38 3.4541 #> 1562 79 0.25 6.5141 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1563 79 0.50 6.3145 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1564 79 0.75 6.1968 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1565 79 1.00 6.4682 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1566 79 1.50 5.6386 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1567 79 2.00 6.1714 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1568 79 2.50 5.7662 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1569 79 3.00 5.9910 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1570 79 4.00 6.0333 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1571 79 6.00 5.7272 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1572 79 8.00 5.4365 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1573 79 12.00 4.9790 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1574 79 16.00 5.0315 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1575 79 20.00 5.1548 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1576 79 24.00 4.5870 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1577 79 36.00 4.2479 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1578 79 48.00 4.2164 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1579 79 60.00 3.1809 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1580 79 71.99 2.9240 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1581 80 0.00 0.0000 1 60000 1 60000 77.91 3.51 4.82 54.08 3.7554 #> 1582 80 0.25 6.6275 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1583 80 0.50 6.6120 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1584 80 0.75 6.8589 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1585 80 1.00 6.6824 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1586 80 1.50 6.5847 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1587 80 2.00 6.3980 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1588 80 2.50 6.2658 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1589 80 3.00 6.0886 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1590 80 4.00 6.3073 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1591 80 6.00 6.0613 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1592 80 8.00 5.8826 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1593 80 12.00 5.7590 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1594 80 16.00 5.4376 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1595 80 20.00 5.5278 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1596 80 24.00 5.2534 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1597 80 36.00 4.7774 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1598 80 48.00 4.6044 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1599 80 60.00 4.5725 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1600 80 71.99 3.9276 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1601 81 0.00 0.0000 1 60000 1 60000 59.65 4.15 6.58 54.94 4.0629 #> 1602 81 0.25 7.2543 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1603 81 0.50 6.7617 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1604 81 0.75 6.9629 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1605 81 1.00 6.4386 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1606 81 1.50 7.0579 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1607 81 2.00 6.1279 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1608 81 2.50 6.5974 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1609 81 3.00 6.7381 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1610 81 4.00 6.3617 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1611 81 6.00 6.2534 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1612 81 8.00 5.9053 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1613 81 12.00 5.2755 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1614 81 16.00 5.6275 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1615 81 20.00 5.4468 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1616 81 24.00 5.1073 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1617 81 36.00 4.6565 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1618 81 48.00 4.2435 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1619 81 60.00 4.1641 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1620 81 71.99 3.7108 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1621 82 0.00 0.0000 1 120000 1 120000 52.22 5.57 2.44 44.58 5.7055 #> 1622 82 0.25 7.5784 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1623 82 0.50 7.6663 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1624 82 0.75 7.5995 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1625 82 1.00 7.6884 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1626 82 1.50 7.4243 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1627 82 2.00 7.6782 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1628 82 2.50 7.6024 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1629 82 3.00 7.3569 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1630 82 4.00 7.2186 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1631 82 6.00 6.9165 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1632 82 8.00 6.5670 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1633 82 12.00 6.0916 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1634 82 16.00 5.5138 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1635 82 20.00 5.4139 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1636 82 24.00 5.1387 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1637 82 36.00 4.8114 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1638 82 48.00 4.4415 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1639 82 60.00 3.8190 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1640 82 71.99 3.3863 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1641 83 0.00 0.0000 1 120000 1 120000 133.60 4.73 2.87 41.90 5.0623 #> 1642 83 0.25 6.9093 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1643 83 0.50 6.9265 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1644 83 0.75 6.7712 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1645 83 1.00 6.8376 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1646 83 1.50 6.3726 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1647 83 2.00 6.8274 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1648 83 2.50 6.8581 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1649 83 3.00 6.5853 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1650 83 4.00 6.4833 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1651 83 6.00 6.3116 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1652 83 8.00 6.0836 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1653 83 12.00 6.2896 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1654 83 16.00 6.4124 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1655 83 20.00 5.7072 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1656 83 24.00 5.8238 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1657 83 36.00 5.4335 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1658 83 48.00 5.0199 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1659 83 60.00 4.8333 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1660 83 71.99 4.1510 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1661 84 0.00 0.0000 1 60000 1 60000 68.38 3.35 3.75 69.10 3.2567 #> 1662 84 0.25 6.9959 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1663 84 0.50 6.8122 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1664 84 0.75 6.6132 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1665 84 1.00 6.7338 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1666 84 1.50 6.3543 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1667 84 2.00 6.5595 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1668 84 2.50 6.3218 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1669 84 3.00 6.4846 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1670 84 4.00 5.9757 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1671 84 6.00 6.4517 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1672 84 8.00 5.8206 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1673 84 12.00 6.2072 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1674 84 16.00 5.4382 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1675 84 20.00 5.2738 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1676 84 24.00 5.2242 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1677 84 36.00 5.0734 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1678 84 48.00 4.7535 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1679 84 60.00 4.5695 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1680 84 71.99 4.2902 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1681 85 0.00 0.0000 1 10000 1 10000 90.27 5.58 5.00 48.79 5.4922 #> 1682 85 0.25 4.9758 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1683 85 0.50 4.6891 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1684 85 0.75 4.6076 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1685 85 1.00 4.2723 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1686 85 1.50 4.4016 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1687 85 2.00 4.3766 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1688 85 2.50 4.3485 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1689 85 3.00 4.6783 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1690 85 4.00 4.3729 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1691 85 6.00 4.2176 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1692 85 8.00 3.8089 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1693 85 12.00 3.5910 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1694 85 16.00 3.4712 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1695 85 20.00 3.0264 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1696 85 24.00 3.2300 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1697 85 36.00 2.8752 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1698 85 48.00 2.3938 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1699 85 60.00 1.6206 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1700 85 71.99 1.5455 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1701 86 0.00 0.0000 1 30000 1 30000 51.88 3.08 4.27 50.77 3.1025 #> 1702 86 0.25 6.3472 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1703 86 0.50 6.2105 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1704 86 0.75 6.1098 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1705 86 1.00 6.1457 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1706 86 1.50 6.1368 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1707 86 2.00 6.1502 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1708 86 2.50 5.9647 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1709 86 3.00 5.6606 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1710 86 4.00 6.0627 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1711 86 6.00 5.8827 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1712 86 8.00 5.6261 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1713 86 12.00 4.8911 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1714 86 16.00 4.8646 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1715 86 20.00 5.1028 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1716 86 24.00 4.5156 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1717 86 36.00 4.5165 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1718 86 48.00 4.0466 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1719 86 60.00 3.8957 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1720 86 71.99 3.3899 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1721 87 0.00 0.0000 1 10000 1 10000 56.24 5.08 2.61 77.78 5.7791 #> 1722 87 0.25 5.1440 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1723 87 0.50 4.6754 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1724 87 0.75 4.7410 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1725 87 1.00 4.8681 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1726 87 1.50 4.9004 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1727 87 2.00 4.6535 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1728 87 2.50 4.5389 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1729 87 3.00 4.5862 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1730 87 4.00 4.6978 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1731 87 6.00 4.2641 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1732 87 8.00 4.1691 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1733 87 12.00 3.6570 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1734 87 16.00 3.4611 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1735 87 20.00 3.1719 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1736 87 24.00 2.5202 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1737 87 36.00 2.2408 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1738 87 48.00 2.0371 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1739 87 60.00 1.4730 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1740 87 71.99 1.3250 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1741 88 0.00 0.0000 1 30000 1 30000 73.00 3.49 7.54 48.17 3.5514 #> 1742 88 0.25 5.9222 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1743 88 0.50 5.7882 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1744 88 0.75 5.7894 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1745 88 1.00 5.6465 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1746 88 1.50 5.8770 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1747 88 2.00 5.6170 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1748 88 2.50 5.3690 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1749 88 3.00 5.8201 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1750 88 4.00 5.8814 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1751 88 6.00 5.5354 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1752 88 8.00 5.2278 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1753 88 12.00 5.3834 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1754 88 16.00 5.0301 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1755 88 20.00 4.9180 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1756 88 24.00 4.7181 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1757 88 36.00 4.3322 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1758 88 48.00 4.0078 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1759 88 60.00 3.5962 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1760 88 71.99 3.3745 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1761 89 0.00 0.0000 1 30000 1 30000 86.21 3.17 3.90 68.23 3.3827 #> 1762 89 0.25 5.7984 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1763 89 0.50 5.3937 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1764 89 0.75 5.7213 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1765 89 1.00 5.8885 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1766 89 1.50 5.2420 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1767 89 2.00 5.5258 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1768 89 2.50 5.3779 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1769 89 3.00 5.2925 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1770 89 4.00 5.5028 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1771 89 6.00 5.4038 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1772 89 8.00 5.2621 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1773 89 12.00 5.0461 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1774 89 16.00 4.6472 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1775 89 20.00 4.8356 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1776 89 24.00 4.9404 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1777 89 36.00 4.0712 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1778 89 48.00 4.2000 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1779 89 60.00 4.0619 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1780 89 71.99 3.4586 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1781 90 0.00 0.0000 1 10000 1 10000 100.80 3.94 4.01 58.87 3.9925 #> 1782 90 0.25 4.2278 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1783 90 0.50 4.6113 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1784 90 0.75 4.8721 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1785 90 1.00 4.7631 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1786 90 1.50 4.7740 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1787 90 2.00 4.6111 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1788 90 2.50 4.3062 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1789 90 3.00 4.4975 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1790 90 4.00 3.8722 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1791 90 6.00 4.2603 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1792 90 8.00 4.0807 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1793 90 12.00 3.7843 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1794 90 16.00 3.5881 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1795 90 20.00 3.4250 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1796 90 24.00 3.2833 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1797 90 36.00 3.3200 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1798 90 48.00 2.8305 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1799 90 60.00 2.4732 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1800 90 71.99 2.2800 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1801 91 0.00 0.0000 1 60000 1 60000 41.47 2.81 3.01 52.13 2.5884 #> 1802 91 0.25 7.4743 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1803 91 0.50 7.2035 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1804 91 0.75 7.3514 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1805 91 1.00 7.4949 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1806 91 1.50 7.1567 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1807 91 2.00 6.8630 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1808 91 2.50 7.0466 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1809 91 3.00 7.3553 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1810 91 4.00 6.3123 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1811 91 6.00 6.7350 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1812 91 8.00 6.4016 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1813 91 12.00 5.9693 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1814 91 16.00 5.9432 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1815 91 20.00 5.5828 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1816 91 24.00 5.2562 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1817 91 36.00 4.7854 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1818 91 48.00 4.9007 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1819 91 60.00 4.6547 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1820 91 71.99 4.3990 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1821 92 0.00 0.0000 1 120000 1 120000 51.89 4.01 5.08 49.16 3.7047 #> 1822 92 0.25 7.5609 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1823 92 0.50 7.8286 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1824 92 0.75 7.4654 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1825 92 1.00 7.5075 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1826 92 1.50 7.5774 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1827 92 2.00 7.6281 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1828 92 2.50 7.0321 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1829 92 3.00 7.4403 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1830 92 4.00 7.0853 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1831 92 6.00 6.7549 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1832 92 8.00 6.9050 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1833 92 12.00 6.2719 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1834 92 16.00 6.5199 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1835 92 20.00 6.1088 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1836 92 24.00 6.2900 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1837 92 36.00 5.5631 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1838 92 48.00 5.1514 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1839 92 60.00 4.7481 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1840 92 71.99 4.4619 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1841 93 0.00 0.0000 1 60000 1 60000 95.09 3.49 5.29 49.83 3.5994 #> 1842 93 0.25 6.1531 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1843 93 0.50 6.4136 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1844 93 0.75 6.5420 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1845 93 1.00 6.7160 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1846 93 1.50 6.5920 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1847 93 2.00 6.2697 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1848 93 2.50 6.6579 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1849 93 3.00 6.1546 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1850 93 4.00 5.7715 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1851 93 6.00 6.1812 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1852 93 8.00 5.9712 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1853 93 12.00 5.7621 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1854 93 16.00 5.3633 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1855 93 20.00 5.4774 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1856 93 24.00 5.2819 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1857 93 36.00 4.4374 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1858 93 48.00 5.0404 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1859 93 60.00 4.4994 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1860 93 71.99 3.8724 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1861 94 0.00 0.0000 1 10000 1 10000 106.00 2.32 3.93 51.36 2.1707 #> 1862 94 0.25 4.5668 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1863 94 0.50 4.6144 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1864 94 0.75 4.4419 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1865 94 1.00 4.4674 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1866 94 1.50 4.5793 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1867 94 2.00 4.4365 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1868 94 2.50 4.1741 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1869 94 3.00 4.3684 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1870 94 4.00 4.6263 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1871 94 6.00 4.1330 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1872 94 8.00 4.0853 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1873 94 12.00 3.8859 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1874 94 16.00 3.8712 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1875 94 20.00 4.1030 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1876 94 24.00 4.0199 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1877 94 36.00 3.6407 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1878 94 48.00 3.3083 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1879 94 60.00 3.1160 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1880 94 71.99 3.3643 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1881 95 0.00 0.0000 1 120000 1 120000 73.28 2.18 2.24 51.95 2.3285 #> 1882 95 0.25 7.0849 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1883 95 0.50 7.3054 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1884 95 0.75 7.3595 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1885 95 1.00 7.2720 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1886 95 1.50 7.0153 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1887 95 2.00 7.3268 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1888 95 2.50 7.1000 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1889 95 3.00 7.4639 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1890 95 4.00 7.3901 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1891 95 6.00 7.1901 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1892 95 8.00 7.4193 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1893 95 12.00 6.5741 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1894 95 16.00 6.9820 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1895 95 20.00 6.3821 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1896 95 24.00 6.3157 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1897 95 36.00 6.0997 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1898 95 48.00 5.9255 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1899 95 60.00 5.5600 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1900 95 71.99 5.2387 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1901 96 0.00 0.0000 1 30000 1 30000 62.83 3.93 3.54 43.67 3.9453 #> 1902 96 0.25 6.2721 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1903 96 0.50 5.9977 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1904 96 0.75 5.7904 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1905 96 1.00 6.3191 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1906 96 1.50 6.0593 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1907 96 2.00 5.9513 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1908 96 2.50 6.0904 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1909 96 3.00 5.7772 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1910 96 4.00 5.4392 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1911 96 6.00 5.5401 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1912 96 8.00 5.3731 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1913 96 12.00 5.3579 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1914 96 16.00 4.5975 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1915 96 20.00 4.4261 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1916 96 24.00 4.4371 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1917 96 36.00 4.3029 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1918 96 48.00 4.0049 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1919 96 60.00 3.3000 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1920 96 71.99 2.8351 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1921 97 0.00 0.0000 1 120000 1 120000 36.09 3.89 3.70 61.66 3.8889 #> 1922 97 0.25 8.0057 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1923 97 0.50 8.0264 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1924 97 0.75 8.0005 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1925 97 1.00 7.9445 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1926 97 1.50 7.6329 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1927 97 2.00 8.1819 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1928 97 2.50 7.5863 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1929 97 3.00 7.7539 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1930 97 4.00 7.2309 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1931 97 6.00 6.9522 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1932 97 8.00 6.7698 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1933 97 12.00 6.2143 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1934 97 16.00 6.1285 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1935 97 20.00 5.4980 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1936 97 24.00 5.7722 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1937 97 36.00 5.0610 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1938 97 48.00 4.9570 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1939 97 60.00 4.5014 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1940 97 71.99 4.4180 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1941 98 0.00 0.0000 1 30000 1 30000 38.54 3.56 4.83 45.77 3.6848 #> 1942 98 0.25 6.3670 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1943 98 0.50 6.4430 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1944 98 0.75 6.7792 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1945 98 1.00 6.1160 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1946 98 1.50 6.3785 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1947 98 2.00 6.5028 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1948 98 2.50 5.9329 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1949 98 3.00 5.8863 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1950 98 4.00 5.6325 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1951 98 6.00 5.6998 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1952 98 8.00 5.1230 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1953 98 12.00 4.6036 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1954 98 16.00 4.7715 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1955 98 20.00 4.9437 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1956 98 24.00 4.3266 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1957 98 36.00 4.2413 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1958 98 48.00 3.9859 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1959 98 60.00 3.3926 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1960 98 71.99 2.9710 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1961 99 0.00 0.0000 1 10000 1 10000 60.76 5.52 5.79 51.35 5.2531 #> 1962 99 0.25 5.2214 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1963 99 0.50 4.7957 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1964 99 0.75 5.1311 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1965 99 1.00 5.0799 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1966 99 1.50 4.6707 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1967 99 2.00 5.0312 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1968 99 2.50 4.8610 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1969 99 3.00 4.2483 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1970 99 4.00 4.0824 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1971 99 6.00 4.3861 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1972 99 8.00 3.9626 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1973 99 12.00 3.3664 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1974 99 16.00 3.4060 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1975 99 20.00 2.9662 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1976 99 24.00 3.5865 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1977 99 36.00 2.4211 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1978 99 48.00 2.0140 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1979 99 60.00 1.7738 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1980 99 71.99 1.1639 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1981 100 0.00 0.0000 1 60000 1 60000 57.10 4.75 6.76 40.97 4.6553 #> 1982 100 0.25 6.5906 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1983 100 0.50 7.1578 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1984 100 0.75 6.7795 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1985 100 1.00 6.6517 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1986 100 1.50 6.9479 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1987 100 2.00 6.2698 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1988 100 2.50 6.8049 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1989 100 3.00 6.6084 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1990 100 4.00 6.6015 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1991 100 6.00 5.8904 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1992 100 8.00 5.9595 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1993 100 12.00 5.5801 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1994 100 16.00 5.7328 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1995 100 20.00 5.3268 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1996 100 24.00 5.0195 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1997 100 36.00 4.6884 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1998 100 48.00 4.0432 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1999 100 60.00 3.2940 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 2000 100 71.99 3.1091 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 2001 101 0.00 0.0000 1 10000 1 10000 68.05 4.42 4.78 84.69 4.5172 #> 2002 101 0.25 5.2775 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2003 101 0.50 5.0574 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2004 101 0.75 4.6350 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2005 101 1.00 4.6677 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2006 101 1.50 4.6421 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2007 101 2.00 4.6276 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2008 101 2.50 5.0243 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2009 101 3.00 4.4520 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2010 101 4.00 4.3450 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2011 101 6.00 4.3579 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2012 101 8.00 4.0423 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2013 101 12.00 3.4192 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2014 101 16.00 3.5891 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2015 101 20.00 3.2577 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2016 101 24.00 3.2019 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2017 101 36.00 3.2197 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2018 101 48.00 2.5632 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2019 101 60.00 2.0523 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2020 101 71.99 1.7870 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2021 102 0.00 0.0000 1 60000 1 60000 110.40 4.89 4.35 59.95 5.1803 #> 2022 102 0.25 6.3521 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2023 102 0.50 6.4064 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2024 102 0.75 6.2692 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2025 102 1.00 6.0854 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2026 102 1.50 6.3631 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2027 102 2.00 5.8324 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2028 102 2.50 6.1285 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2029 102 3.00 6.2492 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2030 102 4.00 6.0095 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2031 102 6.00 5.6028 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2032 102 8.00 5.7268 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2033 102 12.00 5.5763 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2034 102 16.00 5.3242 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2035 102 20.00 5.0551 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2036 102 24.00 4.8601 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2037 102 36.00 4.7476 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2038 102 48.00 4.0818 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2039 102 60.00 3.9937 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2040 102 71.99 3.6534 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2041 103 0.00 0.0000 1 30000 1 30000 74.46 3.85 5.00 43.94 3.5066 #> 2042 103 0.25 5.8740 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2043 103 0.50 5.9156 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2044 103 0.75 6.2102 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2045 103 1.00 5.7849 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2046 103 1.50 5.7246 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2047 103 2.00 5.3849 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2048 103 2.50 6.0297 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2049 103 3.00 5.6271 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2050 103 4.00 5.7332 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2051 103 6.00 5.1451 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2052 103 8.00 5.2739 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2053 103 12.00 4.8142 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2054 103 16.00 4.9637 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2055 103 20.00 5.0656 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2056 103 24.00 4.2051 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2057 103 36.00 4.2380 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2058 103 48.00 4.3378 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2059 103 60.00 3.7777 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2060 103 71.99 3.1209 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2061 104 0.00 0.0000 1 120000 1 120000 74.17 4.24 5.21 49.21 4.2137 #> 2062 104 0.25 7.4039 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2063 104 0.50 7.4499 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2064 104 0.75 7.4363 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2065 104 1.00 7.1069 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2066 104 1.50 7.2324 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2067 104 2.00 7.6221 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2068 104 2.50 7.0780 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2069 104 3.00 6.9753 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2070 104 4.00 6.5803 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2071 104 6.00 6.0916 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2072 104 8.00 6.7067 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2073 104 12.00 6.7509 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2074 104 16.00 6.3806 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2075 104 20.00 6.0048 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2076 104 24.00 5.9113 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2077 104 36.00 5.2029 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2078 104 48.00 5.0672 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2079 104 60.00 4.7792 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2080 104 71.99 4.3138 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2081 105 0.00 0.0000 1 30000 1 30000 84.52 2.93 6.15 61.72 3.3479 #> 2082 105 0.25 5.6819 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2083 105 0.50 6.1715 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2084 105 0.75 6.0714 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2085 105 1.00 5.9143 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2086 105 1.50 5.8360 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2087 105 2.00 5.5700 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2088 105 2.50 5.2962 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2089 105 3.00 5.6920 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2090 105 4.00 5.4136 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2091 105 6.00 5.2353 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2092 105 8.00 4.9572 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2093 105 12.00 4.6072 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2094 105 16.00 4.7434 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2095 105 20.00 4.6058 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2096 105 24.00 4.7982 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2097 105 36.00 4.5292 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2098 105 48.00 4.3386 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2099 105 60.00 3.9727 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2100 105 71.99 3.4504 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2101 106 0.00 0.0000 1 60000 1 60000 108.20 3.22 3.18 41.94 3.5482 #> 2102 106 0.25 6.2758 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2103 106 0.50 6.4430 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2104 106 0.75 6.4989 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2105 106 1.00 5.9464 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2106 106 1.50 6.1863 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2107 106 2.00 6.3042 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2108 106 2.50 6.3045 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2109 106 3.00 6.3503 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2110 106 4.00 6.4207 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2111 106 6.00 5.4596 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2112 106 8.00 5.4616 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2113 106 12.00 5.9212 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2114 106 16.00 5.4158 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2115 106 20.00 5.4419 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2116 106 24.00 5.3412 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2117 106 36.00 4.6963 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2118 106 48.00 4.7707 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2119 106 60.00 4.5140 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2120 106 71.99 4.3545 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2121 107 0.00 0.0000 1 10000 1 10000 57.48 2.47 4.99 30.07 2.4718 #> 2122 107 0.25 4.9553 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2123 107 0.50 5.2266 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2124 107 0.75 5.2258 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2125 107 1.00 5.1632 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2126 107 1.50 4.8583 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2127 107 2.00 5.1701 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2128 107 2.50 4.8643 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2129 107 3.00 4.6076 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2130 107 4.00 5.0261 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2131 107 6.00 4.6165 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2132 107 8.00 4.6760 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2133 107 12.00 4.4690 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2134 107 16.00 3.9583 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2135 107 20.00 4.0423 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2136 107 24.00 3.5517 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2137 107 36.00 3.3162 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2138 107 48.00 3.0737 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2139 107 60.00 3.3373 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2140 107 71.99 2.5108 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2141 108 0.00 0.0000 1 30000 1 30000 55.41 1.88 3.42 81.22 2.2452 #> 2142 108 0.25 6.2043 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2143 108 0.50 6.2393 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2144 108 0.75 5.8866 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2145 108 1.00 6.5284 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2146 108 1.50 6.0409 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2147 108 2.00 6.2407 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2148 108 2.50 6.0659 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2149 108 3.00 6.1876 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2150 108 4.00 5.8700 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2151 108 6.00 5.2993 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2152 108 8.00 5.7124 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2153 108 12.00 5.2871 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2154 108 16.00 4.8208 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2155 108 20.00 5.3167 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2156 108 24.00 5.3166 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2157 108 36.00 4.5650 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2158 108 48.00 4.3854 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2159 108 60.00 4.1098 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2160 108 71.99 4.2461 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2161 109 0.00 0.0000 1 120000 1 120000 82.02 3.69 5.38 58.24 3.8365 #> 2162 109 0.25 7.0973 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2163 109 0.50 7.1426 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2164 109 0.75 7.1160 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2165 109 1.00 7.0624 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2166 109 1.50 7.1595 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2167 109 2.00 7.2242 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2168 109 2.50 6.9320 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2169 109 3.00 6.8547 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2170 109 4.00 7.0335 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2171 109 6.00 6.6997 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2172 109 8.00 6.8957 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2173 109 12.00 6.1783 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2174 109 16.00 6.0599 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2175 109 20.00 6.0350 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2176 109 24.00 5.8777 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2177 109 36.00 5.4658 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2178 109 48.00 5.2573 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2179 109 60.00 5.2259 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2180 109 71.99 4.7301 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2181 110 0.00 0.0000 1 10000 1 10000 33.02 4.32 2.68 47.16 4.1615 #> 2182 110 0.25 5.6083 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2183 110 0.50 5.7539 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2184 110 0.75 5.6557 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2185 110 1.00 5.7754 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2186 110 1.50 5.5669 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2187 110 2.00 5.3329 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2188 110 2.50 4.7922 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2189 110 3.00 5.4122 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2190 110 4.00 5.3034 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2191 110 6.00 4.3813 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2192 110 8.00 4.2647 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2193 110 12.00 3.8482 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2194 110 16.00 3.2489 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2195 110 20.00 3.1873 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2196 110 24.00 2.7926 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2197 110 36.00 2.5362 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2198 110 48.00 1.9971 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2199 110 60.00 1.8917 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2200 110 71.99 1.4647 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2201 111 0.00 0.0000 1 120000 1 120000 56.80 2.26 5.80 57.11 2.3658 #> 2202 111 0.25 7.5450 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2203 111 0.50 7.3998 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2204 111 0.75 7.4727 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2205 111 1.00 7.3439 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2206 111 1.50 7.2691 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2207 111 2.00 7.1870 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2208 111 2.50 7.1550 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2209 111 3.00 7.0969 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2210 111 4.00 7.1245 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2211 111 6.00 7.1705 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2212 111 8.00 6.8447 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2213 111 12.00 6.8559 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2214 111 16.00 6.8472 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2215 111 20.00 6.5130 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2216 111 24.00 6.2248 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2217 111 36.00 6.0660 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2218 111 48.00 5.7711 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2219 111 60.00 5.6278 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2220 111 71.99 5.5306 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2221 112 0.00 0.0000 1 60000 1 60000 89.19 3.32 4.83 38.46 3.2529 #> 2222 112 0.25 6.4389 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2223 112 0.50 6.2810 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2224 112 0.75 6.4017 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2225 112 1.00 6.4865 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2226 112 1.50 6.4855 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2227 112 2.00 5.8339 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2228 112 2.50 6.5342 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2229 112 3.00 6.2224 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2230 112 4.00 6.4204 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2231 112 6.00 6.0170 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2232 112 8.00 6.0817 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2233 112 12.00 5.8258 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2234 112 16.00 5.7958 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2235 112 20.00 5.4774 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2236 112 24.00 5.1324 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2237 112 36.00 5.2753 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2238 112 48.00 4.9959 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2239 112 60.00 4.4452 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2240 112 71.99 4.3151 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2241 113 0.00 0.0000 1 120000 1 120000 51.03 4.26 6.49 34.22 3.8093 #> 2242 113 0.25 7.8079 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2243 113 0.50 7.7080 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2244 113 0.75 7.9522 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2245 113 1.00 7.3093 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2246 113 1.50 7.2752 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2247 113 2.00 7.3606 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2248 113 2.50 6.9918 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2249 113 3.00 7.1807 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2250 113 4.00 7.3859 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2251 113 6.00 6.8443 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2252 113 8.00 6.6308 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2253 113 12.00 6.5199 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2254 113 16.00 6.8353 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2255 113 20.00 6.0561 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2256 113 24.00 6.3037 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2257 113 36.00 5.5437 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2258 113 48.00 4.6363 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2259 113 60.00 4.6770 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2260 113 71.99 4.0423 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2261 114 0.00 0.0000 1 120000 1 120000 54.41 4.79 3.07 46.85 4.6786 #> 2262 114 0.25 7.7603 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2263 114 0.50 7.6790 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2264 114 0.75 7.6545 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2265 114 1.00 7.8145 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2266 114 1.50 7.5313 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2267 114 2.00 7.4079 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2268 114 2.50 7.0512 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2269 114 3.00 7.3297 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2270 114 4.00 7.2178 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2271 114 6.00 6.8568 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2272 114 8.00 6.5614 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2273 114 12.00 6.6495 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2274 114 16.00 6.0921 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2275 114 20.00 5.6724 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2276 114 24.00 5.5536 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2277 114 36.00 5.1335 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2278 114 48.00 4.5665 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2279 114 60.00 4.2571 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2280 114 71.99 4.0580 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2281 115 0.00 0.0000 1 30000 1 30000 77.47 4.38 4.88 42.68 4.2592 #> 2282 115 0.25 6.0701 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2283 115 0.50 5.8497 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2284 115 0.75 5.6992 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2285 115 1.00 5.6403 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2286 115 1.50 5.8723 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2287 115 2.00 5.8391 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2288 115 2.50 5.5018 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2289 115 3.00 6.0790 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2290 115 4.00 5.4512 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2291 115 6.00 5.3948 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2292 115 8.00 4.9564 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2293 115 12.00 5.0630 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2294 115 16.00 4.6427 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2295 115 20.00 4.8753 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2296 115 24.00 4.8461 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2297 115 36.00 3.7851 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2298 115 48.00 3.7707 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2299 115 60.00 3.1457 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2300 115 71.99 3.0031 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2301 116 0.00 0.0000 1 60000 1 60000 89.74 2.37 3.05 63.01 2.8436 #> 2302 116 0.25 6.5182 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2303 116 0.50 6.1346 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2304 116 0.75 6.4850 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2305 116 1.00 6.7041 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2306 116 1.50 6.4318 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2307 116 2.00 6.2126 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2308 116 2.50 6.8140 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2309 116 3.00 6.6262 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2310 116 4.00 6.4087 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2311 116 6.00 6.0723 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2312 116 8.00 5.7455 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2313 116 12.00 5.9934 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2314 116 16.00 5.8292 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2315 116 20.00 5.1093 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2316 116 24.00 5.4453 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2317 116 36.00 5.2281 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2318 116 48.00 5.1360 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2319 116 60.00 4.6329 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2320 116 71.99 4.5770 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2321 117 0.00 0.0000 1 60000 1 60000 46.76 3.73 3.17 45.09 3.7116 #> 2322 117 0.25 7.2372 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2323 117 0.50 6.8813 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2324 117 0.75 6.8554 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2325 117 1.00 7.0076 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2326 117 1.50 7.0250 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2327 117 2.00 6.9488 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2328 117 2.50 7.2128 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2329 117 3.00 6.3986 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2330 117 4.00 6.4377 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2331 117 6.00 6.3683 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2332 117 8.00 6.0206 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2333 117 12.00 5.7848 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2334 117 16.00 5.8478 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2335 117 20.00 5.5071 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2336 117 24.00 5.1212 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2337 117 36.00 5.1749 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2338 117 48.00 4.1990 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2339 117 60.00 3.8779 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2340 117 71.99 3.4521 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2341 118 0.00 0.0000 1 10000 1 10000 86.90 3.28 2.77 59.03 3.4401 #> 2342 118 0.25 4.5603 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2343 118 0.50 4.4919 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2344 118 0.75 4.5673 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2345 118 1.00 4.9488 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2346 118 1.50 4.5801 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2347 118 2.00 4.2591 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2348 118 2.50 4.6817 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2349 118 3.00 4.5970 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2350 118 4.00 4.4408 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2351 118 6.00 4.5016 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2352 118 8.00 4.4667 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2353 118 12.00 4.1623 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2354 118 16.00 3.7907 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2355 118 20.00 3.6824 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2356 118 24.00 3.9045 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2357 118 36.00 3.0218 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2358 118 48.00 2.7980 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2359 118 60.00 2.6303 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2360 118 71.99 2.4180 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2361 119 0.00 0.0000 1 30000 1 30000 47.91 4.39 2.86 57.14 4.3617 #> 2362 119 0.25 6.8032 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2363 119 0.50 6.4084 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2364 119 0.75 6.4412 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2365 119 1.00 6.2701 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2366 119 1.50 6.1219 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2367 119 2.00 6.1937 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2368 119 2.50 5.6521 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2369 119 3.00 5.3953 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2370 119 4.00 6.1504 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2371 119 6.00 5.8878 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2372 119 8.00 5.4198 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2373 119 12.00 4.9462 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2374 119 16.00 4.3914 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2375 119 20.00 4.1493 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2376 119 24.00 4.2053 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2377 119 36.00 3.8847 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2378 119 48.00 3.0589 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2379 119 60.00 2.9091 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2380 119 71.99 2.8784 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2381 120 0.00 0.0000 1 10000 1 10000 54.16 7.04 4.51 45.20 6.8698 #> 2382 120 0.25 5.1029 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2383 120 0.50 5.1382 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2384 120 0.75 4.9832 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2385 120 1.00 4.9910 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2386 120 1.50 4.9774 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2387 120 2.00 4.9170 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2388 120 2.50 4.7479 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2389 120 3.00 5.0471 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2390 120 4.00 4.4159 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2391 120 6.00 4.0390 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2392 120 8.00 3.6357 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2393 120 12.00 3.5117 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2394 120 16.00 3.4362 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2395 120 20.00 2.7368 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2396 120 24.00 2.4657 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2397 120 36.00 1.8923 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2398 120 48.00 1.1582 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2399 120 60.00 0.8168 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2400 120 71.99 0.4012 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> V Q V2 ETA1 ETA2 ETA3 ETA4 #> 1 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 2 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 3 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 4 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 5 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 6 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 7 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 8 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 9 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 10 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 11 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 12 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 13 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 14 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 15 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 16 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 17 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 18 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 19 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 20 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 21 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 22 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 23 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 24 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 25 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 26 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 27 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 28 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 29 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 30 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 31 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 32 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 33 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 34 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 35 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 36 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 37 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 38 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 39 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 40 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 41 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 42 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 43 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 44 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 45 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 46 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 47 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 48 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 49 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 50 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 51 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 52 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 53 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 54 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 55 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 56 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 57 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 58 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 59 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 60 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 61 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 62 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 63 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 64 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 65 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 66 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 67 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 68 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 69 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 70 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 71 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 72 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 73 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 74 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 75 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 76 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 77 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 78 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 79 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 80 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 81 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 82 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 83 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 84 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 85 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 86 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 87 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 88 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 89 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 90 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 91 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 92 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 93 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 94 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 95 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 96 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 97 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 98 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 99 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 100 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 101 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 102 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 103 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 104 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 105 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 106 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 107 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 108 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 109 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 110 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 111 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 112 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 113 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 114 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 115 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 116 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 117 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 118 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 119 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 120 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 121 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 122 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 123 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 124 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 125 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 126 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 127 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 128 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 129 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 130 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 131 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 132 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 133 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 134 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 135 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 136 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 137 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 138 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 139 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 140 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 141 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 142 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 143 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 144 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 145 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 146 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 147 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 148 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 149 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 150 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 151 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 152 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 153 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 154 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 155 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 156 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 157 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 158 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 159 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 160 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 161 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 162 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 163 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 164 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 165 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 166 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 167 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 168 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 169 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 170 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 171 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 172 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 173 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 174 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 175 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 176 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 177 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 178 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 179 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 180 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 181 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 182 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 183 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 184 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 185 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 186 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 187 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 188 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 189 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 190 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 191 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 192 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 193 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 194 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 195 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 196 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 197 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 198 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 199 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 200 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 201 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 202 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 203 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 204 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 205 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 206 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 207 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 208 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 209 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 210 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 211 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 212 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 213 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 214 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 215 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 216 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 217 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 218 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 219 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 220 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 221 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 222 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 223 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 224 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 225 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 226 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 227 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 228 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 229 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 230 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 231 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 232 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 233 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 234 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 235 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 236 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 237 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 238 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 239 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 240 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 241 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 242 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 243 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 244 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 245 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 246 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 247 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 248 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 249 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 250 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 251 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 252 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 253 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 254 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 255 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 256 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 257 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 258 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 259 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 260 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 261 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 262 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 263 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 264 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 265 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 266 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 267 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 268 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 269 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 270 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 271 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 272 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 273 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 274 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 275 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 276 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 277 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 278 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 279 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 280 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 281 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 282 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 283 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 284 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 285 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 286 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 287 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 288 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 289 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 290 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 291 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 292 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 293 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 294 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 295 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 296 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 297 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 298 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 299 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 300 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 301 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 302 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 303 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 304 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 305 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 306 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 307 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 308 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 309 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 310 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 311 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 312 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 313 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 314 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 315 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 316 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 317 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 318 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 319 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 320 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 321 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 322 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 323 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 324 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 325 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 326 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 327 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 328 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 329 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 330 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 331 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 332 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 333 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 334 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 335 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 336 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 337 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 338 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 339 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 340 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 341 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 342 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 343 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 344 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 345 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 346 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 347 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 348 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 349 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 350 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 351 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 352 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 353 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 354 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 355 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 356 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 357 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 358 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 359 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 360 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 361 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 362 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 363 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 364 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 365 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 366 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 367 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 368 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 369 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 370 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 371 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 372 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 373 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 374 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 375 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 376 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 377 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 378 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 379 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 380 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 381 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 382 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 383 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 384 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 385 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 386 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 387 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 388 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 389 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 390 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 391 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 392 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 393 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 394 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 395 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 396 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 397 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 398 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 399 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 400 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 401 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 402 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 403 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 404 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 405 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 406 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 407 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 408 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 409 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 410 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 411 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 412 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 413 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 414 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 415 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 416 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 417 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 418 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 419 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 420 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 421 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 422 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 423 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 424 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 425 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 426 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 427 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 428 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 429 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 430 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 431 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 432 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 433 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 434 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 435 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 436 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 437 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 438 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 439 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 440 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 441 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 442 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 443 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 444 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 445 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 446 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 447 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 448 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 449 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 450 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 451 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 452 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 453 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 454 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 455 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 456 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 457 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 458 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 459 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 460 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 461 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 462 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 463 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 464 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 465 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 466 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 467 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 468 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 469 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 470 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 471 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 472 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 473 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 474 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 475 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 476 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 477 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 478 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 479 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 480 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 481 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 482 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 483 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 484 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 485 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 486 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 487 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 488 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 489 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 490 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 491 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 492 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 493 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 494 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 495 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 496 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 497 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 498 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 499 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 500 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 501 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 502 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 503 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 504 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 505 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 506 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 507 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 508 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 509 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 510 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 511 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 512 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 513 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 514 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 515 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 516 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 517 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 518 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 519 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 520 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 521 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 522 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 523 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 524 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 525 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 526 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 527 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 528 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 529 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 530 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 531 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 532 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 533 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 534 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 535 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 536 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 537 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 538 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 539 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 540 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 541 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 542 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 543 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 544 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 545 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 546 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 547 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 548 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 549 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 550 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 551 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 552 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 553 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 554 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 555 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 556 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 557 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 558 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 559 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 560 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 561 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 562 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 563 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 564 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 565 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 566 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 567 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 568 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 569 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 570 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 571 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 572 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 573 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 574 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 575 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 576 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 577 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 578 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 579 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 580 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 581 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 582 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 583 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 584 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 585 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 586 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 587 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 588 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 589 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 590 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 591 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 592 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 593 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 594 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 595 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 596 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 597 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 598 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 599 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 600 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 601 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 602 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 603 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 604 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 605 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 606 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 607 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 608 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 609 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 610 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 611 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 612 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 613 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 614 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 615 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 616 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 617 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 618 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 619 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 620 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 621 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 622 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 623 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 624 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 625 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 626 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 627 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 628 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 629 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 630 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 631 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 632 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 633 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 634 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 635 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 636 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 637 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 638 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 639 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 640 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 641 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 642 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 643 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 644 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 645 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 646 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 647 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 648 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 649 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 650 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 651 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 652 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 653 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 654 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 655 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 656 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 657 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 658 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 659 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 660 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 661 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 662 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 663 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 664 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 665 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 666 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 667 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 668 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 669 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 670 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 671 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 672 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 673 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 674 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 675 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 676 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 677 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 678 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 679 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 680 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 681 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 682 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 683 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 684 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 685 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 686 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 687 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 688 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 689 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 690 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 691 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 692 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 693 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 694 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 695 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 696 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 697 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 698 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 699 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 700 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 701 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 702 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 703 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 704 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 705 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 706 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 707 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 708 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 709 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 710 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 711 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 712 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 713 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 714 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 715 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 716 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 717 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 718 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 719 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 720 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 721 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 722 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 723 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 724 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 725 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 726 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 727 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 728 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 729 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 730 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 731 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 732 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 733 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 734 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 735 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 736 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 737 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 738 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 739 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 740 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 741 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 742 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 743 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 744 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 745 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 746 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 747 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 748 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 749 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 750 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 751 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 752 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 753 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 754 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 755 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 756 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 757 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 758 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 759 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 760 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 761 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 762 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 763 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 764 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 765 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 766 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 767 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 768 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 769 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 770 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 771 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 772 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 773 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 774 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 775 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 776 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 777 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 778 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 779 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 780 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 781 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 782 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 783 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 784 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 785 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 786 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 787 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 788 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 789 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 790 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 791 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 792 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 793 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 794 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 795 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 796 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 797 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 798 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 799 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 800 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 801 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 802 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 803 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 804 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 805 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 806 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 807 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 808 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 809 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 810 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 811 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 812 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 813 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 814 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 815 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 816 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 817 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 818 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 819 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 820 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 821 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 822 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 823 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 824 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 825 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 826 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 827 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 828 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 829 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 830 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 831 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 832 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 833 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 834 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 835 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 836 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 837 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 838 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 839 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 840 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 841 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 842 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 843 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 844 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 845 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 846 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 847 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 848 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 849 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 850 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 851 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 852 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 853 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 854 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 855 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 856 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 857 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 858 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 859 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 860 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 861 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 862 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 863 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 864 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 865 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 866 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 867 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 868 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 869 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 870 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 871 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 872 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 873 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 874 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 875 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 876 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 877 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 878 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 879 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 880 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 881 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 882 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 883 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 884 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 885 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 886 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 887 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 888 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 889 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 890 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 891 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 892 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 893 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 894 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 895 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 896 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 897 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 898 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 899 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 900 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 901 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 902 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 903 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 904 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 905 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 906 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 907 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 908 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 909 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 910 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 911 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 912 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 913 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 914 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 915 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 916 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 917 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 918 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 919 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 920 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 921 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 922 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 923 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 924 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 925 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 926 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 927 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 928 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 929 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 930 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 931 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 932 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 933 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 934 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 935 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 936 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 937 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 938 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 939 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 940 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 941 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 942 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 943 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 944 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 945 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 946 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 947 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 948 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 949 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 950 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 951 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 952 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 953 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 954 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 955 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 956 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 957 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 958 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 959 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 960 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 961 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 962 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 963 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 964 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 965 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 966 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 967 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 968 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 969 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 970 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 971 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 972 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 973 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 974 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 975 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 976 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 977 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 978 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 979 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 980 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 981 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 982 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 983 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 984 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 985 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 986 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 987 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 988 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 989 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 990 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 991 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 992 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 993 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 994 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 995 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 996 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 997 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 998 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 999 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 1000 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 1001 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1002 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1003 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1004 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1005 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1006 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1007 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1008 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1009 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1010 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1011 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1012 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1013 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1014 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1015 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1016 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1017 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1018 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1019 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1020 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1021 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1022 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1023 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1024 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1025 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1026 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1027 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1028 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1029 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1030 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1031 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1032 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1033 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1034 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1035 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1036 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1037 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1038 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1039 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1040 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1041 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1042 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1043 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1044 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1045 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1046 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1047 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1048 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1049 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1050 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1051 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1052 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1053 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1054 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1055 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1056 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1057 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1058 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1059 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1060 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1061 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1062 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1063 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1064 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1065 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1066 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1067 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1068 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1069 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1070 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1071 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1072 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1073 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1074 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1075 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1076 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1077 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1078 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1079 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1080 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1081 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1082 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1083 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1084 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1085 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1086 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1087 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1088 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1089 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1090 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1091 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1092 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1093 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1094 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1095 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1096 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1097 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1098 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1099 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1100 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1101 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1102 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1103 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1104 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1105 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1106 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1107 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1108 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1109 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1110 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1111 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1112 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1113 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1114 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1115 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1116 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1117 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1118 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1119 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1120 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1121 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1122 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1123 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1124 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1125 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1126 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1127 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1128 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1129 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1130 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1131 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1132 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1133 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1134 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1135 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1136 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1137 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1138 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1139 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1140 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1141 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1142 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1143 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1144 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1145 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1146 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1147 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1148 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1149 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1150 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1151 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1152 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1153 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1154 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1155 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1156 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1157 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1158 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1159 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1160 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1161 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1162 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1163 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1164 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1165 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1166 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1167 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1168 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1169 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1170 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1171 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1172 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1173 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1174 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1175 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1176 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1177 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1178 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1179 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1180 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1181 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1182 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1183 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1184 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1185 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1186 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1187 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1188 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1189 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1190 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1191 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1192 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1193 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1194 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1195 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1196 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1197 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1198 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1199 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1200 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1201 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1202 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1203 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1204 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1205 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1206 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1207 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1208 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1209 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1210 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1211 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1212 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1213 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1214 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1215 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1216 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1217 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1218 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1219 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1220 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1221 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1222 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1223 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1224 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1225 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1226 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1227 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1228 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1229 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1230 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1231 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1232 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1233 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1234 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1235 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1236 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1237 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1238 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1239 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1240 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1241 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1242 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1243 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1244 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1245 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1246 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1247 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1248 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1249 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1250 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1251 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1252 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1253 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1254 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1255 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1256 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1257 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1258 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1259 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1260 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1261 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1262 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1263 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1264 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1265 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1266 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1267 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1268 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1269 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1270 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1271 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1272 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1273 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1274 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1275 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1276 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1277 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1278 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1279 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1280 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1281 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1282 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1283 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1284 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1285 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1286 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1287 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1288 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1289 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1290 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1291 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1292 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1293 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1294 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1295 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1296 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1297 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1298 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1299 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1300 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1301 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1302 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1303 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1304 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1305 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1306 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1307 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1308 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1309 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1310 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1311 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1312 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1313 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1314 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1315 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1316 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1317 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1318 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1319 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1320 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1321 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1322 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1323 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1324 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1325 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1326 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1327 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1328 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1329 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1330 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1331 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1332 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1333 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1334 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1335 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1336 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1337 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1338 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1339 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1340 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1341 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1342 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1343 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1344 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1345 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1346 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1347 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1348 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1349 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1350 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1351 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1352 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1353 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1354 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1355 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1356 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1357 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1358 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1359 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1360 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1361 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1362 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1363 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1364 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1365 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1366 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1367 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1368 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1369 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1370 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1371 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1372 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1373 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1374 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1375 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1376 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1377 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1378 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1379 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1380 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1381 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1382 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1383 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1384 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1385 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1386 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1387 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1388 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1389 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1390 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1391 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1392 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1393 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1394 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1395 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1396 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1397 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1398 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1399 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1400 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1401 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1402 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1403 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1404 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1405 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1406 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1407 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1408 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1409 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1410 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1411 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1412 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1413 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1414 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1415 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1416 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1417 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1418 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1419 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1420 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1421 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1422 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1423 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1424 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1425 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1426 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1427 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1428 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1429 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1430 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1431 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1432 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1433 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1434 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1435 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1436 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1437 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1438 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1439 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1440 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1441 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1442 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1443 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1444 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1445 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1446 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1447 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1448 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1449 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1450 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1451 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1452 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1453 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1454 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1455 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1456 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1457 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1458 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1459 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1460 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1461 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1462 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1463 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1464 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1465 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1466 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1467 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1468 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1469 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1470 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1471 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1472 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1473 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1474 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1475 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1476 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1477 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1478 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1479 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1480 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1481 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1482 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1483 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1484 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1485 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1486 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1487 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1488 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1489 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1490 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1491 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1492 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1493 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1494 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1495 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1496 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1497 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1498 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1499 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1500 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1501 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1502 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1503 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1504 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1505 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1506 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1507 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1508 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1509 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1510 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1511 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1512 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1513 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1514 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1515 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1516 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1517 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1518 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1519 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1520 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1521 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1522 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1523 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1524 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1525 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1526 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1527 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1528 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1529 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1530 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1531 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1532 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1533 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1534 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1535 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1536 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1537 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1538 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1539 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1540 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1541 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1542 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1543 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1544 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1545 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1546 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1547 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1548 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1549 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1550 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1551 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1552 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1553 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1554 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1555 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1556 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1557 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1558 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1559 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1560 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1561 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1562 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1563 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1564 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1565 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1566 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1567 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1568 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1569 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1570 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1571 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1572 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1573 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1574 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1575 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1576 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1577 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1578 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1579 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1580 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1581 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1582 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1583 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1584 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1585 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1586 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1587 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1588 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1589 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1590 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1591 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1592 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1593 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1594 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1595 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1596 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1597 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1598 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1599 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1600 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1601 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1602 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1603 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1604 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1605 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1606 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1607 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1608 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1609 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1610 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1611 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1612 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1613 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1614 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1615 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1616 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1617 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1618 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1619 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1620 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1621 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1622 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1623 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1624 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1625 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1626 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1627 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1628 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1629 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1630 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1631 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1632 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1633 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1634 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1635 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1636 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1637 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1638 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1639 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1640 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1641 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1642 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1643 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1644 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1645 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1646 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1647 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1648 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1649 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1650 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1651 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1652 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1653 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1654 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1655 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1656 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1657 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1658 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1659 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1660 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1661 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1662 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1663 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1664 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1665 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1666 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1667 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1668 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1669 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1670 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1671 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1672 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1673 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1674 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1675 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1676 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1677 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1678 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1679 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1680 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1681 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1682 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1683 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1684 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1685 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1686 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1687 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1688 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1689 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1690 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1691 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1692 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1693 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1694 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1695 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1696 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1697 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1698 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1699 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1700 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1701 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1702 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1703 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1704 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1705 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1706 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1707 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1708 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1709 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1710 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1711 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1712 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1713 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1714 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1715 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1716 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1717 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1718 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1719 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1720 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1721 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1722 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1723 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1724 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1725 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1726 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1727 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1728 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1729 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1730 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1731 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1732 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1733 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1734 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1735 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1736 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1737 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1738 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1739 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1740 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1741 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1742 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1743 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1744 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1745 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1746 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1747 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1748 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1749 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1750 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1751 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1752 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1753 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1754 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1755 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1756 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1757 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1758 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1759 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1760 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1761 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1762 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1763 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1764 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1765 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1766 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1767 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1768 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1769 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1770 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1771 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1772 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1773 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1774 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1775 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1776 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1777 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1778 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1779 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1780 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1781 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1782 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1783 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1784 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1785 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1786 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1787 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1788 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1789 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1790 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1791 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1792 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1793 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1794 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1795 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1796 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1797 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1798 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1799 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1800 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1801 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1802 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1803 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1804 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1805 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1806 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1807 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1808 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1809 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1810 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1811 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1812 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1813 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1814 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1815 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1816 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1817 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1818 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1819 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1820 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1821 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1822 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1823 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1824 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1825 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1826 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1827 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1828 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1829 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1830 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1831 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1832 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1833 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1834 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1835 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1836 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1837 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1838 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1839 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1840 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1841 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1842 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1843 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1844 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1845 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1846 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1847 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1848 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1849 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1850 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1851 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1852 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1853 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1854 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1855 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1856 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1857 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1858 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1859 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1860 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1861 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1862 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1863 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1864 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1865 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1866 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1867 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1868 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1869 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1870 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1871 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1872 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1873 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1874 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1875 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1876 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1877 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1878 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1879 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1880 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1881 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1882 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1883 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1884 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1885 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1886 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1887 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1888 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1889 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1890 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1891 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1892 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1893 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1894 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1895 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1896 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1897 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1898 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1899 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1900 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1901 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1902 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1903 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1904 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1905 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1906 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1907 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1908 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1909 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1910 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1911 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1912 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1913 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1914 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1915 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1916 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1917 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1918 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1919 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1920 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1921 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1922 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1923 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1924 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1925 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1926 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1927 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1928 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1929 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1930 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1931 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1932 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1933 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1934 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1935 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1936 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1937 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1938 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1939 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1940 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1941 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1942 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1943 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1944 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1945 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1946 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1947 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1948 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1949 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1950 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1951 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1952 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1953 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1954 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1955 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1956 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1957 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1958 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1959 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1960 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1961 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1962 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1963 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1964 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1965 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1966 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1967 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1968 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1969 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1970 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1971 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1972 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1973 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1974 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1975 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1976 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1977 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1978 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1979 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1980 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1981 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1982 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1983 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1984 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1985 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1986 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1987 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1988 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1989 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1990 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1991 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1992 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1993 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1994 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1995 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1996 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1997 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1998 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1999 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 2000 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 2001 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2002 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2003 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2004 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2005 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2006 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2007 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2008 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2009 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2010 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2011 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2012 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2013 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2014 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2015 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2016 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2017 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2018 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2019 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2020 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2021 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2022 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2023 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2024 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2025 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2026 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2027 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2028 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2029 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2030 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2031 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2032 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2033 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2034 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2035 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2036 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2037 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2038 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2039 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2040 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2041 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2042 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2043 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2044 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2045 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2046 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2047 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2048 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2049 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2050 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2051 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2052 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2053 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2054 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2055 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2056 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2057 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2058 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2059 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2060 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2061 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2062 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2063 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2064 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2065 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2066 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2067 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2068 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2069 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2070 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2071 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2072 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2073 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2074 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2075 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2076 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2077 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2078 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2079 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2080 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2081 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2082 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2083 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2084 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2085 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2086 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2087 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2088 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2089 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2090 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2091 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2092 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2093 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2094 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2095 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2096 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2097 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2098 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2099 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2100 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2101 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2102 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2103 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2104 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2105 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2106 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2107 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2108 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2109 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2110 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2111 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2112 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2113 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2114 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2115 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2116 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2117 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2118 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2119 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2120 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2121 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2122 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2123 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2124 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2125 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2126 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2127 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2128 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2129 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2130 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2131 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2132 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2133 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2134 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2135 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2136 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2137 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2138 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2139 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2140 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2141 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2142 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2143 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2144 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2145 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2146 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2147 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2148 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2149 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2150 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2151 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2152 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2153 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2154 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2155 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2156 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2157 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2158 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2159 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2160 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2161 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2162 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2163 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2164 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2165 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2166 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2167 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2168 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2169 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2170 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2171 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2172 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2173 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2174 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2175 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2176 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2177 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2178 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2179 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2180 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2181 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2182 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2183 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2184 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2185 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2186 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2187 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2188 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2189 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2190 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2191 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2192 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2193 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2194 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2195 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2196 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2197 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2198 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2199 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2200 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2201 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2202 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2203 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2204 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2205 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2206 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2207 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2208 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2209 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2210 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2211 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2212 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2213 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2214 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2215 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2216 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2217 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2218 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2219 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2220 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2221 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2222 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2223 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2224 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2225 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2226 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2227 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2228 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2229 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2230 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2231 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2232 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2233 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2234 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2235 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2236 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2237 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2238 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2239 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2240 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2241 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2242 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2243 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2244 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2245 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2246 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2247 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2248 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2249 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2250 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2251 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2252 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2253 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2254 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2255 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2256 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2257 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2258 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2259 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2260 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2261 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2262 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2263 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2264 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2265 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2266 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2267 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2268 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2269 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2270 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2271 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2272 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2273 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2274 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2275 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2276 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2277 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2278 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2279 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2280 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2281 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2282 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2283 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2284 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2285 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2286 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2287 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2288 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2289 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2290 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2291 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2292 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2293 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2294 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2295 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2296 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2297 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2298 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2299 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2300 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2301 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2302 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2303 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2304 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2305 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2306 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2307 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2308 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2309 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2310 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2311 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2312 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2313 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2314 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2315 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2316 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2317 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2318 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2319 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2320 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2321 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2322 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2323 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2324 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2325 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2326 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2327 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2328 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2329 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2330 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2331 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2332 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2333 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2334 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2335 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2336 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2337 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2338 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2339 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2340 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2341 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2342 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2343 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2344 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2345 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2346 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2347 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2348 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2349 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2350 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2351 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2352 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2353 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2354 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2355 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2356 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2357 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2358 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2359 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2360 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2361 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2362 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2363 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2364 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2365 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2366 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2367 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2368 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2369 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2370 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2371 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2372 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2373 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2374 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2375 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2376 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2377 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2378 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2379 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2380 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2381 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2382 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2383 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2384 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2385 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2386 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2387 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2388 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2389 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2390 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2391 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2392 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2393 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2394 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2395 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2396 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2397 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2398 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2399 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2400 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> IPRED IRES IWRES CWRESI DV PRED RES #> 1 1239.5000 -1.2395e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2 1215.4000 -1.7466e+02 -0.73154000 -0.94933000 1040.7 1750.3000 -7.0959e+02 #> 3 1191.9000 4.3708e+02 1.86670000 0.92773000 1629.0 1699.8000 -7.0834e+01 #> 4 1169.2000 -2.9136e+02 -1.26860000 -1.31600000 877.8 1651.3000 -7.7355e+02 #> 5 1147.1000 1.0014e+02 0.44442000 -0.06214200 1247.2 1604.8000 -3.5755e+02 #> 6 1104.7000 1.2038e+02 0.55470000 0.04936100 1225.1 1516.9000 -2.9181e+02 #> 7 1064.8000 7.3942e+01 0.35351000 -0.07069100 1138.7 1435.7000 -2.9702e+02 #> 8 1027.0000 -9.4425e+01 -0.46802000 -0.66369000 932.6 1360.6000 -4.2804e+02 #> 9 991.3800 -4.9883e+01 -0.25613000 -0.48370000 941.5 1291.2000 -3.4967e+02 #> 10 925.8700 -2.3127e+02 -1.27150000 -1.23970000 694.6 1167.3000 -4.7267e+02 #> 11 814.8000 4.2802e+01 0.26741000 0.03960700 857.6 969.0700 -1.1147e+02 #> 12 725.3500 3.5551e+01 0.24950000 0.08633300 760.9 821.0200 -6.0120e+01 #> 13 593.2400 9.8162e+01 0.84231000 0.70403000 691.4 622.5300 6.8871e+01 #> 14 502.8200 3.4078e+01 0.34500000 0.32047000 536.9 500.6600 3.6237e+01 #> 15 438.1100 -1.5151e+02 -1.76040000 -1.65760000 286.6 419.5400 -1.3294e+02 #> 16 389.5000 -3.0199e+01 -0.39468000 -0.31722000 359.3 360.9500 -1.6535e+00 #> 17 293.0200 -2.4224e+01 -0.42082000 -0.25990000 268.8 247.0800 2.1722e+01 #> 18 230.0500 -4.7148e+01 -1.04330000 -0.88073000 182.9 174.9500 7.9453e+00 #> 19 182.7600 4.2935e+01 1.19590000 1.74640000 225.7 124.6500 1.0105e+02 #> 20 145.6900 2.5208e+01 0.88075000 1.44280000 170.9 88.9240 8.1976e+01 #> 21 178.9900 -1.7899e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 22 169.2400 -2.1745e+01 -0.65402000 -0.41179000 147.5 145.8600 1.6425e+00 #> 23 160.1400 6.0559e+01 1.92500000 2.24700000 220.7 141.6500 7.9047e+01 #> 24 151.6400 1.7863e+01 0.59966000 0.71962000 169.5 137.6100 3.1888e+01 #> 25 143.6900 -3.4092e+01 -1.20780000 -1.19830000 109.6 133.7300 -2.4129e+01 #> 26 129.3300 8.7705e+00 0.34521000 0.18898000 138.1 126.4100 1.1691e+01 #> 27 116.7800 1.5125e+01 0.65931000 0.33372000 131.9 119.6400 1.2256e+01 #> 28 105.7900 -2.9591e+01 -1.42390000 -1.56970000 76.2 113.3900 -3.7187e+01 #> 29 96.1680 -3.3668e+01 -1.78210000 -1.88200000 62.5 107.6000 -4.5098e+01 #> 30 80.3130 -7.6130e+00 -0.48253000 -0.88819000 72.7 97.2730 -2.4573e+01 #> 31 58.4760 7.6241e+00 0.66369000 -0.13884000 66.1 80.7560 -1.4656e+01 #> 32 44.9890 -5.7888e+00 -0.65500000 -0.96188000 39.2 68.4180 -2.9218e+01 #> 33 30.4330 -4.3266e-01 -0.07237100 -0.45571000 30.0 51.8770 -2.1877e+01 #> 34 23.0350 -1.7347e+00 -0.38335000 -0.52725000 21.3 41.7220 -2.0422e+01 #> 35 18.3840 -5.8412e-01 -0.16174000 -0.35077000 17.8 34.9620 -1.7162e+01 #> 36 15.0010 1.3988e+00 0.47467000 0.00145430 16.4 30.0790 -1.3679e+01 #> 37 8.4362 2.8638e+00 1.72800000 0.53135000 11.3 20.5900 -9.2898e+00 #> 38 4.7824 -9.8235e-01 -1.04560000 -0.68863000 3.8 14.5800 -1.0780e+01 #> 39 2.7123 -1.2258e-02 -0.02300600 -0.26886000 2.7 10.3870 -7.6871e+00 #> 40 1.5390 6.1007e-02 0.20179000 -0.18265000 1.6 7.4103 -5.8103e+00 #> 41 1909.6000 -1.9096e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 42 1835.2000 7.6630e+02 2.12560000 2.33740000 2601.5 1750.3000 8.5121e+02 #> 43 1764.2000 -3.4495e+02 -0.99530000 -0.80509000 1419.3 1699.8000 -2.8053e+02 #> 44 1696.5000 -5.0155e+02 -1.50490000 -1.33210000 1195.0 1651.3000 -4.5635e+02 #> 45 1631.9000 -1.4394e+02 -0.44898000 -0.32949000 1488.0 1604.8000 -1.1675e+02 #> 46 1511.4000 8.5180e+01 0.28688000 0.31167000 1596.6 1516.9000 7.9687e+01 #> 47 1401.6000 -3.2110e+02 -1.16620000 -1.10970000 1080.5 1435.7000 -3.5522e+02 #> 48 1301.5000 2.8103e+02 1.09920000 0.92316000 1582.5 1360.6000 2.2186e+02 #> 49 1210.2000 -3.7775e+02 -1.58900000 -1.55130000 832.4 1291.2000 -4.5877e+02 #> 50 1050.7000 1.8579e+02 0.90009000 0.54798000 1236.5 1167.3000 6.9227e+01 #> 51 806.2600 1.0424e+02 0.65813000 0.16025000 910.5 969.0700 -5.8572e+01 #> 52 634.0900 -1.1119e+02 -0.89262000 -1.09670000 522.9 821.0200 -2.9812e+02 #> 53 421.9200 6.5779e+01 0.79362000 -0.02376900 487.7 622.5300 -1.3483e+02 #> 54 305.8600 5.0637e+01 0.84275000 -0.06161400 356.5 500.6600 -1.4416e+02 #> 55 236.3000 -4.5304e+01 -0.97594000 -1.10110000 191.0 419.5400 -2.2854e+02 #> 56 190.3300 2.2731e+00 0.06079500 -0.50835000 192.6 360.9500 -1.6835e+02 #> 57 111.1500 6.3476e+00 0.29070000 -0.33049000 117.5 247.0800 -1.2958e+02 #> 58 68.1420 -2.2442e+01 -1.67650000 -1.15850000 45.7 174.9500 -1.2925e+02 #> 59 42.0920 1.2808e+01 1.54890000 0.32179000 54.9 124.6500 -6.9745e+01 #> 60 26.0420 -4.1415e+00 -0.80956000 -0.58061000 21.9 88.9240 -6.7024e+01 #> 61 100.1900 -1.0019e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 62 98.6060 2.9094e+01 1.50190000 0.60415000 127.7 145.8600 -1.8158e+01 #> 63 97.0720 -1.0272e+01 -0.53867000 -0.80951000 86.8 141.6500 -5.4853e+01 #> 64 95.5860 -8.9861e+00 -0.47855000 -0.75393000 86.6 137.6100 -5.1012e+01 #> 65 94.1470 -9.8465e+00 -0.53240000 -0.77932000 84.3 133.7300 -4.9429e+01 #> 66 91.4000 6.5995e+00 0.36755000 -0.10313000 98.0 126.4100 -2.8409e+01 #> 67 88.8210 -2.1021e+01 -1.20480000 -1.22350000 67.8 119.6400 -5.1844e+01 #> 68 86.3980 -3.9765e-01 -0.02342900 -0.32862000 86.0 113.3900 -2.7387e+01 #> 69 84.1180 -1.5218e+01 -0.92094000 -0.97757000 68.9 107.6000 -3.8698e+01 #> 70 79.9540 3.3464e+00 0.21306000 -0.06560900 83.3 97.2730 -1.3973e+01 #> 71 72.9600 -5.5965e-01 -0.03904700 -0.16635000 72.4 80.7560 -8.3560e+00 #> 72 67.3720 3.0428e+01 2.29910000 1.91660000 97.8 68.4180 2.9382e+01 #> 73 59.1090 -2.1609e+01 -1.86100000 -1.66160000 37.5 51.8770 -1.4377e+01 #> 74 53.3120 1.0875e+00 0.10384000 0.27896000 54.4 41.7220 1.2678e+01 #> 75 48.9500 3.4950e-01 0.03634500 0.27971000 49.3 34.9620 1.4338e+01 #> 76 45.4480 -4.4480e+00 -0.49820000 -0.28734000 41.0 30.0790 1.0921e+01 #> 77 37.5120 8.0881e+00 1.09760000 1.86100000 45.6 20.5900 2.5010e+01 #> 78 31.4400 6.3599e+00 1.02970000 2.02130000 37.8 14.5800 2.3220e+01 #> 79 26.4340 6.6593e-01 0.12824000 0.51684000 27.1 10.3870 1.6713e+01 #> 80 22.2430 1.0575e+00 0.24202000 0.68597000 23.3 7.4103 1.5890e+01 #> 81 342.1900 -3.4219e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 82 335.5100 -7.1612e+01 -1.08650000 -1.21740000 263.9 437.5700 -1.7367e+02 #> 83 329.0300 8.2268e+01 1.27280000 0.61262000 411.3 424.9600 -1.3659e+01 #> 84 322.7400 -3.2039e+01 -0.50534000 -0.74685000 290.7 412.8400 -1.2214e+02 #> 85 316.6300 -2.1928e+01 -0.35255000 -0.61523000 294.7 401.1900 -1.0649e+02 #> 86 304.9300 7.8704e+00 0.13139000 -0.20688000 312.8 379.2300 -6.6428e+01 #> 87 293.8900 1.3508e+01 0.23397000 -0.09590000 307.4 358.9300 -5.1531e+01 #> 88 283.4700 4.0425e+01 0.72593000 0.33238000 323.9 340.1600 -1.6261e+01 #> 89 273.6400 5.1597e+00 0.09598400 -0.15386000 278.8 322.7900 -4.3993e+01 #> 90 255.5800 3.6322e+01 0.72343000 0.42278000 291.9 291.8200 8.1755e-02 #> 91 225.0200 5.0842e+00 0.11502000 -0.00738410 230.1 242.2700 -1.2168e+01 #> 92 200.4800 -1.0479e+01 -0.26608000 -0.29034000 190.0 205.2600 -1.5255e+01 #> 93 164.4400 3.7657e+01 1.16570000 1.17620000 202.1 155.6300 4.6468e+01 #> 94 140.0100 -1.7711e+01 -0.64393000 -0.56274000 122.3 125.1700 -2.8659e+00 #> 95 122.7100 -1.6307e+01 -0.67649000 -0.58042000 106.4 104.8900 1.5145e+00 #> 96 109.8400 -2.7941e+01 -1.29490000 -1.23800000 81.9 90.2380 -8.3384e+00 #> 97 84.6120 -1.2412e+01 -0.74673000 -0.60903000 72.2 61.7700 1.0430e+01 #> 98 68.1290 6.9713e+00 0.52088000 1.01240000 75.1 43.7390 3.1361e+01 #> 99 55.5280 9.7170e-01 0.08907800 0.50259000 56.5 31.1610 2.5339e+01 #> 100 45.4120 1.2488e+01 1.39980000 2.44320000 57.9 22.2310 3.5669e+01 #> 101 383.6000 -3.8360e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 102 372.8500 3.6354e+01 0.49633000 0.21965000 409.2 437.5700 -2.8373e+01 #> 103 362.4800 -5.6482e+01 -0.79320000 -0.85685000 306.0 424.9600 -1.1896e+02 #> 104 352.4900 -6.1394e+01 -0.88661000 -0.93707000 291.1 412.8400 -1.2174e+02 #> 105 342.8700 -3.0667e+00 -0.04553000 -0.23340000 339.8 401.1900 -6.1388e+01 #> 106 324.6400 5.7660e+01 0.90413000 0.56527000 382.3 379.2300 3.0718e+00 #> 107 307.7000 4.4803e+01 0.74122000 0.42834000 352.5 358.9300 -6.4309e+00 #> 108 291.9400 2.1960e+01 0.38292000 0.12410000 313.9 340.1600 -2.6261e+01 #> 109 277.2800 -1.2790e+00 -0.02348100 -0.22320000 276.0 322.7900 -4.6793e+01 #> 110 250.9200 -6.8222e+01 -1.38400000 -1.39010000 182.7 291.8200 -1.0912e+02 #> 111 208.1200 6.3581e+01 1.55520000 1.10860000 271.7 242.2700 2.9432e+01 #> 112 175.5400 2.2585e+00 0.06549400 -0.17780000 177.8 205.2600 -2.7455e+01 #> 113 130.9200 -1.9022e+01 -0.73960000 -0.87153000 111.9 155.6300 -4.3732e+01 #> 114 103.0400 -1.5642e+01 -0.77273000 -0.89537000 87.4 125.1700 -3.7766e+01 #> 115 84.4670 7.1330e+00 0.42988000 0.06442200 91.6 104.8900 -1.3286e+01 #> 116 71.2320 5.6804e-01 0.04059400 -0.24457000 71.8 90.2380 -1.8438e+01 #> 117 46.5940 7.7057e+00 0.84186000 0.35495000 54.3 61.7700 -7.4695e+00 #> 118 31.9300 -1.8299e+00 -0.29174000 -0.42659000 30.1 43.7390 -1.3639e+01 #> 119 22.1040 -5.0443e-01 -0.11617000 -0.26746000 21.6 31.1610 -9.5613e+00 #> 120 15.3400 1.3600e+00 0.45130000 0.12642000 16.7 22.2310 -5.5309e+00 #> 121 885.6800 -8.8568e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 122 848.4200 7.3780e+01 0.44267000 0.32534000 922.2 875.1500 4.7055e+01 #> 123 813.0600 1.1604e+02 0.72654000 0.53888000 929.1 849.9200 7.9183e+01 #> 124 779.4800 6.4516e+01 0.42133000 0.21529000 844.0 825.6700 1.8325e+01 #> 125 747.6100 5.5904e+00 0.03806500 -0.16891000 753.2 802.3800 -4.9176e+01 #> 126 688.6000 -2.3796e+01 -0.17591000 -0.42308000 664.8 758.4600 -9.3656e+01 #> 127 635.3500 1.5352e+01 0.12300000 -0.22283000 650.7 717.8600 -6.7162e+01 #> 128 587.2700 -1.5297e+02 -1.32590000 -1.47940000 434.3 680.3200 -2.4602e+02 #> 129 543.8300 5.5775e+01 0.52208000 0.00287500 599.6 645.5900 -4.5986e+01 #> 130 468.9800 -7.0879e+01 -0.76935000 -1.08350000 398.1 583.6400 -1.8554e+02 #> 131 356.9400 1.8357e+01 0.26180000 -0.37827000 375.3 484.5400 -1.0924e+02 #> 132 280.2000 1.2396e+01 0.22520000 -0.44179000 292.6 410.5100 -1.1791e+02 #> 133 188.0100 -6.4067e+00 -0.17347000 -0.67964000 181.6 311.2600 -1.2966e+02 #> 134 137.9400 -2.1136e+01 -0.78000000 -0.97326000 116.8 250.3300 -1.3353e+02 #> 135 107.2100 2.4389e+01 1.15800000 0.10155000 131.6 209.7700 -7.8171e+01 #> 136 86.1330 1.6267e+01 0.96137000 -0.00339870 102.4 180.4800 -7.8077e+01 #> 137 48.1790 -7.7788e+00 -0.82189000 -0.81157000 40.4 123.5400 -8.3139e+01 #> 138 27.7110 -3.9107e+00 -0.71840000 -0.68242000 23.8 87.4770 -6.3677e+01 #> 139 15.9930 -6.9274e-01 -0.22050000 -0.42228000 15.3 62.3230 -4.7023e+01 #> 140 9.2379 1.4621e+00 0.80565000 -0.03250900 10.7 44.4620 -3.3762e+01 #> 141 1534.8000 -1.5348e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 142 1448.3000 -2.3340e+02 -0.82036000 -0.46169000 1214.9 875.1500 3.3975e+02 #> 143 1367.5000 -1.0353e+02 -0.38539000 0.14146000 1264.0 849.9200 4.1408e+02 #> 144 1292.1000 -1.6326e+02 -0.64321000 -0.38024000 1128.8 825.6700 3.0313e+02 #> 145 1221.5000 6.2298e+02 2.59610000 4.34140000 1844.5 802.3800 1.0421e+03 #> 146 1094.0000 1.6004e+02 0.74473000 1.26890000 1254.0 758.4600 4.9554e+02 #> 147 982.4200 -6.4919e+01 -0.33638000 -0.34567000 917.5 717.8600 1.9964e+02 #> 148 884.8200 4.1982e+01 0.24153000 0.20680000 926.8 680.3200 2.4648e+02 #> 149 799.3400 -1.2164e+02 -0.77462000 -1.01770000 677.7 645.5900 3.2114e+01 #> 150 658.6200 6.3884e+01 0.49376000 0.11605000 722.5 583.6400 1.3886e+02 #> 151 465.5900 6.8610e+01 0.75014000 0.08656600 534.2 484.5400 4.9664e+01 #> 152 347.7000 -4.6697e+01 -0.68367000 -1.00540000 301.0 410.5100 -1.0951e+02 #> 153 224.1400 3.1460e+01 0.71450000 -0.03564200 255.6 311.2600 -5.5664e+01 #> 154 165.0700 -1.0367e+01 -0.31970000 -0.63244000 154.7 250.3300 -9.5632e+01 #> 155 130.1100 3.0193e+01 1.18130000 0.23556000 160.3 209.7700 -4.9471e+01 #> 156 105.6600 7.5425e+00 0.36339000 -0.27977000 113.2 180.4800 -6.7277e+01 #> 157 59.3830 -6.5828e+00 -0.56429000 -0.86429000 52.8 123.5400 -7.0739e+01 #> 158 33.7650 -3.7646e+00 -0.56756000 -0.86173000 30.0 87.4770 -5.7477e+01 #> 159 19.2120 -6.3116e+00 -1.67240000 -1.22990000 12.9 62.3230 -4.9423e+01 #> 160 10.9370 2.4633e+00 1.14650000 -0.14093000 13.4 44.4620 -3.1062e+01 #> 161 141.7200 -1.4172e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 162 136.9400 1.7057e+01 0.63403000 0.43723000 154.0 145.8600 8.1425e+00 #> 163 132.3600 6.1360e+00 0.23598000 0.06807300 138.5 141.6500 -3.1529e+00 #> 164 127.9800 3.0924e+01 1.23010000 0.95383000 158.9 137.6100 2.1288e+01 #> 165 123.7700 -9.8699e+00 -0.40593000 -0.52590000 113.9 133.7300 -1.9829e+01 #> 166 115.8700 -2.0575e+01 -0.90386000 -0.98372000 95.3 126.4100 -3.1109e+01 #> 167 108.6200 3.8135e-01 0.01787200 -0.17413000 109.0 119.6400 -1.0644e+01 #> 168 101.9500 -1.8347e+01 -0.91613000 -1.01020000 83.6 113.3900 -2.9787e+01 #> 169 95.8110 -1.8110e+00 -0.09622100 -0.29727000 94.0 107.6000 -1.3598e+01 #> 170 84.9650 2.2135e+01 1.32620000 0.91301000 107.1 97.2730 9.8273e+00 #> 171 67.9330 -5.4325e+00 -0.40708000 -0.59599000 62.5 80.7560 -1.8256e+01 #> 172 55.5480 -1.7748e+01 -1.62640000 -1.58270000 37.8 68.4180 -3.0618e+01 #> 173 39.6260 -1.3261e+00 -0.17035000 -0.40854000 38.3 51.8770 -1.3577e+01 #> 174 30.4480 8.0522e+00 1.34620000 0.70603000 38.5 41.7220 -3.2220e+00 #> 175 24.7110 -6.6109e+00 -1.36180000 -1.20750000 18.1 34.9620 -1.6862e+01 #> 176 20.7920 -3.0919e+00 -0.75699000 -0.74067000 17.7 30.0790 -1.2379e+01 #> 177 13.6810 -2.8099e-01 -0.10455000 -0.17528000 13.4 20.5900 -7.1898e+00 #> 178 9.4235 1.8765e+00 1.01370000 0.65174000 11.3 14.5800 -3.2796e+00 #> 179 6.5420 3.5802e-01 0.27859000 0.25631000 6.9 10.3870 -3.4871e+00 #> 180 4.5489 1.5112e-01 0.16911000 0.24134000 4.7 7.4103 -2.7103e+00 #> 181 192.4900 -1.9249e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 182 185.3600 -2.1261e+01 -0.58388000 -0.32923000 164.1 145.8600 1.8242e+01 #> 183 178.5600 -1.7459e+01 -0.49773000 -0.25467000 161.1 141.6500 1.9447e+01 #> 184 172.0700 3.2029e+01 0.94754000 1.45750000 204.1 137.6100 6.6488e+01 #> 185 165.8800 -5.5280e+01 -1.69640000 -1.74570000 110.6 133.7300 -2.3129e+01 #> 186 154.3400 1.9264e+01 0.63538000 0.97576000 173.6 126.4100 4.7191e+01 #> 187 143.8200 1.2481e+01 0.44175000 0.68588000 156.3 119.6400 3.6656e+01 #> 188 134.2300 3.6867e+01 1.39810000 1.72420000 171.1 113.3900 5.7713e+01 #> 189 125.4900 4.5121e+00 0.18304000 0.28571000 130.0 107.6000 2.2402e+01 #> 190 110.2100 -3.7138e+00 -0.17153000 -0.18252000 106.5 97.2730 9.2273e+00 #> 191 86.7420 2.7458e+01 1.61140000 1.54360000 114.2 80.7560 3.3444e+01 #> 192 70.1060 -5.5059e+00 -0.39979000 -0.55141000 64.6 68.4180 -3.8184e+00 #> 193 49.2560 -1.5256e+01 -1.57660000 -1.60730000 34.0 51.8770 -1.7877e+01 #> 194 37.4010 3.8994e+00 0.53073000 0.17116000 41.3 41.7220 -4.2196e-01 #> 195 29.9150 1.0885e+01 1.85220000 1.14050000 40.8 34.9620 5.8382e+00 #> 196 24.6890 2.4111e+00 0.49713000 0.03710600 27.1 30.0790 -2.9795e+00 #> 197 14.9920 -3.0920e+00 -1.04990000 -1.13430000 11.9 20.5900 -8.6898e+00 #> 198 9.3930 -2.6930e+00 -1.45950000 -1.36470000 6.7 14.5800 -7.8796e+00 #> 199 5.9115 -8.1145e-01 -0.69876000 -0.87799000 5.1 10.3870 -5.2871e+00 #> 200 3.7241 6.7589e-01 0.92387000 -0.02464500 4.4 7.4103 -3.0103e+00 #> 201 569.9500 -5.6995e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 202 552.9500 -6.5510e+00 -0.06030900 0.07964800 546.4 437.5700 1.0883e+02 #> 203 536.5900 -6.4492e+01 -0.61181000 -0.58714000 472.1 424.9600 4.7141e+01 #> 204 520.8500 3.2855e+01 0.32110000 0.55262000 553.7 412.8400 1.4086e+02 #> 205 505.6900 5.5413e+01 0.55781000 0.84683000 561.1 401.1900 1.5991e+02 #> 206 477.0500 -1.2845e+02 -1.37060000 -1.51230000 348.6 379.2300 -3.0628e+01 #> 207 450.5000 7.9604e+01 0.89950000 1.28540000 530.1 358.9300 1.7117e+02 #> 208 425.8800 1.2592e+02 1.50510000 2.04040000 551.8 340.1600 2.1164e+02 #> 209 403.0400 1.1956e+01 0.15100000 0.37137000 415.0 322.7900 9.2207e+01 #> 210 362.2000 -3.6198e+01 -0.50874000 -0.44075000 326.0 291.8200 3.4182e+01 #> 211 296.6000 6.7704e+01 1.16200000 1.60740000 364.3 242.2700 1.2203e+02 #> 212 247.5400 1.8355e+01 0.37746000 0.62599000 265.9 205.2600 6.0645e+01 #> 213 182.4400 -2.8740e+01 -0.80191000 -0.78143000 153.7 155.6300 -1.9322e+00 #> 214 143.8600 -2.4664e+01 -0.87271000 -0.84667000 119.2 125.1700 -5.9659e+00 #> 215 119.6300 3.6866e+01 1.56870000 1.79390000 156.5 104.8900 5.1614e+01 #> 216 103.2900 -2.4190e+01 -1.19220000 -1.14610000 79.1 90.2380 -1.1138e+01 #> 217 74.4730 -1.5673e+01 -1.07130000 -0.97131000 58.8 61.7700 -2.9695e+00 #> 218 56.9180 2.5823e+00 0.23094000 0.48438000 59.5 43.7390 1.5761e+01 #> 219 44.0100 9.2897e+00 1.07450000 1.47590000 53.3 31.1610 2.2139e+01 #> 220 34.1130 1.4868e+00 0.22186000 0.45257000 35.6 22.2310 1.3369e+01 #> 221 587.7900 -5.8779e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 222 578.1000 7.2896e+01 0.64188000 -0.07552800 651.0 875.1500 -2.2415e+02 #> 223 568.7200 -2.8182e+00 -0.02522500 -0.52007000 565.9 849.9200 -2.8402e+02 #> 224 559.6200 3.6778e+01 0.33454000 -0.25420000 596.4 825.6700 -2.2927e+02 #> 225 550.8100 5.6495e+01 0.52212000 -0.10615000 607.3 802.3800 -1.9508e+02 #> 226 533.9700 -1.3607e+02 -1.29720000 -1.36900000 397.9 758.4600 -3.6056e+02 #> 227 518.1400 -8.0640e+01 -0.79224000 -0.98909000 437.5 717.8600 -2.8036e+02 #> 228 503.2400 4.4656e+01 0.45170000 -0.05941000 547.9 680.3200 -1.3242e+02 #> 229 489.2200 -3.0120e+01 -0.31340000 -0.59646000 459.1 645.5900 -1.8649e+02 #> 230 463.5500 5.7053e+01 0.62652000 0.16263000 520.6 583.6400 -6.3036e+01 #> 231 420.2900 -3.4587e+01 -0.41891000 -0.56018000 385.7 484.5400 -9.8836e+01 #> 232 385.5700 2.4528e+01 0.32382000 0.12508000 410.1 410.5100 -4.1016e-01 #> 233 333.9700 1.5731e+01 0.23978000 0.19771000 349.7 311.2600 3.8436e+01 #> 234 297.6000 2.1802e+01 0.37292000 0.43885000 319.4 250.3300 6.9068e+01 #> 235 270.2100 -1.2912e+01 -0.24325000 -0.11217000 257.3 209.7700 4.7529e+01 #> 236 248.2900 6.7009e+01 1.37380000 1.72090000 315.3 180.4800 1.3482e+02 #> 237 199.2900 -3.9919e+00 -0.10196000 0.17449000 195.3 123.5400 7.1761e+01 #> 238 162.7800 1.3017e+01 0.40707000 0.95841000 175.8 87.4770 8.8323e+01 #> 239 133.4600 -2.8863e+01 -1.10090000 -1.47120000 104.6 62.3230 4.2277e+01 #> 240 109.5300 2.2870e+01 1.06290000 2.28180000 132.4 44.4620 8.7938e+01 #> 241 212.5200 -2.1252e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 242 209.4600 -4.9059e+01 -1.19230000 -1.41000000 160.4 437.5700 -2.7717e+02 #> 243 206.4700 -7.1691e+00 -0.17675000 -0.82254000 199.3 424.9600 -2.2566e+02 #> 244 203.5500 7.0150e+01 1.75440000 0.29567000 273.7 412.8400 -1.3914e+02 #> 245 200.7000 -4.5699e+01 -1.15910000 -1.36220000 155.0 401.1900 -2.4619e+02 #> 246 195.1900 1.8105e+01 0.47216000 -0.39357000 213.3 379.2300 -1.6593e+02 #> 247 189.9400 1.1157e+01 0.29899000 -0.46727000 201.1 358.9300 -1.5783e+02 #> 248 184.9300 -1.4831e+01 -0.40823000 -0.86300000 170.1 340.1600 -1.7006e+02 #> 249 180.1400 -6.8433e+00 -0.19338000 -0.71296000 173.3 322.7900 -1.4949e+02 #> 250 171.2000 -3.4498e+01 -1.02580000 -1.18580000 136.7 291.8200 -1.5512e+02 #> 251 155.5200 -1.0422e+01 -0.34111000 -0.69549000 145.1 242.2700 -9.7168e+01 #> 252 142.3100 2.8190e+01 1.00840000 0.26473000 170.5 205.2600 -3.4755e+01 #> 253 121.4600 -1.5055e+01 -0.63100000 -0.76318000 106.4 155.6300 -4.9232e+01 #> 254 105.8500 1.7346e+01 0.83416000 0.39531000 123.2 125.1700 -1.9659e+00 #> 255 93.7450 9.4548e+00 0.51340000 0.22489000 103.2 104.8900 -1.6855e+00 #> 256 84.0090 4.1909e+00 0.25394000 0.07065900 88.2 90.2380 -2.0384e+00 #> 257 63.0450 -5.2454e+00 -0.42353000 -0.41542000 57.8 61.7700 -3.9695e+00 #> 258 48.6930 -1.9793e+01 -2.06920000 -1.93170000 28.9 43.7390 -1.4839e+01 #> 259 37.9630 8.4370e+00 1.13130000 1.26780000 46.4 31.1610 1.5239e+01 #> 260 29.6930 1.3074e+00 0.22414000 0.41977000 31.0 22.2310 8.7691e+00 #> 261 1002.0000 -1.0020e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 262 972.8200 1.8778e+02 0.98259000 1.05420000 1160.6 875.1500 2.8545e+02 #> 263 944.7400 -6.4140e+01 -0.34560000 -0.34752000 880.6 849.9200 3.0683e+01 #> 264 917.7400 -3.9036e+01 -0.21652000 -0.20658000 878.7 825.6700 5.3025e+01 #> 265 891.7600 9.6638e+01 0.55164000 0.61700000 988.4 802.3800 1.8602e+02 #> 266 842.7400 -7.4243e+01 -0.44846000 -0.44393000 768.5 758.4600 1.0044e+01 #> 267 797.3700 -2.8171e+01 -0.17984000 -0.14872000 769.2 717.8600 5.1338e+01 #> 268 755.3600 -4.8955e+01 -0.32992000 -0.30416000 706.4 680.3200 2.6079e+01 #> 269 716.4300 1.8877e+02 1.34130000 1.51220000 905.2 645.5900 2.5961e+02 #> 270 646.9000 -1.2180e+02 -0.95843000 -0.97224000 525.1 583.6400 -5.8536e+01 #> 271 535.4000 -4.7597e+01 -0.45254000 -0.40844000 487.8 484.5400 3.2638e+00 #> 272 451.9800 1.8002e+02 2.02750000 2.29250000 632.0 410.5100 2.2149e+02 #> 273 340.3800 1.7822e+01 0.26653000 0.36669000 358.2 311.2600 4.6936e+01 #> 274 272.6000 -4.4100e+01 -0.82352000 -0.80298000 228.5 250.3300 -2.1832e+01 #> 275 228.3000 -5.2602e+01 -1.17290000 -1.17160000 175.7 209.7700 -3.4071e+01 #> 276 196.9600 1.8036e+01 0.46612000 0.50616000 215.0 180.4800 3.4523e+01 #> 277 137.6200 2.0879e+01 0.77229000 0.78250000 158.5 123.5400 3.4961e+01 #> 278 100.1900 4.0080e+00 0.20364000 0.18715000 104.2 87.4770 1.6723e+01 #> 279 73.5130 2.1873e+00 0.15146000 0.11057000 75.7 62.3230 1.3377e+01 #> 280 54.0290 1.4711e+00 0.13860000 0.06926700 55.5 44.4620 1.1038e+01 #> 281 1538.3000 -1.5383e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 282 1491.2000 -5.3180e+01 -0.18154000 -0.36418000 1438.0 1750.3000 -3.1229e+02 #> 283 1445.9000 3.1714e+02 1.11660000 0.71198000 1763.0 1699.8000 6.3166e+01 #> 284 1402.3000 1.5195e+02 0.55160000 0.23586000 1554.2 1651.3000 -9.7149e+01 #> 285 1360.3000 -8.6585e+01 -0.32402000 -0.49907000 1273.7 1604.8000 -3.3105e+02 #> 286 1281.0000 -3.3282e+02 -1.32250000 -1.34070000 948.2 1516.9000 -5.6871e+02 #> 287 1207.6000 2.0331e+01 0.08570300 -0.17910000 1227.9 1435.7000 -2.0782e+02 #> 288 1139.5000 2.0242e+02 0.90426000 0.48940000 1341.9 1360.6000 -1.8742e+01 #> 289 1076.3000 -5.3343e+01 -0.25228000 -0.47946000 1023.0 1291.2000 -2.6817e+02 #> 290 963.3900 -1.6079e+02 -0.84961000 -0.98811000 802.6 1167.3000 -3.6467e+02 #> 291 781.8200 4.4985e+01 0.29290000 -0.08916500 826.8 969.0700 -1.4227e+02 #> 292 645.6200 8.7484e+01 0.68978000 0.18736000 733.1 821.0200 -8.7920e+01 #> 293 463.2000 -7.5604e+01 -0.83086000 -1.01750000 387.6 622.5300 -2.3493e+02 #> 294 352.9600 3.4342e+01 0.49529000 -0.07494700 387.3 500.6600 -1.1336e+02 #> 295 281.9700 -4.4365e+01 -0.80094000 -0.97261000 237.6 419.5400 -1.8194e+02 #> 296 232.9800 4.5419e+01 0.99238000 0.21808000 278.4 360.9500 -8.2553e+01 #> 297 145.9700 -1.5073e+01 -0.52562000 -0.68114000 130.9 247.0800 -1.1618e+02 #> 298 96.7650 1.3352e+00 0.07024200 -0.23821000 98.1 174.9500 -7.6855e+01 #> 299 64.9300 1.6973e-01 0.01330700 -0.19084000 65.1 124.6500 -5.9545e+01 #> 300 43.6930 4.7068e+00 0.54836000 0.15322000 48.4 88.9240 -4.0524e+01 #> 301 1501.0000 -1.5010e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 302 1458.9000 -4.7834e+01 -0.16690000 -0.39744000 1411.1 1750.3000 -3.3919e+02 #> 303 1418.3000 1.1830e+02 0.42458000 0.09022600 1536.6 1699.8000 -1.6323e+02 #> 304 1379.1000 -5.8503e+00 -0.02159500 -0.27362000 1373.2 1651.3000 -2.7815e+02 #> 305 1341.1000 5.0872e+01 0.19309000 -0.09455800 1392.0 1604.8000 -2.1275e+02 #> 306 1269.1000 1.8611e+02 0.74651000 0.36752000 1455.2 1516.9000 -6.1713e+01 #> 307 1201.8000 -1.5813e+02 -0.66977000 -0.80262000 1043.7 1435.7000 -3.9202e+02 #> 308 1139.0000 -9.9314e+01 -0.44385000 -0.61375000 1039.7 1360.6000 -3.2094e+02 #> 309 1080.3000 1.3016e+02 0.61331000 0.26782000 1210.5 1291.2000 -8.0672e+01 #> 310 974.2700 -2.1707e+02 -1.13420000 -1.18750000 757.2 1167.3000 -4.1007e+02 #> 311 800.4500 8.3655e+01 0.53201000 0.19755000 884.1 969.0700 -8.4972e+01 #> 312 666.9700 9.7532e+01 0.74438000 0.35780000 764.5 821.0200 -5.6520e+01 #> 313 483.5400 1.0066e+02 1.05970000 0.55734000 584.2 622.5300 -3.8329e+01 #> 314 370.4600 -1.1726e+02 -1.61120000 -1.51280000 253.2 500.6600 -2.4746e+02 #> 315 297.7100 -8.7106e+01 -1.48940000 -1.38180000 210.6 419.5400 -2.0894e+02 #> 316 248.4000 -3.4205e+01 -0.70094000 -0.78612000 214.2 360.9500 -1.4675e+02 #> 317 164.8000 -2.1399e+01 -0.66099000 -0.61754000 143.4 247.0800 -1.0368e+02 #> 318 118.6900 -3.9394e-01 -0.01689500 -0.01167100 118.3 174.9500 -5.6655e+01 #> 319 87.3120 3.4588e+01 2.01650000 1.52010000 121.9 124.6500 -2.7453e+00 #> 320 64.5720 -6.9715e+00 -0.54960000 -0.02387500 57.6 88.9240 -3.1324e+01 #> 321 623.7400 -6.2374e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 322 599.4500 1.2205e+02 1.03640000 1.49530000 721.5 437.5700 2.8393e+02 #> 323 576.2000 8.4599e+01 0.74739000 1.10370000 660.8 424.9600 2.3584e+02 #> 324 553.9400 6.9861e+01 0.64199000 0.95938000 623.8 412.8400 2.1096e+02 #> 325 532.6200 3.7177e+01 0.35532000 0.58528000 569.8 401.1900 1.6861e+02 #> 326 492.6700 -1.4917e+02 -1.54130000 -1.79420000 343.5 379.2300 -3.5728e+01 #> 327 456.0300 -2.2427e+01 -0.25034000 -0.15767000 433.6 358.9300 7.4669e+01 #> 328 422.4200 -6.1823e+01 -0.74501000 -0.72601000 360.6 340.1600 2.0439e+01 #> 329 391.6000 9.7599e+01 1.26870000 1.62520000 489.2 322.7900 1.6641e+02 #> 330 337.3800 -8.2079e+01 -1.23840000 -1.16150000 255.3 291.8200 -3.6518e+01 #> 331 253.2200 -4.1925e+01 -0.84279000 -0.62707000 211.3 242.2700 -3.0968e+01 #> 332 193.3300 -1.0231e+01 -0.26939000 -0.08907400 183.1 205.2600 -2.2155e+01 #> 333 119.7200 6.6378e+01 2.82230000 1.92020000 186.1 155.6300 3.0468e+01 #> 334 81.0900 -5.9897e+00 -0.37601000 -0.43030000 75.1 125.1700 -5.0066e+01 #> 335 59.9270 -2.0027e+01 -1.70120000 -1.30840000 39.9 104.8900 -6.4986e+01 #> 336 47.5800 -1.5880e+01 -1.69900000 -1.39500000 31.7 90.2380 -5.8538e+01 #> 337 30.2630 -1.6625e+00 -0.27966000 -0.72439000 28.6 61.7700 -3.3170e+01 #> 338 21.7780 3.7218e+00 0.86993000 0.07505400 25.5 43.7390 -1.8239e+01 #> 339 16.0250 8.7507e-01 0.27797000 0.03523100 16.9 31.1610 -1.4261e+01 #> 340 11.8380 5.6211e-01 0.24171000 0.29454000 12.4 22.2310 -9.8309e+00 #> 341 773.1700 -7.7317e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 342 752.9900 -8.7388e+01 -0.59077000 -0.72605000 665.6 875.1500 -2.0955e+02 #> 343 733.5200 9.9813e+00 0.06926800 -0.16569000 743.5 849.9200 -1.0642e+02 #> 344 714.7300 2.5267e+01 0.17996000 -0.06610500 740.0 825.6700 -8.5675e+01 #> 345 696.6100 -7.3705e+01 -0.53860000 -0.67070000 622.9 802.3800 -1.7948e+02 #> 346 662.2300 1.9677e+02 1.51260000 1.09230000 859.0 758.4600 1.0054e+02 #> 347 630.2000 -1.1510e+02 -0.92969000 -0.99441000 515.1 717.8600 -2.0276e+02 #> 348 600.3400 1.5776e+02 1.33770000 0.97688000 758.1 680.3200 7.7779e+01 #> 349 572.5000 -1.6905e+01 -0.15031000 -0.30669000 555.6 645.5900 -8.9986e+01 #> 350 522.3100 1.7693e+01 0.17244000 -0.00805480 540.0 583.6400 -4.3636e+01 #> 351 440.3300 9.4737e+00 0.10952000 -0.03718500 449.8 484.5400 -3.4736e+01 #> 352 377.5100 -4.8061e+00 -0.06480800 -0.17545000 372.7 410.5100 -3.7810e+01 #> 353 290.8000 -1.6403e+01 -0.28713000 -0.35247000 274.4 311.2600 -3.6864e+01 #> 354 236.2300 -7.6928e+01 -1.65770000 -1.59010000 159.3 250.3300 -9.1032e+01 #> 355 199.6900 2.6007e+01 0.66296000 0.56774000 225.7 209.7700 1.5929e+01 #> 356 173.5300 -3.0128e+01 -0.88381000 -0.82267000 143.4 180.4800 -3.7077e+01 #> 357 123.8300 2.3673e+01 0.97317000 0.98389000 147.5 123.5400 2.3961e+01 #> 358 92.4020 -1.8402e+01 -1.01380000 -0.77275000 74.0 87.4770 -1.3477e+01 #> 359 69.6250 7.3747e+00 0.53918000 0.75378000 77.0 62.3230 1.4677e+01 #> 360 52.5830 7.7174e+00 0.74711000 0.98874000 60.3 44.4620 1.5838e+01 #> 361 774.3500 -7.7435e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 362 733.8700 2.3913e+02 1.65870000 3.36820000 973.0 437.5700 5.3543e+02 #> 363 695.7700 -5.2973e+01 -0.38756000 -0.22615000 642.8 424.9600 2.1784e+02 #> 364 659.9100 -8.2211e+01 -0.63416000 -0.65486000 577.7 412.8400 1.6486e+02 #> 365 626.1500 -3.7952e+01 -0.30854000 -0.15553000 588.2 401.1900 1.8701e+02 #> 366 564.4500 1.0625e+02 0.95819000 1.63420000 670.7 379.2300 2.9147e+02 #> 367 509.7600 -1.5957e+01 -0.15935000 -0.04239600 493.8 358.9300 1.3487e+02 #> 368 461.2600 -1.1626e+02 -1.28300000 -1.49630000 345.0 340.1600 4.8394e+00 #> 369 418.2300 1.3257e+02 1.61350000 1.94430000 550.8 322.7900 2.2801e+02 #> 370 346.1600 -2.6061e+01 -0.38324000 -0.42130000 320.1 291.8200 2.8282e+01 #> 371 244.3600 1.5543e+01 0.32379000 0.13240000 259.9 242.2700 1.7632e+01 #> 372 180.3900 -3.9494e+01 -1.11450000 -1.02530000 140.9 205.2600 -6.4355e+01 #> 373 113.1500 -4.3487e+00 -0.19564000 -0.43459000 108.8 155.6300 -4.6832e+01 #> 374 83.2230 3.9770e+00 0.24326000 -0.22360000 87.2 125.1700 -3.7966e+01 #> 375 67.7290 9.4710e+00 0.71184000 0.05498400 77.2 104.8900 -2.7686e+01 #> 376 58.0750 7.9247e+00 0.69463000 0.08319300 66.0 90.2380 -2.4238e+01 #> 377 40.3630 -9.3630e+00 -1.18080000 -0.92294000 31.0 61.7700 -3.0770e+01 #> 378 28.8160 -3.6163e+00 -0.63883000 -0.32249000 25.2 43.7390 -1.8539e+01 #> 379 20.6140 -3.8135e+00 -0.94174000 -0.31208000 16.8 31.1610 -1.4361e+01 #> 380 14.7520 4.6480e+00 1.60390000 1.58980000 19.4 22.2310 -2.8309e+00 #> 381 2202.0000 -2.2020e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 382 2128.2000 9.7213e+00 0.02325300 0.07939900 2137.9 1750.3000 3.8761e+02 #> 383 2057.6000 -1.9123e+00 -0.00473090 0.03520400 2055.7 1699.8000 3.5587e+02 #> 384 1990.1000 -7.3915e+01 -0.18907000 -0.18813000 1916.2 1651.3000 2.6485e+02 #> 385 1925.6000 2.1045e+02 0.55635000 0.65783000 2136.0 1604.8000 5.3125e+02 #> 386 1804.7000 4.1530e+02 1.17140000 1.33450000 2220.0 1516.9000 7.0309e+02 #> 387 1694.1000 2.3622e+01 0.07098200 0.06462200 1717.7 1435.7000 2.8198e+02 #> 388 1592.8000 -1.1927e+00 -0.00381180 -0.03373900 1591.6 1360.6000 2.3096e+02 #> 389 1500.0000 1.4847e+02 0.50385000 0.51699000 1648.5 1291.2000 3.5733e+02 #> 390 1337.2000 1.4549e+01 0.05538700 0.00010548 1351.7 1167.3000 1.8443e+02 #> 391 1085.0000 1.4294e+02 0.67063000 0.62263000 1227.9 969.0700 2.5883e+02 #> 392 905.4900 -8.5290e+01 -0.47948000 -0.57497000 820.2 821.0200 -8.2032e-01 #> 393 682.7300 -1.3823e+02 -1.03060000 -1.08630000 544.5 622.5300 -7.8029e+01 #> 394 561.1700 -1.1877e+02 -1.07730000 -1.08720000 442.4 500.6600 -5.8263e+01 #> 395 489.0400 -3.0342e+01 -0.31584000 -0.26804000 458.7 419.5400 3.9158e+01 #> 396 441.4700 -2.4166e+01 -0.27865000 -0.16080000 417.3 360.9500 5.6347e+01 #> 397 353.7700 -9.5472e+01 -1.37380000 -1.25950000 258.3 247.0800 1.1222e+01 #> 398 293.2400 5.2063e+01 0.90379000 1.77410000 345.3 174.9500 1.7035e+02 #> 399 244.1800 -1.0480e+01 -0.21847000 0.28728000 233.7 124.6500 1.0905e+02 #> 400 203.4900 7.7415e+01 1.93660000 3.83640000 280.9 88.9240 1.9198e+02 #> 401 123.9600 -1.2396e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 402 120.8200 -5.7164e+00 -0.24085000 -0.31742000 115.1 145.8600 -3.0758e+01 #> 403 117.7700 -2.4572e+01 -1.06210000 -0.98543000 93.2 141.6500 -4.8453e+01 #> 404 114.8200 3.1676e+01 1.40430000 1.03690000 146.5 137.6100 8.8876e+00 #> 405 111.9700 -1.3369e+01 -0.60778000 -0.61158000 98.6 133.7300 -3.5129e+01 #> 406 106.5200 -1.0224e+00 -0.04885800 -0.14740000 105.5 126.4100 -2.0909e+01 #> 407 101.4100 -2.6310e+01 -1.32070000 -1.20360000 75.1 119.6400 -4.4544e+01 #> 408 96.6110 -2.2211e+01 -1.17030000 -1.08160000 74.4 113.3900 -3.8987e+01 #> 409 92.1020 1.3998e+01 0.77364000 0.54919000 106.1 107.6000 -1.4976e+00 #> 410 83.8860 -7.9858e+00 -0.48460000 -0.51451000 75.9 97.2730 -2.1373e+01 #> 411 70.1910 3.9909e+01 2.89430000 2.35050000 110.1 80.7560 2.9344e+01 #> 412 59.4200 -1.3420e+01 -1.14970000 -1.13050000 46.0 68.4180 -2.2418e+01 #> 413 44.0680 1.8316e+00 0.21158000 -0.04921900 45.9 51.8770 -5.9774e+00 #> 414 34.0930 6.7066e+00 1.00140000 0.49835000 40.8 41.7220 -9.2196e-01 #> 415 27.3360 -5.2363e+00 -0.97508000 -1.11730000 22.1 34.9620 -1.2862e+01 #> 416 22.5450 -2.4486e-01 -0.05528800 -0.45807000 22.3 30.0790 -7.7795e+00 #> 417 14.0230 3.3769e+00 1.22590000 0.35565000 17.4 20.5900 -3.1898e+00 #> 418 9.3485 -2.6485e+00 -1.44220000 -1.32560000 6.7 14.5800 -7.8796e+00 #> 419 6.3617 -1.3617e+00 -1.08960000 -0.99985000 5.0 10.3870 -5.3871e+00 #> 420 4.3555 6.4445e-01 0.75319000 0.16188000 5.0 7.4103 -2.4103e+00 #> 421 134.9200 -1.3492e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 422 131.4200 1.1980e+01 0.46406000 0.33179000 143.4 145.8600 -2.4575e+00 #> 423 128.0500 -8.6505e+00 -0.34389000 -0.37030000 119.4 141.6500 -2.2253e+01 #> 424 124.8100 -3.9608e+01 -1.61550000 -1.48680000 85.2 137.6100 -5.2412e+01 #> 425 121.6900 2.7914e+01 1.16770000 0.97119000 149.6 133.7300 1.5871e+01 #> 426 115.7800 -3.0685e+01 -1.34900000 -1.25620000 85.1 126.4100 -4.1309e+01 #> 427 110.3100 -1.9010e+01 -0.87724000 -0.83476000 91.3 119.6400 -2.8344e+01 #> 428 105.2300 5.4727e+00 0.26475000 0.20058000 110.7 113.3900 -2.6869e+00 #> 429 100.5100 2.2795e+01 1.15450000 1.02150000 123.3 107.6000 1.5702e+01 #> 430 92.0300 2.5270e+01 1.39780000 1.27470000 117.3 97.2730 2.0027e+01 #> 431 78.2830 5.8169e+00 0.37825000 0.36020000 84.1 80.7560 3.3440e+00 #> 432 67.7930 -2.0693e+01 -1.55380000 -1.49180000 47.1 68.4180 -2.1318e+01 #> 433 53.2210 -2.7209e+00 -0.26025000 -0.22871000 50.5 51.8770 -1.3774e+00 #> 434 43.7670 -2.0671e+00 -0.24042000 -0.21694000 41.7 41.7220 -2.1957e-02 #> 435 37.1210 1.5279e+01 2.09530000 2.12450000 52.4 34.9620 1.7438e+01 #> 436 32.0960 4.4043e+00 0.69853000 0.68322000 36.5 30.0790 6.4205e+00 #> 437 21.8520 -1.4516e+00 -0.33815000 -0.42232000 20.4 20.5900 -1.8983e-01 #> 438 15.2440 -4.5440e+00 -1.51740000 -1.53820000 10.7 14.5800 -3.8796e+00 #> 439 10.6820 -5.8230e-01 -0.27748000 -0.40361000 10.1 10.3870 -2.8711e-01 #> 440 7.4939 1.0061e+00 0.68339000 0.39570000 8.5 7.4103 1.0897e+00 #> 441 994.5600 -9.9456e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 442 950.7100 8.5491e+01 0.45775000 0.60433000 1036.2 875.1500 1.6105e+02 #> 443 909.4200 2.5778e+02 1.44290000 1.54210000 1167.2 849.9200 3.1728e+02 #> 444 870.5200 -2.9924e+01 -0.17498000 -0.15456000 840.6 825.6700 1.4925e+01 #> 445 833.8800 -1.6348e+02 -0.99796000 -1.01500000 670.4 802.3800 -1.3198e+02 #> 446 766.7800 5.7324e+01 0.38056000 0.25589000 824.1 758.4600 6.5644e+01 #> 447 707.0900 -6.8185e+01 -0.49088000 -0.64030000 638.9 717.8600 -7.8962e+01 #> 448 653.9100 -8.5909e+01 -0.66877000 -0.84718000 568.0 680.3200 -1.1232e+02 #> 449 606.4600 -6.3760e+01 -0.53518000 -0.75635000 542.7 645.5900 -1.0289e+02 #> 450 526.0700 2.0428e+01 0.19767000 -0.16121000 546.5 583.6400 -3.7136e+01 #> 451 408.8400 6.3261e+01 0.78767000 0.27373000 472.1 484.5400 -1.2436e+01 #> 452 330.1700 5.1729e+01 0.79754000 0.27192000 381.9 410.5100 -2.8610e+01 #> 453 234.8500 -7.1455e+01 -1.54880000 -1.41120000 163.4 311.2600 -1.4786e+02 #> 454 179.4500 4.1146e+01 1.16720000 0.49271000 220.6 250.3300 -2.9732e+01 #> 455 142.0300 -1.3125e-01 -0.00470420 -0.35628000 141.9 209.7700 -6.7871e+01 #> 456 114.2200 1.9979e+01 0.89037000 0.09747500 134.2 180.4800 -4.6277e+01 #> 457 61.1090 7.2911e+00 0.60736000 -0.30916000 68.4 123.5400 -5.5139e+01 #> 458 32.9490 -8.2487e+00 -1.27440000 -1.16820000 24.7 87.4770 -6.2777e+01 #> 459 17.7760 -6.5759e+00 -1.88310000 -1.28630000 11.2 62.3230 -5.1123e+01 #> 460 9.5955 1.9045e+00 1.01030000 -0.28190000 11.5 44.4620 -3.2962e+01 #> 461 1628.4000 -1.6284e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 462 1591.2000 -2.2346e+02 -0.71489000 -0.68981000 1367.7 1750.3000 -3.8259e+02 #> 463 1555.1000 5.7609e+02 1.88580000 1.61790000 2131.2 1699.8000 4.3137e+02 #> 464 1520.2000 2.5665e+01 0.08593800 0.04026000 1545.9 1651.3000 -1.0545e+02 #> 465 1486.5000 -3.6305e+01 -0.12433000 -0.13513000 1450.2 1604.8000 -1.5455e+02 #> 466 1422.3000 -1.9301e+02 -0.69078000 -0.62618000 1229.3 1516.9000 -2.8761e+02 #> 467 1362.2000 -3.3361e+02 -1.24670000 -1.12130000 1028.6 1435.7000 -4.0712e+02 #> 468 1305.9000 -2.3232e+02 -0.90558000 -0.79771000 1073.6 1360.6000 -2.8704e+02 #> 469 1253.2000 -5.4258e+02 -2.20400000 -2.00580000 710.6 1291.2000 -5.8057e+02 #> 470 1157.4000 5.0283e+02 2.21160000 2.21340000 1660.2 1167.3000 4.9293e+02 #> 471 998.5700 1.5873e+02 0.80917000 0.95147000 1157.3 969.0700 1.8823e+02 #> 472 874.3600 3.1745e+01 0.18482000 0.36941000 906.1 821.0200 8.5080e+01 #> 473 697.6400 -6.3839e+01 -0.46582000 -0.29380000 633.8 622.5300 1.1271e+01 #> 474 581.6300 5.6066e+01 0.49069000 0.75651000 637.7 500.6600 1.3704e+02 #> 475 500.8600 -1.6576e+02 -1.68470000 -1.70120000 335.1 419.5400 -8.4442e+01 #> 476 441.0500 1.5125e+02 1.74570000 2.20730000 592.3 360.9500 2.3135e+02 #> 477 322.6100 -4.2810e+01 -0.67549000 -0.59672000 279.8 247.0800 3.2722e+01 #> 478 245.1100 -2.1912e+01 -0.45506000 -0.35253000 223.2 174.9500 4.8245e+01 #> 479 187.8800 6.4218e+00 0.17400000 0.39559000 194.3 124.6500 6.9655e+01 #> 480 144.3300 2.0574e+01 0.72564000 1.03330000 164.9 88.9240 7.5976e+01 #> 481 1713.2000 -1.7132e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 482 1653.6000 1.0572e+02 0.32546000 0.21209000 1759.3 1750.3000 9.0098e+00 #> 483 1596.8000 1.9351e+02 0.61691000 0.45630000 1790.3 1699.8000 9.0466e+01 #> 484 1542.7000 -4.3522e+01 -0.14361000 -0.24999000 1499.2 1651.3000 -1.5215e+02 #> 485 1491.2000 1.9062e+01 0.06507000 -0.07791100 1510.3 1604.8000 -9.4452e+01 #> 486 1395.5000 2.5442e+02 0.92809000 0.66592000 1649.9 1516.9000 1.3299e+02 #> 487 1308.5000 -9.4978e+00 -0.03694900 -0.22213000 1299.0 1435.7000 -1.3672e+02 #> 488 1229.4000 -1.8980e+02 -0.78590000 -0.90489000 1039.6 1360.6000 -3.2104e+02 #> 489 1157.4000 -1.8149e+02 -0.79823000 -0.92776000 975.9 1291.2000 -3.1527e+02 #> 490 1031.8000 -6.8892e+01 -0.33989000 -0.54224000 962.9 1167.3000 -2.0437e+02 #> 491 838.4900 -2.1419e+02 -1.30040000 -1.37240000 624.3 969.0700 -3.4477e+02 #> 492 699.9200 2.1738e+02 1.58100000 1.08100000 917.3 821.0200 9.6280e+01 #> 493 519.6400 5.3861e+01 0.52763000 0.20162000 573.5 622.5300 -4.9029e+01 #> 494 408.5200 9.4478e+01 1.17730000 0.68282000 503.0 500.6600 2.3365e+00 #> 495 331.7000 3.3004e+01 0.50651000 0.09892100 364.7 419.5400 -5.4842e+01 #> 496 273.9200 -6.1822e+01 -1.14890000 -1.14970000 212.1 360.9500 -1.4885e+02 #> 497 159.9900 -1.1886e+00 -0.03781900 -0.52840000 158.8 247.0800 -8.8278e+01 #> 498 94.6470 9.5531e+00 0.51380000 -0.33003000 104.2 174.9500 -7.0755e+01 #> 499 56.0750 2.4508e-02 0.00222480 -0.62601000 56.1 124.6500 -6.8545e+01 #> 500 33.2430 -1.3433e+00 -0.20570000 -0.70448000 31.9 88.9240 -5.7024e+01 #> 501 585.8900 -5.8589e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 502 565.0300 -1.0553e+02 -0.95077000 -0.80282000 459.5 437.5700 2.1927e+01 #> 503 545.1700 1.3033e+02 1.21690000 1.86400000 675.5 424.9600 2.5054e+02 #> 504 526.2500 1.9085e+02 1.84610000 2.61460000 717.1 412.8400 3.0426e+02 #> 505 508.2200 -1.3452e+02 -1.34740000 -1.33830000 373.7 401.1900 -2.7488e+01 #> 506 474.6700 4.7269e+00 0.05069200 0.34430000 479.4 379.2300 1.0017e+02 #> 507 444.2000 -7.4197e+01 -0.85029000 -0.77677000 370.0 358.9300 1.1069e+01 #> 508 416.4900 -7.9892e+01 -0.97646000 -0.94676000 336.6 340.1600 -3.5606e+00 #> 509 391.2900 -6.3589e+01 -0.82726000 -0.78349000 327.7 322.7900 4.9071e+00 #> 510 347.4400 1.2566e+02 1.84110000 2.31330000 473.1 291.8200 1.8128e+02 #> 511 280.5300 -2.0925e+01 -0.37971000 -0.31860000 259.6 242.2700 1.7332e+01 #> 512 233.4900 4.6713e+01 1.01840000 1.22610000 280.2 205.2600 7.4945e+01 #> 513 174.8900 -2.1893e+01 -0.63721000 -0.60513000 153.0 155.6300 -2.6322e+00 #> 514 141.4000 7.0016e+00 0.25206000 0.37520000 148.4 125.1700 2.3234e+01 #> 515 119.7100 4.5900e+00 0.19518000 0.31330000 124.3 104.8900 1.9414e+01 #> 516 103.9400 -1.4838e+01 -0.72672000 -0.69911000 89.1 90.2380 -1.1384e+00 #> 517 71.9290 1.4971e+01 1.05950000 1.12630000 86.9 61.7700 2.5130e+01 #> 518 50.7800 1.0720e+01 1.07470000 1.00570000 61.5 43.7390 1.7761e+01 #> 519 35.9340 -6.2338e+00 -0.88309000 -0.98251000 29.7 31.1610 -1.4613e+00 #> 520 25.4430 1.5741e-01 0.03149500 -0.15860000 25.6 22.2310 3.3691e+00 #> 521 485.7000 -4.8570e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 522 472.5500 -7.7852e+01 -0.83864000 -0.75723000 394.7 437.5700 -4.2873e+01 #> 523 459.9200 8.4185e+01 0.93177000 1.06890000 544.1 424.9600 1.1914e+02 #> 524 447.7700 -4.9170e+01 -0.55898000 -0.47050000 398.6 412.8400 -1.4237e+01 #> 525 436.0900 -9.9593e+01 -1.16250000 -1.09940000 336.5 401.1900 -6.4688e+01 #> 526 414.0700 -5.7673e+01 -0.70901000 -0.62894000 356.4 379.2300 -2.2828e+01 #> 527 393.7100 -2.9007e+01 -0.37505000 -0.27706000 364.7 358.9300 5.7691e+00 #> 528 374.8600 1.5714e+02 2.13390000 2.40140000 532.0 340.1600 1.9184e+02 #> 529 357.4100 1.2039e+02 1.71460000 1.97240000 477.8 322.7900 1.5501e+02 #> 530 326.2500 -2.9454e+01 -0.45957000 -0.36305000 296.8 291.8200 4.9818e+00 #> 531 276.2800 -8.9818e+00 -0.16549000 -0.02628600 267.3 242.2700 2.5032e+01 #> 532 238.7900 -2.7880e+00 -0.05943400 0.11503000 236.0 205.2600 3.0745e+01 #> 533 188.0800 -3.0484e+01 -0.82504000 -0.74033000 157.6 155.6300 1.9678e+00 #> 534 156.4300 4.4170e+01 1.43730000 2.03960000 200.6 125.1700 7.5434e+01 #> 535 134.8900 -2.0693e+01 -0.78090000 -0.63745000 114.2 104.8900 9.3145e+00 #> 536 118.9400 4.8558e+00 0.20782000 0.61502000 123.8 90.2380 3.3562e+01 #> 537 86.4670 -2.7767e+01 -1.63470000 -1.75550000 58.7 61.7700 -3.0695e+00 #> 538 64.5380 2.9262e+01 2.30800000 3.28170000 93.8 43.7390 5.0061e+01 #> 539 48.3890 -4.8885e+00 -0.51427000 -0.43470000 43.5 31.1610 1.2339e+01 #> 540 36.3160 -4.3165e+00 -0.60504000 -0.59167000 32.0 22.2310 9.7691e+00 #> 541 125.9800 -1.2598e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 542 122.6400 -1.1743e+01 -0.48739000 -0.66817000 110.9 145.8600 -3.4958e+01 #> 543 119.4200 9.1755e+00 0.39111000 0.06185300 128.6 141.6500 -1.3053e+01 #> 544 116.3200 1.7775e+01 0.77786000 0.38870000 134.1 137.6100 -3.5124e+00 #> 545 113.3400 -4.0386e+00 -0.18139000 -0.40411000 109.3 133.7300 -2.4429e+01 #> 546 107.6900 -2.1290e+01 -1.00630000 -1.08890000 86.4 126.4100 -4.0009e+01 #> 547 102.4400 2.4157e+01 1.20040000 0.77775000 126.6 119.6400 6.9564e+00 #> 548 97.5690 6.7313e+00 0.35119000 0.07032800 104.3 113.3900 -9.0869e+00 #> 549 93.0370 1.0563e+01 0.57795000 0.27369000 103.6 107.6000 -3.9976e+00 #> 550 84.8980 -8.9835e-01 -0.05386500 -0.25207000 84.0 97.2730 -1.3273e+01 #> 551 71.7010 -1.3001e+01 -0.92300000 -0.98997000 58.7 80.7560 -2.2056e+01 #> 552 61.6620 2.7380e+00 0.22604000 0.04908000 64.4 68.4180 -4.0184e+00 #> 553 47.8710 -5.9709e+00 -0.63493000 -0.68377000 41.9 51.8770 -9.9774e+00 #> 554 39.1490 -7.6494e+00 -0.99462000 -0.97867000 31.5 41.7220 -1.0222e+01 #> 555 33.2110 7.0886e+00 1.08650000 0.95812000 40.3 34.9620 5.3382e+00 #> 556 28.8570 1.2433e+00 0.21932000 0.19177000 30.1 30.0790 2.0543e-02 #> 557 20.2580 -5.1583e+00 -1.29620000 -1.12740000 15.1 20.5900 -5.4898e+00 #> 558 14.7070 3.6935e+00 1.27850000 1.24950000 18.4 14.5800 3.8204e+00 #> 559 10.7470 -9.4658e-01 -0.44838000 -0.28473000 9.8 10.3870 -5.8711e-01 #> 560 7.8649 7.3515e-01 0.47582000 0.53018000 8.6 7.4103 1.1897e+00 #> 561 2765.0000 -2.7650e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 562 2642.2000 -1.1929e+02 -0.22983000 0.08028200 2522.9 1750.3000 7.7261e+02 #> 563 2525.7000 3.1172e+02 0.62826000 1.31590000 2837.4 1699.8000 1.1376e+03 #> 564 2415.2000 2.6035e+02 0.54874000 1.14630000 2675.5 1651.3000 1.0242e+03 #> 565 2310.3000 2.7801e+02 0.61257000 1.18730000 2588.3 1604.8000 9.8355e+02 #> 566 2116.4000 -2.8247e+02 -0.67943000 -0.67813000 1833.9 1516.9000 3.1699e+02 #> 567 1941.7000 -7.1214e+02 -1.86690000 -2.25510000 1229.6 1435.7000 -2.0612e+02 #> 568 1784.4000 7.4158e+02 2.11550000 2.81050000 2526.0 1360.6000 1.1654e+03 #> 569 1642.6000 8.4467e+01 0.26176000 0.41961000 1727.1 1291.2000 4.3593e+02 #> 570 1399.5000 -7.6920e+00 -0.02797900 -0.00083416 1391.8 1167.3000 2.2453e+02 #> 571 1039.8000 -1.0853e+02 -0.53132000 -0.58845000 931.3 969.0700 -3.7772e+01 #> 572 798.9600 2.6938e+01 0.17163000 -0.00345000 825.9 821.0200 4.8797e+00 #> 573 522.6600 -4.0365e+01 -0.39313000 -0.53987000 482.3 622.5300 -1.4023e+02 #> 574 385.2400 9.4664e+01 1.25090000 0.56415000 479.9 500.6600 -2.0763e+01 #> 575 308.5600 -4.2155e+01 -0.69546000 -0.80412000 266.4 419.5400 -1.5314e+02 #> 576 259.5500 -6.4475e+00 -0.12645000 -0.41649000 253.1 360.9500 -1.0785e+02 #> 577 172.5500 1.4353e+01 0.42345000 0.03666500 186.9 247.0800 -6.0178e+01 #> 578 119.2200 -1.2216e-01 -0.00521580 -0.14436000 119.1 174.9500 -5.5855e+01 #> 579 82.7260 -9.3259e+00 -0.57386000 -0.41891000 73.4 124.6500 -5.1245e+01 #> 580 57.4450 9.0547e+00 0.80238000 0.54032000 66.5 88.9240 -2.2424e+01 #> 581 117.9900 -1.1799e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 582 115.1400 -1.4038e+01 -0.62066000 -0.73729000 101.1 145.8600 -4.4758e+01 #> 583 112.3900 -1.4192e+01 -0.64277000 -0.75074000 98.2 141.6500 -4.3453e+01 #> 584 109.7500 -2.1048e+01 -0.97628000 -1.01100000 88.7 137.6100 -4.8912e+01 #> 585 107.2000 1.3696e+01 0.65034000 0.28584000 120.9 133.7300 -1.2829e+01 #> 586 102.4000 5.1104e+01 2.54050000 1.82140000 153.5 126.4100 2.7091e+01 #> 587 97.9370 6.5626e+00 0.34110000 0.06993800 104.5 119.6400 -1.5144e+01 #> 588 93.8000 3.6004e+00 0.19539000 -0.03424800 97.4 113.3900 -1.5987e+01 #> 589 89.9570 -1.2157e+01 -0.68792000 -0.74977000 77.8 107.6000 -2.9798e+01 #> 590 83.0620 -5.6243e-01 -0.03446800 -0.18590000 82.5 97.2730 -1.4773e+01 #> 591 71.8890 -1.6789e+01 -1.18880000 -1.14310000 55.1 80.7560 -2.5656e+01 #> 592 63.3680 -7.5679e+00 -0.60794000 -0.60790000 55.8 68.4180 -1.2618e+01 #> 593 51.5190 -1.6519e+01 -1.63220000 -1.52920000 35.0 51.8770 -1.6877e+01 #> 594 43.7860 6.1141e+00 0.71082000 0.79035000 49.9 41.7220 8.1780e+00 #> 595 38.2820 8.2184e+00 1.09280000 1.24890000 46.5 34.9620 1.1538e+01 #> 596 34.0430 -1.6429e+00 -0.24567000 -0.09575200 32.4 30.0790 2.3205e+00 #> 597 25.0140 -3.9143e+00 -0.79657000 -0.67554000 21.1 20.5900 5.1017e-01 #> 598 18.7430 2.7567e+00 0.74870000 1.03310000 21.5 14.5800 6.9204e+00 #> 599 14.0910 4.1086e+00 1.48420000 1.85410000 18.2 10.3870 7.8129e+00 #> 600 10.6030 -2.9026e+00 -1.39360000 -1.37170000 7.7 7.4103 2.8969e-01 #> 601 1238.7000 -1.2387e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 602 1191.1000 -2.7020e+01 -0.11548000 0.09733900 1164.1 875.1500 2.8895e+02 #> 603 1145.6000 1.5823e+02 0.70311000 1.15360000 1303.8 849.9200 4.5388e+02 #> 604 1102.0000 4.2653e+02 1.97030000 2.76650000 1528.5 825.6700 7.0283e+02 #> 605 1060.2000 -1.3353e+02 -0.64110000 -0.60590000 926.7 802.3800 1.2432e+02 #> 606 982.0100 -2.6071e+02 -1.35140000 -1.49230000 721.3 758.4600 -3.7156e+01 #> 607 910.3000 -2.4405e+01 -0.13647000 0.00400600 885.9 717.8600 1.6804e+02 #> 608 844.5600 -1.3676e+02 -0.82430000 -0.82197000 707.8 680.3200 2.7479e+01 #> 609 784.2700 2.9203e+02 1.89550000 2.30230000 1076.3 645.5900 4.3071e+02 #> 610 678.2100 -1.7341e+02 -1.30160000 -1.31030000 504.8 583.6400 -7.8836e+01 #> 611 513.5300 1.4373e+01 0.14247000 0.15137000 527.9 484.5400 4.3364e+01 #> 612 396.0700 -2.8165e+01 -0.36200000 -0.37802000 367.9 410.5100 -4.2610e+01 #> 613 250.6500 7.9248e+01 1.60940000 0.87026000 329.9 311.2600 1.8636e+01 #> 614 172.8300 1.3272e+01 0.39092000 -0.19698000 186.1 250.3300 -6.4232e+01 #> 615 128.7800 1.5618e+01 0.61734000 -0.23441000 144.4 209.7700 -6.5371e+01 #> 616 101.9400 -6.3688e-01 -0.03180400 -0.69377000 101.3 180.4800 -7.9177e+01 #> 617 61.3680 -8.8676e+00 -0.73557000 -1.09200000 52.5 123.5400 -7.1039e+01 #> 618 40.7960 -5.8958e+00 -0.73567000 -0.94898000 34.9 87.4770 -5.2577e+01 #> 619 27.6230 -1.7234e+00 -0.31758000 -0.55998000 25.9 62.3230 -3.6423e+01 #> 620 18.7700 2.5303e+00 0.68622000 0.10645000 21.3 44.4620 -2.3162e+01 #> 621 1017.9000 -1.0179e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 622 982.4600 1.2684e+02 0.65719000 0.68411000 1109.3 875.1500 2.3415e+02 #> 623 948.6400 1.1186e+02 0.60025000 0.61335000 1060.5 849.9200 2.1058e+02 #> 624 916.4000 -1.0040e+02 -0.55768000 -0.62614000 816.0 825.6700 -9.6745e+00 #> 625 885.6500 3.1547e+01 0.18132000 0.15246000 917.2 802.3800 1.1482e+02 #> 626 828.3800 2.0902e+02 1.28450000 1.30330000 1037.4 758.4600 2.7894e+02 #> 627 776.2600 -1.9655e+01 -0.12889000 -0.19081000 756.6 717.8600 3.8738e+01 #> 628 728.7900 -9.8891e+01 -0.69074000 -0.77811000 629.9 680.3200 -5.0421e+01 #> 629 685.5400 6.4864e+01 0.48165000 0.43610000 750.4 645.5900 1.0481e+02 #> 630 610.0600 -5.5564e+01 -0.46363000 -0.53305000 554.5 583.6400 -2.9136e+01 #> 631 494.2100 -1.6712e+01 -0.17214000 -0.21661000 477.5 484.5400 -7.0362e+00 #> 632 412.0300 -1.0473e+02 -1.29390000 -1.29700000 307.3 410.5100 -1.0321e+02 #> 633 308.1800 5.7525e+01 0.95020000 0.91709000 365.7 311.2600 5.4436e+01 #> 634 247.5900 3.1915e+01 0.65618000 0.63453000 279.5 250.3300 2.9168e+01 #> 635 207.7300 -1.2327e+01 -0.30209000 -0.27481000 195.4 209.7700 -1.4371e+01 #> 636 178.5200 6.1676e+01 1.75860000 1.64870000 240.2 180.4800 5.9723e+01 #> 637 119.6100 -3.2412e+01 -1.37940000 -1.16980000 87.2 123.5400 -3.6339e+01 #> 638 81.7490 -2.1649e+01 -1.34810000 -1.00640000 60.1 87.4770 -2.7377e+01 #> 639 56.0100 -9.1099e+00 -0.82795000 -0.46654000 46.9 62.3230 -1.5423e+01 #> 640 38.3980 9.8016e+00 1.29940000 1.15980000 48.2 44.4620 3.7381e+00 #> 641 747.0900 -7.4709e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 642 713.8700 1.7627e+01 0.12569000 0.42321000 731.5 437.5700 2.9393e+02 #> 643 682.6200 4.4981e+01 0.33543000 0.74103000 727.6 424.9600 3.0264e+02 #> 644 653.2100 8.9594e+01 0.69821000 1.29760000 742.8 412.8400 3.2996e+02 #> 645 625.5200 3.1081e+01 0.25294000 0.55461000 656.6 401.1900 2.5541e+02 #> 646 574.9100 1.8349e+02 1.62470000 2.61320000 758.4 379.2300 3.7917e+02 #> 647 530.0200 4.3819e+00 0.04208500 0.17963000 534.4 358.9300 1.7547e+02 #> 648 490.1700 -5.9659e+00 -0.06195700 0.02377100 484.2 340.1600 1.4404e+02 #> 649 454.7500 -9.4054e+01 -1.05280000 -1.34150000 360.7 322.7900 3.7907e+01 #> 650 395.2100 1.1292e+01 0.14545000 0.31497000 406.5 291.8200 1.1468e+02 #> 651 310.0400 -7.9841e+01 -1.31090000 -1.42930000 230.2 242.2700 -1.2068e+01 #> 652 254.9200 3.2781e+01 0.65461000 1.00090000 287.7 205.2600 8.2445e+01 #> 653 192.3700 1.4933e+01 0.39516000 0.75553000 207.3 155.6300 5.1668e+01 #> 654 159.1200 3.5876e+01 1.14770000 1.72160000 195.0 125.1700 6.9834e+01 #> 655 137.5900 -7.8899e-01 -0.02919100 0.22227000 136.8 104.8900 3.1914e+01 #> 656 121.2900 -1.5691e+01 -0.65855000 -0.62220000 105.6 90.2380 1.5362e+01 #> 657 85.8080 -7.8076e+00 -0.46318000 -0.39903000 78.0 61.7700 1.6230e+01 #> 658 61.2000 1.9900e+01 1.65520000 2.18440000 81.1 43.7390 3.7361e+01 #> 659 43.6730 -4.1729e+00 -0.48639000 -0.41517000 39.5 31.1610 8.3387e+00 #> 660 31.1750 -7.5237e-02 -0.01228500 0.10431000 31.1 22.2310 8.8691e+00 #> 661 1813.3000 -1.8133e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 662 1759.1000 2.4798e+02 0.71761000 0.61143000 2007.1 1750.3000 2.5681e+02 #> 663 1706.9000 3.3638e+02 1.00320000 0.88822000 2043.3 1699.8000 3.4347e+02 #> 664 1656.7000 3.6246e+01 0.11138000 0.03160300 1692.9 1651.3000 4.1551e+01 #> 665 1608.2000 -2.0895e+02 -0.66136000 -0.71236000 1399.3 1604.8000 -2.0545e+02 #> 666 1516.7000 -1.8952e+02 -0.63607000 -0.68755000 1327.2 1516.9000 -1.8971e+02 #> 667 1431.8000 -3.0539e+02 -1.08580000 -1.12160000 1126.4 1435.7000 -3.0932e+02 #> 668 1353.0000 2.6535e+02 0.99837000 0.89203000 1618.3 1360.6000 2.5766e+02 #> 669 1279.7000 -3.3144e+01 -0.13184000 -0.20014000 1246.6 1291.2000 -4.4572e+01 #> 670 1148.5000 -3.3334e+00 -0.01477400 -0.08979000 1145.2 1167.3000 -2.2073e+01 #> 671 936.8700 1.2233e+02 0.66470000 0.54163000 1059.2 969.0700 9.0128e+01 #> 672 777.4300 2.4571e+01 0.16089000 0.03995400 802.0 821.0200 -1.9020e+01 #> 673 562.9200 -5.8624e+01 -0.53013000 -0.63064000 504.3 622.5300 -1.1823e+02 #> 674 432.8200 1.4228e+02 1.67340000 1.17380000 575.1 500.6600 7.4437e+01 #> 675 348.9800 2.2620e+01 0.32996000 -0.00008768 371.6 419.5400 -4.7942e+01 #> 676 291.1800 -9.0079e+01 -1.57480000 -1.49900000 201.1 360.9500 -1.5985e+02 #> 677 188.3600 3.5434e+00 0.09576400 -0.22081000 191.9 247.0800 -5.5178e+01 #> 678 129.1900 -3.5856e+00 -0.14129000 -0.34033000 125.6 174.9500 -4.9355e+01 #> 679 89.7450 1.1549e+00 0.06551000 -0.14725000 90.9 124.6500 -3.3745e+01 #> 680 62.5320 5.4678e+00 0.44511000 0.13746000 68.0 88.9240 -2.0924e+01 #> 681 2173.7000 -2.1737e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 682 2089.9000 3.6838e+02 0.89726000 1.16580000 2458.3 1750.3000 7.0801e+02 #> 683 2010.4000 2.3206e+02 0.58759000 0.78519000 2242.5 1699.8000 5.4267e+02 #> 684 1935.0000 1.5842e+02 0.41675000 0.56743000 2093.4 1651.3000 4.4205e+02 #> 685 1863.3000 1.3655e+02 0.37304000 0.49599000 1999.9 1604.8000 3.9515e+02 #> 686 1730.7000 -3.9682e+02 -1.16710000 -1.23480000 1333.9 1516.9000 -1.8301e+02 #> 687 1611.0000 1.2715e+02 0.40177000 0.45447000 1738.2 1435.7000 3.0248e+02 #> 688 1503.0000 -4.1447e+02 -1.40380000 -1.49960000 1088.5 1360.6000 -2.7214e+02 #> 689 1405.3000 -3.3379e+02 -1.20910000 -1.29100000 1071.5 1291.2000 -2.1967e+02 #> 690 1236.9000 3.6080e+02 1.48490000 1.48280000 1597.7 1167.3000 4.3043e+02 #> 691 984.2600 1.1924e+02 0.61671000 0.55697000 1103.5 969.0700 1.3443e+02 #> 692 810.2000 -2.0340e+02 -1.27800000 -1.25740000 606.8 821.0200 -2.1422e+02 #> 693 597.6900 1.0221e+02 0.87048000 0.81353000 699.9 622.5300 7.7371e+01 #> 694 477.5700 -9.0372e+01 -0.96327000 -0.85402000 387.2 500.6600 -1.1346e+02 #> 695 399.4000 -3.2096e+01 -0.40908000 -0.34229000 367.3 419.5400 -5.2242e+01 #> 696 342.0000 5.8696e+01 0.87365000 0.79075000 400.7 360.9500 3.9747e+01 #> 697 225.4400 3.5365e+01 0.79855000 0.60976000 260.8 247.0800 1.3722e+01 #> 698 150.9900 1.3310e+01 0.44872000 0.23337000 164.3 174.9500 -1.0655e+01 #> 699 101.3000 -1.3996e+01 -0.70336000 -0.64678000 87.3 124.6500 -3.7345e+01 #> 700 67.9920 4.1084e+00 0.30759000 0.03008000 72.1 88.9240 -1.6824e+01 #> 701 888.2700 -8.8827e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 702 859.7400 2.6716e+02 1.58180000 1.45190000 1126.9 875.1500 2.5175e+02 #> 703 832.4600 -1.7456e+02 -1.06740000 -1.05060000 657.9 849.9200 -1.9202e+02 #> 704 806.3600 2.9369e+00 0.01854000 -0.03960000 809.3 825.6700 -1.6375e+01 #> 705 781.4100 -3.5205e+01 -0.22934000 -0.28185000 746.2 802.3800 -5.6176e+01 #> 706 734.6900 -2.8089e+01 -0.19462000 -0.26604000 706.6 758.4600 -5.1856e+01 #> 707 691.9200 -1.0822e+02 -0.79616000 -0.84346000 583.7 717.8600 -1.3416e+02 #> 708 652.7400 -7.0380e+00 -0.05488700 -0.16190000 645.7 680.3200 -3.4621e+01 #> 709 616.8300 1.3767e+02 1.13620000 0.93866000 754.5 645.5900 1.0891e+02 #> 710 553.6600 1.5394e+02 1.41530000 1.17990000 707.6 583.6400 1.2396e+02 #> 711 455.3000 -9.7103e+01 -1.08560000 -1.14270000 358.2 484.5400 -1.2634e+02 #> 712 384.4000 -6.8000e+01 -0.90050000 -0.95266000 316.4 410.5100 -9.4110e+01 #> 713 293.5900 -5.9884e+00 -0.10383000 -0.15059000 287.6 311.2600 -2.3664e+01 #> 714 240.5200 -5.9518e+01 -1.25970000 -1.14140000 181.0 250.3300 -6.9332e+01 #> 715 206.0700 -6.3673e+01 -1.57290000 -1.37170000 142.4 209.7700 -6.7371e+01 #> 716 181.2300 8.9700e+00 0.25195000 0.41351000 190.2 180.4800 9.7233e+00 #> 717 131.2200 4.7880e+01 1.85740000 2.11770000 179.1 123.5400 5.5561e+01 #> 718 97.3900 3.6099e+00 0.18869000 0.55857000 101.0 87.4770 1.3523e+01 #> 719 72.5320 -2.0532e+01 -1.44100000 -1.01920000 52.0 62.3230 -1.0323e+01 #> 720 54.0570 1.0043e+01 0.94569000 1.32850000 64.1 44.4620 1.9638e+01 #> 721 373.2200 -3.7322e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 722 365.9000 -2.7695e+01 -0.38531000 -0.43138000 338.2 437.5700 -9.9373e+01 #> 723 358.7900 -1.4899e+02 -2.11380000 -1.84650000 209.8 424.9600 -2.1516e+02 #> 724 351.8800 1.2092e+02 1.74920000 1.36660000 472.8 412.8400 5.9963e+01 #> 725 345.1800 -9.5578e+01 -1.40950000 -1.25570000 249.6 401.1900 -1.5159e+02 #> 726 332.3400 -5.4038e+01 -0.82771000 -0.75352000 278.3 379.2300 -1.0093e+02 #> 727 320.2200 -3.2420e+01 -0.51538000 -0.47120000 287.8 358.9300 -7.1131e+01 #> 728 308.7800 3.6021e+01 0.59383000 0.51370000 344.8 340.1600 4.6394e+00 #> 729 297.9700 -7.3973e+01 -1.26370000 -1.10590000 224.0 322.7900 -9.8793e+01 #> 730 278.1100 9.2789e+01 1.69840000 1.59440000 370.9 291.8200 7.9082e+01 #> 731 244.4400 7.2162e+01 1.50280000 1.53590000 316.6 242.2700 7.4332e+01 #> 732 217.3100 2.0988e+01 0.49164000 0.62111000 238.3 205.2600 3.3045e+01 #> 733 177.2000 1.1897e+01 0.34175000 0.51510000 189.1 155.6300 3.3468e+01 #> 734 149.6800 -6.9827e+00 -0.23747000 -0.12800000 142.7 125.1700 1.7534e+01 #> 735 129.9200 1.5824e+00 0.06200200 0.18686000 131.5 104.8900 2.6614e+01 #> 736 115.0200 -1.2519e+01 -0.55406000 -0.56541000 102.5 90.2380 1.2262e+01 #> 737 85.3330 7.5669e+00 0.45140000 0.59666000 92.9 61.7700 3.1130e+01 #> 738 66.0090 3.7910e+00 0.29236000 0.37222000 69.8 43.7390 2.6061e+01 #> 739 51.6580 5.9417e+00 0.58550000 0.74250000 57.6 31.1610 2.6439e+01 #> 740 40.5620 -1.6240e-01 -0.02038100 -0.12696000 40.4 22.2310 1.8169e+01 #> 741 179.0800 -1.7908e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 742 173.7800 3.8919e+01 1.14000000 1.28620000 212.7 145.8600 6.6842e+01 #> 743 168.6900 4.3074e+00 0.12998000 0.14661000 173.0 141.6500 3.1347e+01 #> 744 163.8100 1.5392e+01 0.47830000 0.55183000 179.2 137.6100 4.1588e+01 #> 745 159.1200 -8.0203e+00 -0.25658000 -0.27981000 151.1 133.7300 1.7371e+01 #> 746 150.3000 9.8005e+00 0.33193000 0.40932000 160.1 126.4100 3.3691e+01 #> 747 142.1700 -2.4268e+01 -0.86894000 -0.95682000 117.9 119.6400 -1.7436e+00 #> 748 134.6700 9.3077e-01 0.03518300 0.09809500 135.6 113.3900 2.2213e+01 #> 749 127.7500 -1.1951e+01 -0.47620000 -0.47918000 115.8 107.6000 8.2024e+00 #> 750 115.4700 2.9932e+01 1.31960000 1.62690000 145.4 97.2730 4.8127e+01 #> 751 96.0130 7.8867e+00 0.41814000 0.62539000 103.9 80.7560 2.3144e+01 #> 752 81.7020 -1.9702e+01 -1.22750000 -1.26130000 62.0 68.4180 -6.4184e+00 #> 753 63.0020 7.0983e+00 0.57353000 0.87665000 70.1 51.8770 1.8223e+01 #> 754 51.9680 3.3316e+00 0.32634000 0.61295000 55.3 41.7220 1.3578e+01 #> 755 44.8950 3.9053e+00 0.44281000 0.78239000 48.8 34.9620 1.3838e+01 #> 756 39.9190 -1.2019e+01 -1.53260000 -1.62510000 27.9 30.0790 -2.1795e+00 #> 757 30.2570 -4.0569e+00 -0.68254000 -0.56466000 26.2 20.5900 5.6102e+00 #> 758 23.7040 4.8957e+00 1.05130000 1.86610000 28.6 14.5800 1.4020e+01 #> 759 18.6710 1.5292e+00 0.41693000 0.94720000 20.2 10.3870 9.8129e+00 #> 760 14.7220 1.5784e+00 0.54578000 1.05290000 16.3 7.4103 8.8897e+00 #> 761 189.7300 -1.8973e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 762 184.1900 2.2909e+01 0.63314000 0.85756000 207.1 145.8600 6.1242e+01 #> 763 178.8800 -1.8677e+01 -0.53151000 -0.54751000 160.2 141.6500 1.8547e+01 #> 764 173.7800 5.7239e+00 0.16767000 0.30963000 179.5 137.6100 4.1888e+01 #> 765 168.8800 -2.5879e+01 -0.78006000 -0.84076000 143.0 133.7300 9.2706e+00 #> 766 159.6600 2.0637e+01 0.65796000 0.93604000 180.3 126.4100 5.3891e+01 #> 767 151.1600 2.0359e+00 0.06855800 0.22714000 153.2 119.6400 3.3556e+01 #> 768 143.3200 -7.9233e+00 -0.28141000 -0.19153000 135.4 113.3900 2.2013e+01 #> 769 136.0900 1.5414e+01 0.57657000 0.89029000 151.5 107.6000 4.3902e+01 #> 770 123.2300 4.4071e+01 1.82060000 2.48290000 167.3 97.2730 7.0027e+01 #> 771 102.8300 1.9272e+01 0.95404000 1.46090000 122.1 80.7560 4.1344e+01 #> 772 87.7780 -2.4778e+01 -1.43690000 -1.53460000 63.0 68.4180 -5.4184e+00 #> 773 68.0000 -1.8700e+01 -1.39990000 -1.45760000 49.3 51.8770 -2.5774e+00 #> 774 56.2090 -1.5091e+00 -0.13667000 0.19736000 54.7 41.7220 1.2978e+01 #> 775 48.5560 1.6644e+01 1.74490000 2.72410000 65.2 34.9620 3.0238e+01 #> 776 43.1080 -8.9084e+00 -1.05200000 -1.05390000 34.2 30.0790 4.1205e+00 #> 777 32.3960 -6.9597e-01 -0.10936000 0.21006000 31.7 20.5900 1.1110e+01 #> 778 25.1200 5.7957e-01 0.11745000 0.50179000 25.7 14.5800 1.1120e+01 #> 779 19.5790 3.2212e+00 0.83751000 1.55550000 22.8 10.3870 1.2413e+01 #> 780 15.2750 6.2469e-01 0.20818000 0.45409000 15.9 7.4103 8.4897e+00 #> 781 440.3400 -4.4034e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 782 434.9700 1.1135e+01 0.13031000 -0.63863000 446.1 875.1500 -4.2905e+02 #> 783 429.7300 -7.0266e+00 -0.08323500 -0.74726000 422.7 849.9200 -4.2722e+02 #> 784 424.6200 -1.1512e+02 -1.38010000 -1.49030000 309.5 825.6700 -5.1617e+02 #> 785 419.6500 3.8555e+01 0.46769000 -0.39509000 458.2 802.3800 -3.4418e+02 #> 786 410.0700 -3.5166e+01 -0.43654000 -0.90145000 374.9 758.4600 -3.8356e+02 #> 787 400.9600 -9.1959e+01 -1.16750000 -1.31750000 309.0 717.8600 -4.0886e+02 #> 788 392.3000 4.6604e+01 0.60473000 -0.21899000 438.9 680.3200 -2.4142e+02 #> 789 384.0500 -5.1652e+01 -0.68463000 -0.98432000 332.4 645.5900 -3.1319e+02 #> 790 368.7200 1.3688e+02 1.88970000 0.68141000 505.6 583.6400 -7.8036e+01 #> 791 342.0900 -7.2882e+00 -0.10845000 -0.49405000 334.8 484.5400 -1.4974e+02 #> 792 319.8600 9.1408e+00 0.14547000 -0.24255000 329.0 410.5100 -8.1510e+01 #> 793 285.0800 -1.3771e+00 -0.02458900 -0.22937000 283.7 311.2600 -2.7564e+01 #> 794 259.1000 -3.2202e+01 -0.63266000 -0.61161000 226.9 250.3300 -2.3432e+01 #> 795 238.7200 5.3075e+01 1.13170000 0.93076000 291.8 209.7700 8.2029e+01 #> 796 221.9900 -4.7988e+01 -1.10040000 -0.93948000 174.0 180.4800 -6.4767e+00 #> 797 183.7500 4.6152e+01 1.27860000 1.51030000 229.9 123.5400 1.0636e+02 #> 798 154.7300 -4.1278e+00 -0.13580000 0.11676000 150.6 87.4770 6.3123e+01 #> 799 130.8900 -1.1898e+00 -0.04627300 0.26042000 129.7 62.3230 6.7377e+01 #> 800 110.8700 1.5826e+01 0.72662000 1.50560000 126.7 44.4620 8.2238e+01 #> 801 621.6300 -6.2163e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 802 610.4800 3.5222e+01 0.29370000 -0.14491000 645.7 875.1500 -2.2945e+02 #> 803 599.6300 2.4767e+01 0.21025000 -0.18886000 624.4 849.9200 -2.2552e+02 #> 804 589.0900 -5.7392e+01 -0.49593000 -0.68592000 531.7 825.6700 -2.9397e+02 #> 805 578.8400 -1.1954e+02 -1.05130000 -1.08030000 459.3 802.3800 -3.4308e+02 #> 806 559.1900 1.1561e+02 1.05240000 0.49457000 674.8 758.4600 -8.3656e+01 #> 807 540.6000 -1.3200e+02 -1.24300000 -1.19300000 408.6 717.8600 -3.0926e+02 #> 808 523.0100 6.1870e+00 0.06021800 -0.18969000 529.2 680.3200 -1.5112e+02 #> 809 506.3600 -1.2156e+02 -1.22200000 -1.15510000 384.8 645.5900 -2.6079e+02 #> 810 475.6300 -1.2603e+02 -1.34890000 -1.23820000 349.6 583.6400 -2.3404e+02 #> 811 423.0900 1.8407e+01 0.22147000 0.08052400 441.5 484.5400 -4.3036e+01 #> 812 380.1900 1.9791e+02 2.64990000 2.24240000 578.1 410.5100 1.6759e+02 #> 813 315.2400 4.4759e+01 0.72277000 0.67703000 360.0 311.2600 4.8736e+01 #> 814 268.9500 9.2453e+00 0.17498000 0.19418000 278.2 250.3300 2.7868e+01 #> 815 234.3300 2.3766e+01 0.51627000 0.54337000 258.1 209.7700 4.8329e+01 #> 816 207.2100 -7.0138e+00 -0.17230000 -0.17939000 200.2 180.4800 1.9723e+01 #> 817 150.3800 1.8222e+01 0.61682000 0.61613000 168.6 123.5400 4.5061e+01 #> 818 112.4000 -1.2605e+01 -0.57083000 -0.75013000 99.8 87.4770 1.2323e+01 #> 819 84.7050 1.6495e+01 0.99130000 1.01250000 101.2 62.3230 3.8877e+01 #> 820 63.9850 -1.3785e+01 -1.09670000 -1.35490000 50.2 44.4620 5.7381e+00 #> 821 2199.7000 -2.1997e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 822 2099.0000 -7.3672e+01 -0.17867000 0.03148200 2025.3 1750.3000 2.7501e+02 #> 823 2003.8000 5.4481e-01 0.00138410 0.17510000 2004.3 1699.8000 3.0447e+02 #> 824 1913.8000 1.4621e-01 0.00038891 0.11642000 1913.9 1651.3000 2.6255e+02 #> 825 1828.7000 3.8933e+02 1.08380000 1.23290000 2218.0 1604.8000 6.1325e+02 #> 826 1672.2000 4.7405e+02 1.44310000 1.46870000 2146.2 1516.9000 6.2929e+02 #> 827 1532.2000 -2.1715e+02 -0.72147000 -0.83890000 1315.0 1435.7000 -1.2072e+02 #> 828 1406.8000 -3.0724e+02 -1.11170000 -1.26080000 1099.6 1360.6000 -2.6104e+02 #> 829 1294.6000 -1.8160e+02 -0.71405000 -0.91096000 1113.0 1291.2000 -1.7817e+02 #> 830 1103.7000 2.2819e+02 1.05240000 0.58909000 1331.9 1167.3000 1.6463e+02 #> 831 825.1800 -3.9483e+01 -0.24357000 -0.62360000 785.7 969.0700 -1.8337e+02 #> 832 640.9300 -1.6326e+01 -0.12966000 -0.55941000 624.6 821.0200 -1.9642e+02 #> 833 429.3800 1.8165e+00 0.02153500 -0.43579000 431.2 622.5300 -1.9133e+02 #> 834 320.1000 -2.8505e+01 -0.45330000 -0.69036000 291.6 500.6600 -2.0906e+02 #> 835 254.5900 1.8312e+01 0.36614000 -0.16220000 272.9 419.5400 -1.4664e+02 #> 836 209.5300 3.7573e+01 0.91283000 0.16636000 247.1 360.9500 -1.1385e+02 #> 837 125.2500 -1.6544e+00 -0.06723500 -0.37691000 123.6 247.0800 -1.2348e+02 #> 838 76.5610 -4.5615e+00 -0.30329000 -0.46611000 72.0 174.9500 -1.0295e+02 #> 839 46.8990 2.4012e+00 0.26063000 -0.17813000 49.3 124.6500 -7.5345e+01 #> 840 28.7460 1.6539e+00 0.29288000 -0.14654000 30.4 88.9240 -5.8524e+01 #> 841 190.9300 -1.9093e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 842 182.9800 -8.4750e+00 -0.23578000 0.18960000 174.5 145.8600 2.8642e+01 #> 843 175.4500 2.7650e+01 0.80223000 1.37460000 203.1 141.6500 6.1447e+01 #> 844 168.3300 6.7694e+00 0.20471000 0.61529000 175.1 137.6100 3.7488e+01 #> 845 161.5900 -3.3294e+01 -1.04880000 -0.88494000 128.3 133.7300 -5.4294e+00 #> 846 149.1800 -5.9482e+01 -2.02970000 -2.04620000 89.7 126.4100 -3.6709e+01 #> 847 138.0600 8.5543e+01 3.15410000 3.67830000 223.6 119.6400 1.0396e+02 #> 848 128.0800 -4.2770e+00 -0.16999000 -0.05379900 123.8 113.3900 1.0413e+01 #> 849 119.1200 -2.6916e+01 -1.15030000 -1.13590000 92.2 107.6000 -1.5398e+01 #> 850 103.8200 -1.7320e+01 -0.84921000 -0.85149000 86.5 97.2730 -1.0773e+01 #> 851 81.3050 -9.0046e+00 -0.56378000 -0.59082000 72.3 80.7560 -8.4560e+00 #> 852 66.1870 1.0913e+01 0.83934000 0.72434000 77.1 68.4180 8.6816e+00 #> 853 48.3240 -1.0224e+01 -1.07700000 -0.95086000 38.1 51.8770 -1.3777e+01 #> 854 38.5730 -1.2173e+01 -1.60650000 -1.34690000 26.4 41.7220 -1.5322e+01 #> 855 32.3330 3.6660e-01 0.05771500 0.16452000 32.7 34.9620 -2.2618e+00 #> 856 27.7650 9.5351e+00 1.74820000 1.64420000 37.3 30.0790 7.2205e+00 #> 857 18.4150 -1.1155e+00 -0.30835000 -0.20028000 17.3 20.5900 -3.2898e+00 #> 858 12.3860 1.6136e+00 0.66315000 0.47641000 14.0 14.5800 -5.7955e-01 #> 859 8.3416 2.5842e-01 0.15770000 0.00821290 8.6 10.3870 -1.7871e+00 #> 860 5.6201 -1.2009e-01 -0.10877000 -0.23378000 5.5 7.4103 -1.9103e+00 #> 861 774.6400 -7.7464e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 862 744.0800 1.8262e+02 1.24930000 0.88770000 926.7 875.1500 5.1555e+01 #> 863 714.9800 -3.9080e+01 -0.27824000 -0.41744000 675.9 849.9200 -1.7402e+02 #> 864 687.2500 -1.1775e+02 -0.87219000 -0.93690000 569.5 825.6700 -2.5617e+02 #> 865 660.8300 -1.0534e+01 -0.08114100 -0.32721000 650.3 802.3800 -1.5208e+02 #> 866 611.6600 7.6038e+01 0.63282000 0.17340000 687.7 758.4600 -7.0756e+01 #> 867 566.9800 -5.7580e+01 -0.51696000 -0.78992000 509.4 717.8600 -2.0846e+02 #> 868 526.3500 -4.3652e+01 -0.42217000 -0.76368000 482.7 680.3200 -1.9762e+02 #> 869 489.3800 -7.4684e+01 -0.77684000 -1.07070000 414.7 645.5900 -2.3089e+02 #> 870 425.0400 1.0016e+02 1.19950000 0.29475000 525.2 583.6400 -5.8436e+01 #> 871 326.8400 -3.4839e+01 -0.54261000 -1.03700000 292.0 484.5400 -1.9254e+02 #> 872 257.8500 5.2460e+00 0.10357000 -0.66002000 263.1 410.5100 -1.4741e+02 #> 873 172.4300 1.3275e+01 0.39190000 -0.51803000 185.7 311.2600 -1.2556e+02 #> 874 124.7000 -1.2965e+00 -0.05292900 -0.73485000 123.4 250.3300 -1.2693e+02 #> 875 95.1870 1.1131e+00 0.05952500 -0.64415000 96.3 209.7700 -1.1347e+02 #> 876 75.1280 9.7191e-01 0.06585400 -0.61590000 76.1 180.4800 -1.0438e+02 #> 877 40.2040 8.1956e+00 1.03770000 -0.17833000 48.4 123.5400 -7.5139e+01 #> 878 22.2910 -8.2909e+00 -1.89330000 -1.22160000 14.0 87.4770 -7.3477e+01 #> 879 12.4250 1.0755e+00 0.44062000 -0.35157000 13.5 62.3230 -4.8823e+01 #> 880 6.9339 2.6606e-01 0.19532000 -0.38083000 7.2 44.4620 -3.7262e+01 #> 881 2522.7000 -2.5227e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 882 2388.5000 1.2610e+02 0.26874000 1.08200000 2514.6 1750.3000 7.6431e+02 #> 883 2261.7000 -3.1430e+01 -0.07074000 0.49417000 2230.3 1699.8000 5.3047e+02 #> 884 2142.0000 -6.1628e+02 -1.46460000 -1.31430000 1525.7 1651.3000 -1.2565e+02 #> 885 2028.9000 -4.9106e+02 -1.23210000 -1.10080000 1537.8 1604.8000 -6.6952e+01 #> 886 1821.1000 5.7784e+02 1.61530000 1.81360000 2398.9 1516.9000 8.8199e+02 #> 887 1635.6000 1.1309e+02 0.35197000 0.25453000 1748.7 1435.7000 3.1298e+02 #> 888 1470.1000 1.8970e+02 0.65688000 0.34784000 1659.8 1360.6000 2.9916e+02 #> 889 1322.4000 2.4184e+02 0.93097000 0.40390000 1564.2 1291.2000 2.7303e+02 #> 890 1072.7000 -1.6853e+02 -0.79973000 -1.18230000 904.2 1167.3000 -2.6307e+02 #> 891 714.8900 9.5907e+01 0.68291000 -0.44356000 810.8 969.0700 -1.5827e+02 #> 892 486.7700 -2.0966e+01 -0.21925000 -1.07650000 465.8 821.0200 -3.5522e+02 #> 893 246.6600 -1.3161e+01 -0.27162000 -1.16610000 233.5 622.5300 -3.8903e+02 #> 894 145.3500 2.3545e+00 0.08246100 -1.06570000 147.7 500.6600 -3.5296e+02 #> 895 100.0300 2.6681e+00 0.13578000 -1.05220000 102.7 419.5400 -3.1684e+02 #> 896 77.5910 3.0095e+00 0.19744000 -1.00650000 80.6 360.9500 -2.8035e+02 #> 897 49.5390 -1.1039e+01 -1.13430000 -1.24120000 38.5 247.0800 -2.0858e+02 #> 898 35.3000 5.4001e+00 0.77873000 -0.32339000 40.7 174.9500 -1.3425e+02 #> 899 25.4180 -8.3180e+00 -1.66580000 -0.95632000 17.1 124.6500 -1.0755e+02 #> 900 18.3240 4.3755e+00 1.21550000 0.37500000 22.7 88.9240 -6.6224e+01 #> 901 245.5700 -2.4557e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 902 234.3400 5.7859e+01 1.25680000 2.73690000 292.2 145.8600 1.4634e+02 #> 903 223.8100 -9.8214e+01 -2.23380000 -2.99130000 125.6 141.6500 -1.6053e+01 #> 904 213.9400 3.0058e+01 0.71519000 1.66640000 244.0 137.6100 1.0639e+02 #> 905 204.6800 1.3180e+00 0.03277800 0.53013000 206.0 133.7300 7.2271e+01 #> 906 187.8400 3.8614e+00 0.10464000 0.53801000 191.7 126.4100 6.5291e+01 #> 907 172.9900 1.7808e+01 0.52402000 1.06150000 190.8 119.6400 7.1156e+01 #> 908 159.8900 4.1913e+01 1.33440000 2.11220000 201.8 113.3900 8.8413e+01 #> 909 148.3000 -4.2036e+00 -0.14429000 0.01223500 144.1 107.6000 3.6502e+01 #> 910 128.9500 -2.5551e+01 -1.00860000 -1.14640000 103.4 97.2730 6.1273e+00 #> 911 101.5000 -2.8097e+01 -1.40920000 -1.57720000 73.4 80.7560 -7.3560e+00 #> 912 83.7420 2.4158e+01 1.46850000 1.95810000 107.9 68.4180 3.9482e+01 #> 913 63.0980 4.2023e+00 0.33902000 0.65723000 67.3 51.8770 1.5423e+01 #> 914 51.3750 1.2925e+01 1.28070000 1.76200000 64.3 41.7220 2.2578e+01 #> 915 43.2820 -8.7817e+00 -1.03280000 -1.07960000 34.5 34.9620 -4.6184e-01 #> 916 36.9730 7.6272e+00 1.05010000 1.21180000 44.6 30.0790 1.4521e+01 #> 917 23.5450 -3.0453e+00 -0.65839000 -0.87247000 20.5 20.5900 -8.9834e-02 #> 918 15.0690 1.3097e-01 0.04424200 -0.34226000 15.2 14.5800 6.2045e-01 #> 919 9.6469 1.1531e+00 0.60845000 0.00553770 10.8 10.3870 4.1289e-01 #> 920 6.1782 -3.7819e-01 -0.31161000 -0.64268000 5.8 7.4103 -1.6103e+00 #> 921 265.5300 -2.6553e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 922 261.2100 1.4595e+01 0.28443000 -0.35345000 275.8 437.5700 -1.6177e+02 #> 923 257.0100 5.7589e+01 1.14060000 0.21670000 314.6 424.9600 -1.1036e+02 #> 924 252.9500 -7.1547e+01 -1.43980000 -1.45040000 181.4 412.8400 -2.3144e+02 #> 925 249.0100 -6.9706e+01 -1.42500000 -1.43360000 179.3 401.1900 -2.2189e+02 #> 926 241.4800 -6.2813e+00 -0.13241000 -0.55976000 235.2 379.2300 -1.4403e+02 #> 927 234.4000 6.6796e+01 1.45060000 0.53095000 301.2 358.9300 -5.7731e+01 #> 928 227.7400 -1.9442e+01 -0.43457000 -0.71964000 208.3 340.1600 -1.3186e+02 #> 929 221.4700 -1.0169e+01 -0.23373000 -0.56135000 211.3 322.7900 -1.1149e+02 #> 930 209.9800 4.9219e+01 1.19320000 0.48961000 259.2 291.8200 -3.2618e+01 #> 931 190.6000 -2.9303e+01 -0.78260000 -0.85649000 161.3 242.2700 -8.0968e+01 #> 932 175.0300 -1.9431e+01 -0.56511000 -0.64383000 155.6 205.2600 -4.9655e+01 #> 933 151.8200 1.2976e+01 0.43507000 0.27505000 164.8 155.6300 9.1678e+00 #> 934 135.4000 -2.4403e+01 -0.91742000 -0.82944000 111.0 125.1700 -1.4166e+01 #> 935 122.9900 -1.3289e+01 -0.55001000 -0.46378000 109.7 104.8900 4.8145e+00 #> 936 113.0200 -1.9181e+00 -0.08639400 0.02260300 111.1 90.2380 2.0862e+01 #> 937 90.6420 2.0358e+01 1.14330000 1.50720000 111.0 61.7700 4.9230e+01 #> 938 73.9390 1.5961e+01 1.09880000 1.64760000 89.9 43.7390 4.6161e+01 #> 939 60.5340 -2.3409e-01 -0.01968500 0.16106000 60.3 31.1610 2.9139e+01 #> 940 49.6060 9.9416e-01 0.10202000 0.31022000 50.6 22.2310 2.8369e+01 #> 941 291.4600 -2.9146e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 942 284.5300 -3.8934e+01 -0.69654000 -0.96799000 245.6 437.5700 -1.9197e+02 #> 943 277.8300 4.1066e+01 0.75240000 0.02975900 318.9 424.9600 -1.0606e+02 #> 944 271.3500 3.1548e+01 0.59183000 -0.07325400 302.9 412.8400 -1.0994e+02 #> 945 265.0800 5.1221e+01 0.98363000 0.20459000 316.3 401.1900 -8.4888e+01 #> 946 253.1300 -1.2531e+01 -0.25199000 -0.64179000 240.6 379.2300 -1.3863e+02 #> 947 241.9300 -6.4434e+01 -1.35570000 -1.40970000 177.5 358.9300 -1.8143e+02 #> 948 231.4400 -8.7371e+00 -0.19217000 -0.58555000 222.7 340.1600 -1.1746e+02 #> 949 221.5900 -8.1907e+00 -0.18816000 -0.57656000 213.4 322.7900 -1.0939e+02 #> 950 203.6700 9.7267e+00 0.24310000 -0.25503000 213.4 291.8200 -7.8418e+01 #> 951 173.8700 2.6323e+00 0.07706700 -0.35550000 176.5 242.2700 -6.5768e+01 #> 952 150.4300 7.2743e+00 0.24616000 -0.21510000 157.7 205.2600 -4.7555e+01 #> 953 116.7900 1.2095e+00 0.05271800 -0.33962000 118.0 155.6300 -3.7632e+01 #> 954 94.4610 1.4386e+00 0.07752700 -0.30278000 95.9 125.1700 -2.9266e+01 #> 955 78.7960 -1.2096e+01 -0.78144000 -0.93393000 66.7 104.8900 -3.8186e+01 #> 956 67.1830 -6.4832e+00 -0.49123000 -0.69201000 60.7 90.2380 -2.9538e+01 #> 957 44.6760 3.2244e+00 0.36740000 -0.01088400 47.9 61.7700 -1.3870e+01 #> 958 30.9510 5.5495e+00 0.91273000 0.39825000 36.5 43.7390 -7.2387e+00 #> 959 21.6630 3.6633e-02 0.00860790 -0.19569000 21.7 31.1610 -9.4613e+00 #> 960 15.2050 2.9468e-01 0.09865200 -0.11338000 15.5 22.2310 -6.7309e+00 #> 961 397.4600 -3.9746e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 962 387.2200 6.7175e+01 0.88308000 0.66982000 454.4 437.5700 1.6827e+01 #> 963 377.3100 -9.6714e+01 -1.30480000 -1.20690000 280.6 424.9600 -1.4436e+02 #> 964 367.7200 -9.9916e+01 -1.38320000 -1.27220000 267.8 412.8400 -1.4504e+02 #> 965 358.4200 1.6879e+01 0.23973000 0.14069000 375.3 401.1900 -2.5888e+01 #> 966 340.7000 6.6301e+01 0.99061000 0.81181000 407.0 379.2300 2.7772e+01 #> 967 324.0700 5.6726e+01 0.89104000 0.74039000 380.8 358.9300 2.1869e+01 #> 968 308.4700 -3.8972e+01 -0.64312000 -0.60595000 269.5 340.1600 -7.0661e+01 #> 969 293.8300 -3.3927e+01 -0.58777000 -0.55195000 259.9 322.7900 -6.2893e+01 #> 970 267.1600 -8.0463e+01 -1.53310000 -1.39510000 186.7 291.8200 -1.0512e+02 #> 971 222.8400 1.0786e+02 2.46400000 2.22530000 330.7 242.2700 8.8432e+01 #> 972 188.1400 -4.1636e+01 -1.12660000 -1.04380000 146.5 205.2600 -5.8755e+01 #> 973 139.1200 2.3276e+01 0.85166000 0.67628000 162.4 155.6300 6.7678e+00 #> 974 107.8000 -2.3096e+01 -1.09070000 -1.08330000 84.7 125.1700 -4.0466e+01 #> 975 86.9900 -4.2905e+00 -0.25107000 -0.42304000 82.7 104.8900 -2.2186e+01 #> 976 72.5340 1.1966e+01 0.83977000 0.39912000 84.5 90.2380 -5.7384e+00 #> 977 47.4760 -1.3876e+01 -1.48780000 -1.36130000 33.6 61.7700 -2.8170e+01 #> 978 33.7030 -3.4027e+00 -0.51394000 -0.54330000 30.3 43.7390 -1.3439e+01 #> 979 24.4950 6.0053e+00 1.24800000 0.83381000 30.5 31.1610 -6.6132e-01 #> 980 17.9210 7.9108e-02 0.02247100 0.07533000 18.0 22.2310 -4.2309e+00 #> 981 595.5200 -5.9552e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 982 571.3800 -1.4948e+02 -1.33170000 -1.06790000 421.9 437.5700 -1.5673e+01 #> 983 548.5500 -2.0850e+01 -0.19348000 0.30894000 527.7 424.9600 1.0274e+02 #> 984 526.9600 1.1274e+02 1.08910000 1.83770000 639.7 412.8400 2.2686e+02 #> 985 506.5400 -3.6351e+00 -0.03653100 0.40379000 502.9 401.1900 1.0171e+02 #> 986 468.9000 -6.7301e+01 -0.73063000 -0.51015000 401.6 379.2300 2.2372e+01 #> 987 435.1500 4.8354e+01 0.56566000 0.94848000 483.5 358.9300 1.2457e+02 #> 988 404.8200 1.1958e+02 1.50360000 1.94750000 524.4 340.1600 1.8424e+02 #> 989 377.5500 -1.4075e+02 -1.89770000 -1.96000000 236.8 322.7900 -8.5993e+01 #> 990 330.7700 -4.7672e+01 -0.73366000 -0.70262000 283.1 291.8200 -8.7182e+00 #> 991 260.9800 -4.0485e+01 -0.78965000 -0.80364000 220.5 242.2700 -2.1768e+01 #> 992 212.7700 1.5313e+02 3.66370000 3.50000000 365.9 205.2600 1.6064e+02 #> 993 152.3800 1.1122e+01 0.37153000 0.19902000 163.5 155.6300 7.8678e+00 #> 994 116.2900 -2.3791e+01 -1.04140000 -1.10650000 92.5 125.1700 -3.2666e+01 #> 995 91.7170 1.4825e+00 0.08228200 -0.35915000 93.2 104.8900 -1.1686e+01 #> 996 73.4910 1.1109e+01 0.76950000 -0.05330600 84.6 90.2380 -5.6384e+00 #> 997 38.9690 -2.1693e+00 -0.28337000 -1.06380000 36.8 61.7700 -2.4970e+01 #> 998 20.8550 -8.5503e-01 -0.20870000 -1.12630000 20.0 43.7390 -2.3739e+01 #> 999 11.1700 -9.7031e-01 -0.44218000 -1.19870000 10.2 31.1610 -2.0961e+01 #> 1000 5.9866 2.1341e-01 0.18147000 -0.92273000 6.2 22.2310 -1.6031e+01 #> 1001 1900.9000 -1.9009e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1002 1840.6000 2.0845e+02 0.57649000 0.45652000 2049.1 1750.3000 2.9881e+02 #> 1003 1782.5000 3.7249e+02 1.06370000 0.94884000 2155.0 1699.8000 4.5517e+02 #> 1004 1726.4000 1.0780e+02 0.31786000 0.20826000 1834.2 1651.3000 1.8285e+02 #> 1005 1672.2000 9.1551e+01 0.27869000 0.17458000 1763.8 1604.8000 1.5905e+02 #> 1006 1569.5000 -2.1974e+02 -0.71269000 -0.79897000 1349.8 1516.9000 -1.6711e+02 #> 1007 1473.9000 -1.7547e+02 -0.60603000 -0.67791000 1298.4 1435.7000 -1.3732e+02 #> 1008 1384.7000 -7.9631e+01 -0.29273000 -0.35494000 1305.1 1360.6000 -5.5542e+01 #> 1009 1301.7000 2.7422e+01 0.10724000 0.04794300 1329.1 1291.2000 3.7928e+01 #> 1010 1152.2000 -2.7860e+01 -0.12309000 -0.15449000 1124.3 1167.3000 -4.2973e+01 #> 1011 909.3600 1.4684e+02 0.82201000 0.73805000 1056.2 969.0700 8.7128e+01 #> 1012 725.6900 -1.7829e+02 -1.25060000 -1.09260000 547.4 821.0200 -2.7362e+02 #> 1013 480.2800 -1.7181e+01 -0.18210000 -0.22933000 463.1 622.5300 -1.5943e+02 #> 1014 336.8100 9.0089e+01 1.36160000 0.68608000 426.9 500.6600 -7.3763e+01 #> 1015 250.9200 -5.1423e+01 -1.04320000 -1.01130000 199.5 419.5400 -2.2004e+02 #> 1016 197.7400 2.5064e+01 0.64525000 -0.13172000 222.8 360.9500 -1.3815e+02 #> 1017 122.5400 -3.2239e+01 -1.33930000 -1.27710000 90.3 247.0800 -1.5678e+02 #> 1018 89.5290 -2.9829e+01 -1.69600000 -1.27330000 59.7 174.9500 -1.1525e+02 #> 1019 68.3950 -2.7095e+01 -2.01660000 -1.16940000 41.3 124.6500 -8.3345e+01 #> 1020 52.8160 2.3884e+01 2.30190000 1.61160000 76.7 88.9240 -1.2224e+01 #> 1021 714.8600 -7.1486e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1022 698.4700 -6.7176e-01 -0.00489580 -0.26801000 697.8 875.1500 -1.7735e+02 #> 1023 682.6600 -1.0756e+01 -0.08020500 -0.31812000 671.9 849.9200 -1.7802e+02 #> 1024 667.3900 6.1311e+01 0.46764000 0.12908000 728.7 825.6700 -9.6975e+01 #> 1025 652.6500 -1.4635e+02 -1.14150000 -1.15280000 506.3 802.3800 -2.9608e+02 #> 1026 624.6800 1.7172e+02 1.39930000 0.91963000 796.4 758.4600 3.7944e+01 #> 1027 598.5900 -7.5891e+01 -0.64538000 -0.72909000 522.7 717.8600 -1.9516e+02 #> 1028 574.2500 -1.3425e+02 -1.19000000 -1.16920000 440.0 680.3200 -2.4032e+02 #> 1029 551.5200 2.2228e+02 2.05170000 1.55230000 773.8 645.5900 1.2821e+02 #> 1030 510.4300 -1.9335e+01 -0.19282000 -0.29980000 491.1 583.6400 -9.2536e+01 #> 1031 442.9600 -1.1446e+02 -1.31540000 -1.24460000 328.5 484.5400 -1.5604e+02 #> 1032 390.7500 4.0655e+01 0.52963000 0.45253000 431.4 410.5100 2.0890e+01 #> 1033 317.2000 6.5958e+00 0.10585000 0.14769000 323.8 311.2600 1.2536e+01 #> 1034 269.1100 -7.5012e+01 -1.41890000 -1.32410000 194.1 250.3300 -5.6232e+01 #> 1035 235.3400 1.2628e+00 0.02731600 0.17892000 236.6 209.7700 2.6829e+01 #> 1036 209.8700 -3.4371e+01 -0.83368000 -0.70231000 175.5 180.4800 -4.9767e+00 #> 1037 157.3400 3.6161e+01 1.16990000 1.59480000 193.5 123.5400 6.9961e+01 #> 1038 121.2700 -1.4571e+01 -0.61162000 -0.42129000 106.7 87.4770 1.9223e+01 #> 1039 93.9950 3.2305e+01 1.74950000 2.49950000 126.3 62.3230 6.3977e+01 #> 1040 72.9510 -1.3151e+01 -0.91764000 -0.81264000 59.8 44.4620 1.5338e+01 #> 1041 199.7200 -1.9972e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1042 192.1600 1.7745e+01 0.47008000 0.76418000 209.9 145.8600 6.4042e+01 #> 1043 184.9700 -1.3770e+01 -0.37896000 -0.33193000 171.2 141.6500 2.9547e+01 #> 1044 178.1500 1.5154e+01 0.43303000 0.67028000 193.3 137.6100 5.5688e+01 #> 1045 171.6600 1.6537e+01 0.49039000 0.72087000 188.2 133.7300 5.4471e+01 #> 1046 159.6500 2.3748e+01 0.75721000 1.01020000 183.4 126.4100 5.6991e+01 #> 1047 148.8000 -3.5904e+01 -1.22820000 -1.42420000 112.9 119.6400 -6.7436e+00 #> 1048 139.0000 9.5991e+00 0.35154000 0.45975000 148.6 113.3900 3.5213e+01 #> 1049 130.1400 3.6064e+01 1.41070000 1.68350000 166.2 107.6000 5.8602e+01 #> 1050 114.8500 2.3517e+00 0.10424000 0.13061000 117.2 97.2730 1.9927e+01 #> 1051 91.9280 -9.7280e+00 -0.53868000 -0.58478000 82.2 80.7560 1.4440e+00 #> 1052 76.2020 -1.7102e+01 -1.14250000 -1.20410000 59.1 68.4180 -9.3184e+00 #> 1053 57.2470 -2.4714e-01 -0.02197600 0.03471700 57.0 51.8770 5.1226e+00 #> 1054 46.8220 6.7827e-01 0.07374100 0.16300000 47.5 41.7220 5.7780e+00 #> 1055 40.2170 6.1832e+00 0.78264000 0.95819000 46.4 34.9620 1.1438e+01 #> 1056 35.4330 1.1670e+00 0.16765000 0.29431000 36.6 30.0790 6.5205e+00 #> 1057 25.5300 -7.2997e-01 -0.14555000 -0.04035300 24.8 20.5900 4.2102e+00 #> 1058 18.7100 2.3900e+00 0.65025000 0.86801000 21.1 14.5800 6.5204e+00 #> 1059 13.7360 -1.3560e-01 -0.05025300 0.07197000 13.6 10.3870 3.2129e+00 #> 1060 10.0880 9.1191e-01 0.46015000 0.60299000 11.0 7.4103 3.5897e+00 #> 1061 102.8000 -1.0280e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1062 100.9300 -2.9286e+00 -0.14771000 -0.51070000 98.0 145.8600 -4.7858e+01 #> 1063 99.1080 -4.1408e+01 -2.12680000 -1.91500000 57.7 141.6500 -8.3953e+01 #> 1064 97.3390 2.2561e+01 1.17990000 0.47449000 119.9 137.6100 -1.7712e+01 #> 1065 95.6180 6.0819e+00 0.32379000 -0.12770000 101.7 133.7300 -3.2029e+01 #> 1066 92.3180 -1.6318e+01 -0.89980000 -0.99868000 76.0 126.4100 -5.0409e+01 #> 1067 89.1970 1.7003e+01 0.97033000 0.41302000 106.2 119.6400 -1.3444e+01 #> 1068 86.2440 -3.8444e+00 -0.22691000 -0.45847000 82.4 113.3900 -3.0987e+01 #> 1069 83.4490 1.1751e+01 0.71682000 0.28440000 95.2 107.6000 -1.2398e+01 #> 1070 78.2940 -8.9938e+00 -0.58475000 -0.68197000 69.3 97.2730 -2.7973e+01 #> 1071 69.4920 1.0808e-01 0.00791730 -0.14840000 69.6 80.7560 -1.1156e+01 #> 1072 62.3290 3.5713e+00 0.29167000 0.14634000 65.9 68.4180 -2.5184e+00 #> 1073 51.5660 4.1336e+00 0.40806000 0.33517000 55.7 51.8770 3.8226e+00 #> 1074 44.0060 4.7941e+00 0.55457000 0.52800000 48.8 41.7220 7.0780e+00 #> 1075 38.4460 -1.4459e+00 -0.19144000 -0.18491000 37.0 34.9620 2.0382e+00 #> 1076 34.1620 6.1376e+00 0.91454000 0.96045000 40.3 30.0790 1.0221e+01 #> 1077 25.3730 -2.0732e+00 -0.41593000 -0.42042000 23.3 20.5900 2.7102e+00 #> 1078 19.5310 -3.5308e+00 -0.92025000 -1.00860000 16.0 14.5800 1.4204e+00 #> 1079 15.1870 1.3134e+00 0.44025000 0.59014000 16.5 10.3870 6.1129e+00 #> 1080 11.8440 1.5559e+00 0.66872000 0.87448000 13.4 7.4103 5.9897e+00 #> 1081 1249.8000 -1.2498e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1082 1197.9000 1.3486e+02 0.57306000 1.07990000 1332.8 875.1500 4.5765e+02 #> 1083 1149.0000 -2.0297e+02 -0.89927000 -0.90293000 946.0 849.9200 9.6083e+01 #> 1084 1102.7000 4.4177e+02 2.03930000 2.88990000 1544.5 825.6700 7.1883e+02 #> 1085 1059.1000 2.0494e+00 0.00985080 0.22266000 1061.1 802.3800 2.5872e+02 #> 1086 978.7800 -1.2318e+02 -0.64066000 -0.64850000 855.6 758.4600 9.7144e+01 #> 1087 907.0800 -1.2338e+02 -0.69240000 -0.73863000 783.7 717.8600 6.5838e+01 #> 1088 842.9700 -7.6266e+01 -0.46055000 -0.47771000 766.7 680.3200 8.6379e+01 #> 1089 785.5800 1.7892e+02 1.15940000 1.41130000 964.5 645.5900 3.1891e+02 #> 1090 688.0400 1.9259e+01 0.14249000 0.17648000 707.3 583.6400 1.2366e+02 #> 1091 545.5100 -5.0710e+01 -0.47321000 -0.51143000 494.8 484.5400 1.0264e+01 #> 1092 450.4700 -2.3475e+01 -0.26527000 -0.25620000 427.0 410.5100 1.6490e+01 #> 1093 338.3100 1.7286e+01 0.26009000 0.36600000 355.6 311.2600 4.4336e+01 #> 1094 276.1500 -1.7949e+01 -0.33087000 -0.22409000 258.2 250.3300 7.8683e+00 #> 1095 235.2000 8.5004e+01 1.83980000 2.12000000 320.2 209.7700 1.1043e+02 #> 1096 204.3100 -1.0011e+01 -0.24942000 -0.13421000 194.3 180.4800 1.3823e+01 #> 1097 138.7800 -1.8877e+01 -0.69241000 -0.61540000 119.9 123.5400 -3.6390e+00 #> 1098 95.2050 -1.4705e+01 -0.78625000 -0.68743000 80.5 87.4770 -6.9773e+00 #> 1099 65.3650 1.9435e+01 1.51360000 1.33790000 84.8 62.3230 2.2477e+01 #> 1100 44.8940 -5.3943e+00 -0.61164000 -0.46357000 39.5 44.4620 -4.9619e+00 #> 1101 1004.5000 -1.0045e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1102 991.0400 2.4156e+02 1.24080000 0.14668000 1232.6 1750.3000 -5.1769e+02 #> 1103 977.9600 -9.9358e+01 -0.51718000 -0.93544000 878.6 1699.8000 -8.2123e+02 #> 1104 965.2500 -2.6375e+02 -1.39090000 -1.47410000 701.5 1651.3000 -9.4985e+02 #> 1105 952.8900 4.1606e+01 0.22226000 -0.44100000 994.5 1604.8000 -6.1025e+02 #> 1106 929.2200 -2.2332e+02 -1.22340000 -1.34030000 705.9 1516.9000 -8.1101e+02 #> 1107 906.8400 1.2216e+02 0.68573000 -0.07976300 1029.0 1435.7000 -4.0672e+02 #> 1108 885.6800 -1.7281e+01 -0.09932200 -0.56489000 868.4 1360.6000 -4.9224e+02 #> 1109 865.6600 1.8494e+02 1.08750000 0.25229000 1050.6 1291.2000 -2.4057e+02 #> 1110 828.7600 2.8405e+00 0.01744700 -0.41169000 831.6 1167.3000 -3.3567e+02 #> 1111 765.7700 -3.8266e+01 -0.25438000 -0.51468000 727.5 969.0700 -2.4157e+02 #> 1112 714.4100 2.8285e+01 0.20154000 -0.10120000 742.7 821.0200 -7.8320e+01 #> 1113 636.6800 7.2924e+01 0.58305000 0.35482000 709.6 622.5300 8.7071e+01 #> 1114 580.9400 -6.3745e+01 -0.55855000 -0.49338000 517.2 500.6600 1.6537e+01 #> 1115 538.6200 -9.9215e+01 -0.93768000 -0.78510000 439.4 419.5400 1.9858e+01 #> 1116 504.6100 2.7393e+01 0.27634000 0.42242000 532.0 360.9500 1.7105e+02 #> 1117 428.0400 -5.5339e+01 -0.65812000 -0.43333000 372.7 247.0800 1.2562e+02 #> 1118 369.3400 9.5161e+01 1.31160000 2.17430000 464.5 174.9500 2.8955e+02 #> 1119 319.9900 -3.7388e+01 -0.59478000 -0.53987000 282.6 124.6500 1.5795e+02 #> 1120 277.5300 8.3270e+01 1.52730000 3.24630000 360.8 88.9240 2.7188e+02 #> 1121 2267.1000 -2.2671e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1122 2202.3000 -1.1074e+02 -0.25597000 -0.19865000 2091.6 1750.3000 3.4131e+02 #> 1123 2139.8000 -2.2622e+02 -0.53815000 -0.53266000 1913.6 1699.8000 2.1377e+02 #> 1124 2079.5000 3.7425e+02 0.91614000 1.24320000 2453.7 1651.3000 8.0235e+02 #> 1125 2021.2000 -2.6578e+02 -0.66938000 -0.68080000 1755.4 1604.8000 1.5065e+02 #> 1126 1910.6000 1.8750e+02 0.49956000 0.76713000 2098.1 1516.9000 5.8119e+02 #> 1127 1807.5000 -3.7510e+01 -0.10564000 0.03601200 1770.0 1435.7000 3.3428e+02 #> 1128 1711.4000 1.1502e+02 0.34212000 0.60410000 1826.4 1360.6000 4.6576e+02 #> 1129 1621.7000 9.3877e+01 0.29467000 0.55678000 1715.6 1291.2000 4.2443e+02 #> 1130 1460.0000 2.7416e+02 0.95587000 1.40070000 1734.2 1167.3000 5.6693e+02 #> 1131 1196.4000 6.0439e+01 0.25716000 0.53460000 1256.8 969.0700 2.8773e+02 #> 1132 995.3400 3.8166e+02 1.95190000 2.58450000 1377.0 821.0200 5.5598e+02 #> 1133 722.2100 -2.5131e+02 -1.77140000 -1.90040000 470.9 622.5300 -1.5163e+02 #> 1134 556.7500 -3.7549e+01 -0.34331000 -0.31560000 519.2 500.6600 1.8537e+01 #> 1135 452.2200 -1.3821e+01 -0.15558000 -0.17080000 438.4 419.5400 1.8858e+01 #> 1136 382.5800 3.9624e+01 0.52723000 0.46405000 422.2 360.9500 6.1247e+01 #> 1137 266.4400 1.7859e+01 0.34120000 0.27279000 284.3 247.0800 3.7222e+01 #> 1138 201.6000 -6.4501e+01 -1.62870000 -1.55200000 137.1 174.9500 -3.7855e+01 #> 1139 155.6100 6.5916e+00 0.21563000 0.34967000 162.2 124.6500 3.7555e+01 #> 1140 120.6700 2.4426e+01 1.03040000 1.28380000 145.1 88.9240 5.6176e+01 #> 1141 158.6000 -1.5860e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1142 151.5300 5.6167e+01 1.88680000 2.01560000 207.7 145.8600 6.1842e+01 #> 1143 144.9300 -1.7326e+01 -0.60857000 -0.50832000 127.6 141.6500 -1.4053e+01 #> 1144 138.7400 -2.4342e+01 -0.89312000 -0.83229000 114.4 137.6100 -2.3212e+01 #> 1145 132.9500 3.1748e+01 1.21560000 1.13340000 164.7 133.7300 3.0971e+01 #> 1146 122.4400 -2.1742e+01 -0.90391000 -0.94873000 100.7 126.4100 -2.5709e+01 #> 1147 113.2000 -4.8986e+00 -0.22029000 -0.37206000 108.3 119.6400 -1.1344e+01 #> 1148 105.0500 -1.8551e+01 -0.89892000 -1.02420000 86.5 113.3900 -2.6887e+01 #> 1149 97.8510 -1.8151e+01 -0.94425000 -1.08420000 79.7 107.6000 -2.7898e+01 #> 1150 85.8040 -1.0040e+00 -0.05956300 -0.32594000 84.8 97.2730 -1.2473e+01 #> 1151 68.5410 -9.0405e+00 -0.67143000 -0.81013000 59.5 80.7560 -2.1256e+01 #> 1152 57.0560 1.2444e+01 1.11030000 0.76856000 69.5 68.4180 1.0816e+00 #> 1153 42.8350 6.5123e-02 0.00773920 -0.05375600 42.9 51.8770 -8.9774e+00 #> 1154 33.9920 -3.9920e+00 -0.59781000 -0.54985000 30.0 41.7220 -1.1722e+01 #> 1155 27.5830 6.3172e+00 1.16580000 0.66798000 33.9 34.9620 -1.0618e+00 #> 1156 22.5730 -1.0730e+00 -0.24197000 -0.46479000 21.5 30.0790 -8.5795e+00 #> 1157 12.5250 3.5751e+00 1.45300000 0.22149000 16.1 20.5900 -4.4898e+00 #> 1158 6.9680 6.3201e-01 0.46171000 -0.49510000 7.6 14.5800 -6.9796e+00 #> 1159 3.8770 -8.7704e-01 -1.15150000 -1.19680000 3.0 10.3870 -7.3871e+00 #> 1160 2.1583 -5.8280e-02 -0.13746000 -0.78187000 2.1 7.4103 -5.3103e+00 #> 1161 1411.3000 -1.4113e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1162 1349.0000 9.8524e+01 0.37179000 1.33840000 1447.5 875.1500 5.7235e+02 #> 1163 1289.9000 -8.9453e+01 -0.35303000 0.15137000 1200.4 849.9200 3.5048e+02 #> 1164 1233.7000 -3.7392e+02 -1.54280000 -1.68920000 859.8 825.6700 3.4125e+01 #> 1165 1180.4000 -2.1762e+02 -0.93847000 -0.82604000 962.8 802.3800 1.6042e+02 #> 1166 1081.8000 3.3105e+02 1.55780000 2.62580000 1412.8 758.4600 6.5434e+02 #> 1167 992.7700 9.1733e+01 0.47036000 0.95211000 1084.5 717.8600 3.6664e+02 #> 1168 912.4900 1.7711e+01 0.09880300 0.34298000 930.2 680.3200 2.4988e+02 #> 1169 840.0400 3.3426e+02 2.02550000 2.64630000 1174.3 645.5900 5.2871e+02 #> 1170 715.5900 5.1214e+01 0.36432000 0.39280000 766.8 583.6400 1.8316e+02 #> 1171 530.9300 -1.0053e+02 -0.96389000 -1.18270000 430.4 484.5400 -5.4136e+01 #> 1172 406.9300 -2.1732e+01 -0.27185000 -0.58782000 385.2 410.5100 -2.5310e+01 #> 1173 264.7200 -1.1020e+01 -0.21192000 -0.59315000 253.7 311.2600 -5.7564e+01 #> 1174 194.6500 -5.7482e+00 -0.15033000 -0.52163000 188.9 250.3300 -6.1432e+01 #> 1175 156.3400 1.0761e+01 0.35037000 -0.12044000 167.1 209.7700 -4.2671e+01 #> 1176 132.4600 -3.2554e+00 -0.12511000 -0.38704000 129.2 180.4800 -5.1277e+01 #> 1177 91.0930 -7.3934e+00 -0.41316000 -0.44977000 83.7 123.5400 -3.9839e+01 #> 1178 65.4360 2.6363e-01 0.02050800 -0.05061600 65.7 87.4770 -2.1777e+01 #> 1179 47.2340 1.6466e+01 1.77460000 1.28260000 63.7 62.3230 1.3774e+00 #> 1180 34.1220 -7.2217e+00 -1.07740000 -0.72690000 26.9 44.4620 -1.7562e+01 #> 1181 1880.3000 -1.8803e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1182 1810.7000 -1.2476e+02 -0.35074000 -0.30543000 1685.9 1750.3000 -6.4390e+01 #> 1183 1744.7000 3.0459e+02 0.88870000 0.88431000 2049.3 1699.8000 3.4947e+02 #> 1184 1682.3000 -1.2715e+02 -0.38476000 -0.38941000 1555.1 1651.3000 -9.6249e+01 #> 1185 1623.1000 1.2670e+02 0.39738000 0.34940000 1749.8 1604.8000 1.4505e+02 #> 1186 1513.9000 -2.7932e+02 -0.93918000 -0.98093000 1234.6 1516.9000 -2.8231e+02 #> 1187 1415.8000 2.5151e+02 0.90431000 0.75807000 1667.3 1435.7000 2.3158e+02 #> 1188 1327.5000 2.1792e+02 0.83565000 0.66460000 1545.4 1360.6000 1.8476e+02 #> 1189 1247.9000 2.1589e+02 0.88066000 0.68719000 1463.8 1291.2000 1.7263e+02 #> 1190 1111.2000 -6.9816e+01 -0.31982000 -0.45521000 1041.4 1167.3000 -1.2587e+02 #> 1191 906.7800 -4.5428e+02 -2.55020000 -2.49560000 452.5 969.0700 -5.1657e+02 #> 1192 765.3900 -1.0319e+02 -0.68632000 -0.70505000 662.2 821.0200 -1.5882e+02 #> 1193 588.3700 -7.2569e+01 -0.62785000 -0.52916000 515.8 622.5300 -1.0673e+02 #> 1194 481.8300 2.1472e+01 0.22685000 0.33866000 503.3 500.6600 2.6365e+00 #> 1195 407.3600 7.7139e+01 0.96394000 1.02070000 484.5 419.5400 6.4958e+01 #> 1196 349.5900 -8.1945e+00 -0.11932000 -0.02513500 341.4 360.9500 -1.9553e+01 #> 1197 227.1800 7.3719e+01 1.65180000 1.26490000 300.9 247.0800 5.3822e+01 #> 1198 148.8400 -4.3640e-01 -0.01492600 -0.26165000 148.4 174.9500 -2.6555e+01 #> 1199 97.5780 -7.0777e+00 -0.36923000 -0.59702000 90.5 124.6500 -3.4145e+01 #> 1200 63.9990 -1.9987e+00 -0.15898000 -0.50201000 62.0 88.9240 -2.6924e+01 #> 1201 161.4100 -1.6141e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1202 155.4200 1.3084e+01 0.42855000 0.53067000 168.5 145.8600 2.2642e+01 #> 1203 149.6800 1.4516e+01 0.49367000 0.56932000 164.2 141.6500 2.2547e+01 #> 1204 144.2000 -1.8598e+01 -0.65653000 -0.60804000 125.6 137.6100 -1.2012e+01 #> 1205 138.9500 1.3854e+01 0.50754000 0.53037000 152.8 133.7300 1.9071e+01 #> 1206 129.1100 -4.6308e+01 -1.82580000 -1.80310000 82.8 126.4100 -4.3609e+01 #> 1207 120.0900 3.0410e+01 1.28900000 1.18480000 150.5 119.6400 3.0856e+01 #> 1208 111.8200 -2.0923e+01 -0.95245000 -0.99523000 90.9 113.3900 -2.2487e+01 #> 1209 104.2400 1.8059e+01 0.88191000 0.69246000 122.3 107.6000 1.4702e+01 #> 1210 90.9010 -9.0144e-01 -0.05048000 -0.23511000 90.0 97.2730 -7.2727e+00 #> 1211 70.1670 -9.6693e-01 -0.07014800 -0.34806000 69.2 80.7560 -1.1556e+01 #> 1212 55.3330 8.1667e+00 0.75130000 0.21524000 63.5 68.4180 -4.9184e+00 #> 1213 36.8080 -9.9079e+00 -1.37020000 -1.39910000 26.9 51.8770 -2.4977e+01 #> 1214 26.6680 1.5316e+00 0.29235000 -0.33578000 28.2 41.7220 -1.3522e+01 #> 1215 20.7180 4.8169e-01 0.11835000 -0.46556000 21.2 34.9620 -1.3762e+01 #> 1216 16.9150 9.8462e-01 0.29631000 -0.35667000 17.9 30.0790 -1.2179e+01 #> 1217 10.6480 -5.4832e-01 -0.26213000 -0.55191000 10.1 20.5900 -1.0490e+01 #> 1218 7.1844 1.1557e-01 0.08188800 -0.21192000 7.3 14.5800 -7.2796e+00 #> 1219 4.9061 -6.1498e-03 -0.00638080 -0.11851000 4.9 10.3870 -5.4871e+00 #> 1220 3.3581 4.4189e-01 0.66984000 0.34499000 3.8 7.4103 -3.6103e+00 #> 1221 518.5300 -5.1853e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1222 504.1000 2.1499e+01 0.21710000 0.24440000 525.6 437.5700 8.8027e+01 #> 1223 490.2100 -6.0410e+01 -0.62731000 -0.67475000 429.8 424.9600 4.8414e+00 #> 1224 476.8400 5.4963e+01 0.58676000 0.67547000 531.8 412.8400 1.1896e+02 #> 1225 463.9600 1.8140e+01 0.19903000 0.25714000 482.1 401.1900 8.0912e+01 #> 1226 439.6200 7.3381e+01 0.84970000 1.00590000 513.0 379.2300 1.3377e+02 #> 1227 417.0400 -1.2340e+01 -0.15063000 -0.09701200 404.7 358.9300 4.5769e+01 #> 1228 396.0900 -2.8388e+01 -0.36484000 -0.32425000 367.7 340.1600 2.7539e+01 #> 1229 376.6400 7.7620e+00 0.10491000 0.22482000 384.4 322.7900 6.1607e+01 #> 1230 341.7900 -3.4189e+01 -0.50919000 -0.45365000 307.6 291.8200 1.5782e+01 #> 1231 285.5900 1.3601e+02 2.42430000 3.00140000 421.6 242.2700 1.7933e+02 #> 1232 243.2500 -4.5448e+01 -0.95110000 -0.92424000 197.8 205.2600 -7.4551e+00 #> 1233 186.1200 -1.4423e+01 -0.39448000 -0.27367000 171.7 155.6300 1.6068e+01 #> 1234 151.1400 -1.0037e+01 -0.33805000 -0.23728000 141.1 125.1700 1.5934e+01 #> 1235 128.1700 5.5315e+00 0.21969000 0.38140000 133.7 104.8900 2.8814e+01 #> 1236 111.8900 2.0610e+01 0.93766000 1.19460000 132.5 90.2380 4.2262e+01 #> 1237 80.9250 -1.0425e+01 -0.65577000 -0.71085000 70.5 61.7700 8.7305e+00 #> 1238 61.0010 2.5988e+00 0.21686000 0.34090000 63.6 43.7390 1.9861e+01 #> 1239 46.3540 3.6456e+00 0.40035000 0.57373000 50.0 31.1610 1.8839e+01 #> 1240 35.2860 2.6140e+00 0.37711000 0.53558000 37.9 22.2310 1.5669e+01 #> 1241 321.0900 -3.2109e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1242 315.5800 -1.9679e+01 -0.31743000 -0.60219000 295.9 437.5700 -1.4167e+02 #> 1243 310.2600 9.7335e+01 1.59700000 0.81909000 407.6 424.9600 -1.7359e+01 #> 1244 305.1500 -4.4445e+01 -0.74144000 -0.89303000 260.7 412.8400 -1.5214e+02 #> 1245 300.2100 5.8089e+01 0.98497000 0.40424000 358.3 401.1900 -4.2888e+01 #> 1246 290.8700 -2.9370e+01 -0.51400000 -0.69287000 261.5 379.2300 -1.1773e+02 #> 1247 282.1800 -9.4385e+01 -1.70260000 -1.58250000 187.8 358.9300 -1.7113e+02 #> 1248 274.1000 -5.6703e+01 -1.05310000 -1.07040000 217.4 340.1600 -1.2276e+02 #> 1249 266.5800 4.0523e+01 0.77381000 0.38015000 307.1 322.7900 -1.5693e+01 #> 1250 253.0200 -6.0116e+01 -1.20950000 -1.15620000 192.9 291.8200 -9.8918e+01 #> 1251 230.8300 4.9369e+01 1.08870000 0.83879000 280.2 242.2700 3.7932e+01 #> 1252 213.6600 -4.3564e+01 -1.03790000 -0.93502000 170.1 205.2600 -3.5155e+01 #> 1253 189.1700 8.3098e-01 0.02236100 0.15487000 190.0 155.6300 3.4368e+01 #> 1254 172.4700 1.0134e+01 0.29911000 0.55726000 182.6 125.1700 5.7434e+01 #> 1255 159.9500 5.4751e+01 1.74250000 2.32420000 214.7 104.8900 1.0981e+02 #> 1256 149.7700 -2.8073e+01 -0.95415000 -0.81280000 121.7 90.2380 3.1462e+01 #> 1257 125.8500 8.5470e+00 0.34570000 0.94803000 134.4 61.7700 7.2630e+01 #> 1258 106.7800 1.7220e+01 0.82094000 1.86220000 124.0 43.7390 8.0261e+01 #> 1259 90.7330 5.2667e+00 0.29548000 0.82015000 96.0 31.1610 6.4839e+01 #> 1260 77.1270 9.2732e+00 0.61204000 1.43900000 86.4 22.2310 6.4169e+01 #> 1261 1023.6000 -1.0236e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1262 979.9000 -2.4140e+02 -1.25400000 -1.03310000 738.5 875.1500 -1.3665e+02 #> 1263 938.6700 2.7853e+02 1.51050000 1.82520000 1217.2 849.9200 3.6728e+02 #> 1264 899.7300 -1.1803e+02 -0.66781000 -0.51269000 781.7 825.6700 -4.3975e+01 #> 1265 862.9600 2.0814e+02 1.22780000 1.38400000 1071.1 802.3800 2.6872e+02 #> 1266 795.3600 -2.9664e+01 -0.18985000 -0.16015000 765.7 758.4600 7.2437e+00 #> 1267 734.9500 -1.8855e+02 -1.30590000 -1.32750000 546.4 717.8600 -1.7146e+02 #> 1268 680.8800 2.7324e+01 0.20428000 0.07447300 708.2 680.3200 2.7879e+01 #> 1269 632.4200 -6.8216e+01 -0.54909000 -0.69077000 564.2 645.5900 -8.1386e+01 #> 1270 549.8200 4.1180e+01 0.38126000 0.08105400 591.0 583.6400 7.3635e+00 #> 1271 428.1400 4.5758e+01 0.54404000 0.11474000 473.9 484.5400 -1.0636e+01 #> 1272 345.6700 7.1033e+01 1.04610000 0.47939000 416.7 410.5100 6.1898e+00 #> 1273 245.2500 -1.7852e+01 -0.37054000 -0.61530000 227.4 311.2600 -8.3864e+01 #> 1274 187.2600 -5.1562e+00 -0.14017000 -0.44603000 182.1 250.3300 -6.8232e+01 #> 1275 148.5400 1.5658e+01 0.53659000 -0.04926300 164.2 209.7700 -4.5571e+01 #> 1276 120.0100 1.8594e+01 0.78873000 0.00859550 138.6 180.4800 -4.1877e+01 #> 1277 65.4960 -9.3959e+00 -0.73027000 -1.03830000 56.1 123.5400 -6.7439e+01 #> 1278 36.1130 9.8718e-01 0.13915000 -0.69111000 37.1 87.4770 -5.0377e+01 #> 1279 19.9300 5.3705e+00 1.37170000 -0.24543000 25.3 62.3230 -3.7023e+01 #> 1280 11.0050 -5.1048e+00 -2.36130000 -1.46870000 5.9 44.4620 -3.8562e+01 #> 1281 2124.1000 -2.1241e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1282 2050.2000 7.5110e+01 0.18649000 0.34743000 2125.3 1750.3000 3.7501e+02 #> 1283 1979.4000 -2.6381e+01 -0.06784600 0.05205400 1953.0 1699.8000 2.5317e+02 #> 1284 1911.5000 -5.5823e+01 -0.14866000 -0.04861200 1855.7 1651.3000 2.0435e+02 #> 1285 1846.5000 -6.1286e+01 -0.16895000 -0.08135100 1785.2 1604.8000 1.8045e+02 #> 1286 1724.4000 -3.3947e+00 -0.01002100 0.07338600 1721.0 1516.9000 2.0409e+02 #> 1287 1612.2000 3.1241e+02 0.98642000 1.13400000 1924.6 1435.7000 4.8888e+02 #> 1288 1509.0000 4.8856e+02 1.64810000 1.81350000 1997.6 1360.6000 6.3696e+02 #> 1289 1414.2000 -3.6478e+02 -1.31310000 -1.36230000 1049.4 1291.2000 -2.4177e+02 #> 1290 1246.6000 -1.4657e+02 -0.59853000 -0.62121000 1100.0 1167.3000 -6.7273e+01 #> 1291 983.7100 -2.0321e+02 -1.05150000 -1.08600000 780.5 969.0700 -1.8857e+02 #> 1292 793.1500 3.1765e+02 2.03870000 1.77250000 1110.8 821.0200 2.8978e+02 #> 1293 550.0000 -2.2600e+01 -0.20917000 -0.36079000 527.4 622.5300 -9.5129e+01 #> 1294 412.2100 -3.2407e+01 -0.40020000 -0.55213000 379.8 500.6600 -1.2086e+02 #> 1295 328.1500 2.6955e+01 0.41814000 0.02946200 355.1 419.5400 -6.4442e+01 #> 1296 272.3100 -6.8007e+01 -1.27130000 -1.19620000 204.3 360.9500 -1.5665e+02 #> 1297 175.3500 1.1549e+01 0.33527000 -0.04723500 186.9 247.0800 -6.0178e+01 #> 1298 119.5300 6.7696e+00 0.28830000 -0.03057200 126.3 174.9500 -4.8655e+01 #> 1299 82.3090 1.9591e+01 1.21160000 0.60191000 101.9 124.6500 -2.2745e+01 #> 1300 56.7950 -1.2095e+01 -1.08400000 -0.76849000 44.7 88.9240 -4.4224e+01 #> 1301 106.4400 -1.0644e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1302 102.9900 -8.7909e+00 -0.43450000 -0.61270000 94.2 145.8600 -5.1658e+01 #> 1303 99.7010 -8.9014e+00 -0.45448000 -0.64807000 90.8 141.6500 -5.0853e+01 #> 1304 96.5600 -4.2599e+00 -0.22457000 -0.50244000 92.3 137.6100 -4.5312e+01 #> 1305 93.5590 8.3412e+00 0.45384000 -0.03388700 101.9 133.7300 -3.1829e+01 #> 1306 87.9490 -3.6492e+00 -0.21121000 -0.54804000 84.3 126.4100 -4.2109e+01 #> 1307 82.8190 -3.3190e+00 -0.20400000 -0.57516000 79.5 119.6400 -4.0144e+01 #> 1308 78.1200 2.8797e+00 0.18764000 -0.32528000 81.0 113.3900 -3.2387e+01 #> 1309 73.8100 -4.5102e+00 -0.31106000 -0.70552000 69.3 107.6000 -3.8298e+01 #> 1310 66.2060 -5.6062e+00 -0.43105000 -0.83171000 60.6 97.2730 -3.6673e+01 #> 1311 54.2180 2.4823e+00 0.23306000 -0.42563000 56.7 80.7560 -2.4056e+01 #> 1312 45.3210 1.1579e+01 1.30060000 0.26037000 56.9 68.4180 -1.1518e+01 #> 1313 33.1850 2.7152e+00 0.41650000 -0.39794000 35.9 51.8770 -1.5977e+01 #> 1314 25.3230 9.1767e+00 1.84470000 0.39334000 34.5 41.7220 -7.2220e+00 #> 1315 19.7790 2.2213e+00 0.57171000 -0.46354000 22.0 34.9620 -1.2962e+01 #> 1316 15.6410 -3.5414e+00 -1.15250000 -1.45500000 12.1 30.0790 -1.7979e+01 #> 1317 7.9538 4.4618e-01 0.28555000 -0.87212000 8.4 20.5900 -1.2190e+01 #> 1318 4.0868 -5.8683e-01 -0.73094000 -1.27640000 3.5 14.5800 -1.1080e+01 #> 1319 2.1027 -4.0273e-01 -0.97496000 -1.26570000 1.7 10.3870 -8.6871e+00 #> 1320 1.0827 1.1732e-01 0.55163000 -0.74801000 1.2 7.4103 -6.2103e+00 #> 1321 793.2900 -7.9329e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1322 763.1800 -2.5648e+02 -1.71070000 -1.44130000 506.7 875.1500 -3.6845e+02 #> 1323 734.8300 7.9739e+00 0.05523900 0.01510400 742.8 849.9200 -1.0712e+02 #> 1324 708.1100 -3.9412e+01 -0.28333000 -0.30810000 668.7 825.6700 -1.5697e+02 #> 1325 682.9300 2.3257e+02 1.73350000 1.34590000 915.5 802.3800 1.1312e+02 #> 1326 636.7600 2.2636e+01 0.18096000 -0.01161000 659.4 758.4600 -9.9056e+01 #> 1327 595.6000 -1.8497e+01 -0.15809000 -0.33604000 577.1 717.8600 -1.4076e+02 #> 1328 558.8000 -5.1696e+01 -0.47094000 -0.62405000 507.1 680.3200 -1.7322e+02 #> 1329 525.8100 -1.0031e+02 -0.97112000 -1.05310000 425.5 645.5900 -2.2009e+02 #> 1330 469.4300 9.4170e+01 1.02120000 0.55483000 563.6 583.6400 -2.0036e+01 #> 1331 385.1600 -3.8362e+01 -0.50700000 -0.65838000 346.8 484.5400 -1.3774e+02 #> 1332 325.8700 -3.9472e+01 -0.61660000 -0.68496000 286.4 410.5100 -1.2411e+02 #> 1333 247.5000 -7.4500e+01 -1.53230000 -1.32330000 173.0 311.2600 -1.3826e+02 #> 1334 196.0100 1.9294e+01 0.50109000 0.20158000 215.3 250.3300 -3.5032e+01 #> 1335 157.9900 7.0206e+01 2.26200000 1.27580000 228.2 209.7700 1.8429e+01 #> 1336 128.2700 5.7298e+00 0.22739000 -0.28845000 134.0 180.4800 -4.6477e+01 #> 1337 69.4180 -9.6176e+00 -0.70527000 -1.12730000 59.8 123.5400 -6.3739e+01 #> 1338 37.6700 1.1830e+01 1.59870000 -0.21571000 49.5 87.4770 -3.7977e+01 #> 1339 20.4450 -9.4477e-01 -0.23524000 -1.03350000 19.5 62.3230 -4.2823e+01 #> 1340 11.1020 -4.8020e+00 -2.20180000 -1.63900000 6.3 44.4620 -3.8162e+01 #> 1341 1607.9000 -1.6079e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1342 1567.6000 -9.0940e+01 -0.29530000 -0.22315000 1476.7 1750.3000 -2.7359e+02 #> 1343 1529.3000 -3.5544e+02 -1.18310000 -0.99925000 1173.9 1699.8000 -5.2593e+02 #> 1344 1492.9000 -5.1735e+02 -1.76410000 -1.51370000 975.5 1651.3000 -6.7585e+02 #> 1345 1458.1000 3.5914e+01 0.12538000 0.14577000 1494.0 1604.8000 -1.1075e+02 #> 1346 1393.3000 -6.9626e+01 -0.25438000 -0.18527000 1323.7 1516.9000 -1.9321e+02 #> 1347 1334.4000 4.1285e+02 1.57500000 1.47560000 1747.2 1435.7000 3.1148e+02 #> 1348 1280.5000 -2.0674e+02 -0.82183000 -0.68802000 1073.8 1360.6000 -2.8684e+02 #> 1349 1231.3000 -1.9362e+02 -0.80046000 -0.66323000 1037.7 1291.2000 -2.5347e+02 #> 1350 1144.8000 6.8325e+01 0.30382000 0.40717000 1213.1 1167.3000 4.5827e+01 #> 1351 1008.5000 -1.6871e+02 -0.85156000 -0.66503000 839.8 969.0700 -1.2927e+02 #> 1352 906.4500 -4.1520e+00 -0.02331700 0.24983000 902.3 821.0200 8.1280e+01 #> 1353 761.6800 6.1212e+02 4.09090000 5.15170000 1373.8 622.5300 7.5127e+02 #> 1354 659.0300 -1.0163e+02 -0.78498000 -0.61390000 557.4 500.6600 5.6737e+01 #> 1355 577.9400 -5.2242e+01 -0.46014000 -0.30593000 525.7 419.5400 1.0616e+02 #> 1356 509.9000 1.1040e+02 1.10220000 1.57790000 620.3 360.9500 2.5935e+02 #> 1357 353.9600 2.6339e+01 0.37879000 0.28013000 380.3 247.0800 1.3322e+02 #> 1358 246.4700 3.6530e+01 0.75446000 0.43544000 283.0 174.9500 1.0805e+02 #> 1359 171.6700 -3.0966e+01 -0.91824000 -1.60980000 140.7 124.6500 1.6055e+01 #> 1360 119.6000 -2.0503e+01 -0.87265000 -1.54060000 99.1 88.9240 1.0176e+01 #> 1361 490.2600 -4.9026e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1362 475.5800 -1.8476e+01 -0.19776000 -0.15885000 457.1 437.5700 1.9527e+01 #> 1363 461.4400 2.5659e+01 0.28307000 0.33846000 487.1 424.9600 6.2141e+01 #> 1364 447.8300 -1.4531e+01 -0.16517000 -0.12763000 433.3 412.8400 2.0463e+01 #> 1365 434.7300 -1.0073e+02 -1.17950000 -1.18450000 334.0 401.1900 -6.7188e+01 #> 1366 409.9600 -4.5359e+01 -0.56322000 -0.54709000 364.6 379.2300 -1.4628e+01 #> 1367 386.9900 9.6012e+01 1.26290000 1.35780000 483.0 358.9300 1.2407e+02 #> 1368 365.6800 3.9214e+00 0.05458800 0.09197800 369.6 340.1600 2.9439e+01 #> 1369 345.9000 4.5496e+01 0.66953000 0.73211000 391.4 322.7900 6.8607e+01 #> 1370 310.5100 1.0389e+02 1.70330000 1.80290000 414.4 291.8200 1.2258e+02 #> 1371 253.5700 2.2911e-01 0.00459950 0.01378700 253.8 242.2700 1.1532e+01 #> 1372 210.9200 -4.6161e+00 -0.11141000 -0.11938000 206.3 205.2600 1.0449e+00 #> 1373 154.1400 -3.2441e+00 -0.10713000 -0.13521000 150.9 155.6300 -4.7322e+00 #> 1374 120.3900 -4.2788e+01 -1.80920000 -1.72110000 77.6 125.1700 -4.7566e+01 #> 1375 99.1380 -2.7638e+01 -1.41910000 -1.31520000 71.5 104.8900 -3.3386e+01 #> 1376 84.8010 2.3899e+01 1.43460000 1.24920000 108.7 90.2380 1.8462e+01 #> 1377 59.6830 -9.7831e+00 -0.83441000 -0.65633000 49.9 61.7700 -1.1870e+01 #> 1378 44.6760 2.3242e+00 0.26483000 0.41853000 47.0 43.7390 3.2613e+00 #> 1379 33.8700 8.3010e-01 0.12476000 0.36873000 34.7 31.1610 3.5387e+00 #> 1380 25.7480 4.5520e+00 0.89994000 1.13420000 30.3 22.2310 8.0691e+00 #> 1381 304.0300 -3.0403e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1382 297.6900 -7.2850e+00 -0.12458000 -0.53372000 290.4 437.5700 -1.4717e+02 #> 1383 291.5200 3.1581e+01 0.55146000 -0.04207200 323.1 424.9600 -1.0186e+02 #> 1384 285.5300 -3.8725e+01 -0.69041000 -0.91091000 246.8 412.8400 -1.6604e+02 #> 1385 279.7000 -6.8990e+00 -0.12556000 -0.49638000 272.8 401.1900 -1.2839e+02 #> 1386 268.5300 -3.4528e+01 -0.65454000 -0.85564000 234.0 379.2300 -1.4523e+02 #> 1387 257.9700 3.6334e+01 0.71698000 0.16615000 294.3 358.9300 -6.4631e+01 #> 1388 247.9800 -8.4784e+00 -0.17404000 -0.46513000 239.5 340.1600 -1.0066e+02 #> 1389 238.5300 7.2170e+01 1.54020000 0.83428000 310.7 322.7900 -1.2093e+01 #> 1390 221.1300 -4.4427e+01 -1.02270000 -1.05650000 176.7 291.8200 -1.1512e+02 #> 1391 191.5100 4.3489e+01 1.15590000 0.69121000 235.0 242.2700 -7.2681e+00 #> 1392 167.5600 -7.1460e+01 -2.17100000 -1.92950000 96.1 205.2600 -1.0916e+02 #> 1393 132.0600 -1.3161e+01 -0.50730000 -0.55870000 118.9 155.6300 -3.6732e+01 #> 1394 107.7800 3.0321e+01 1.43210000 1.08580000 138.1 125.1700 1.2934e+01 #> 1395 90.5420 -1.1442e+01 -0.64328000 -0.68946000 79.1 104.8900 -2.5786e+01 #> 1396 77.8010 -9.8012e+00 -0.64128000 -0.69745000 68.0 90.2380 -2.2238e+01 #> 1397 53.6720 -1.7239e-01 -0.01635000 -0.15590000 53.5 61.7700 -8.2695e+00 #> 1398 39.2430 -1.9425e+00 -0.25198000 -0.27000000 37.3 43.7390 -6.4387e+00 #> 1399 29.2270 -2.0271e+00 -0.35307000 -0.24881000 27.2 31.1610 -3.9613e+00 #> 1400 21.8950 4.8050e+00 1.11710000 1.06780000 26.7 22.2310 4.4691e+00 #> 1401 810.9800 -8.1098e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1402 790.4300 1.5767e+02 1.01540000 0.67152000 948.1 875.1500 7.2955e+01 #> 1403 770.6800 -1.0968e+02 -0.72445000 -0.84324000 661.0 849.9200 -1.8892e+02 #> 1404 751.6800 3.1316e+01 0.21207000 -0.01361400 783.0 825.6700 -4.2675e+01 #> 1405 733.4200 5.5083e+01 0.38232000 0.14518000 788.5 802.3800 -1.3876e+01 #> 1406 698.9500 1.3895e+02 1.01200000 0.72427000 837.9 758.4600 7.9444e+01 #> 1407 667.0400 -2.5424e+00 -0.01940200 -0.18054000 664.5 717.8600 -5.3362e+01 #> 1408 637.5000 -2.7499e+01 -0.21958000 -0.34725000 610.0 680.3200 -7.0321e+01 #> 1409 610.1300 -8.9626e+01 -0.74777000 -0.81642000 520.5 645.5900 -1.2509e+02 #> 1410 561.2100 1.1509e+02 1.04400000 0.86288000 676.3 583.6400 9.2664e+01 #> 1411 482.6200 -1.6912e+02 -1.78380000 -1.75500000 313.5 484.5400 -1.7104e+02 #> 1412 423.5500 3.6504e+00 0.04387300 0.04142800 427.2 410.5100 1.6690e+01 #> 1413 343.5300 3.4474e+01 0.51084000 0.61069000 378.0 311.2600 6.6736e+01 #> 1414 293.4600 -4.3665e+01 -0.75741000 -0.67792000 249.8 250.3300 -5.3174e-01 #> 1415 259.2900 -5.6388e+01 -1.10700000 -1.05680000 202.9 209.7700 -6.8711e+00 #> 1416 233.8100 3.0089e+01 0.65508000 1.00790000 263.9 180.4800 8.3423e+01 #> 1417 180.6900 -1.4989e+01 -0.42228000 -0.22794000 165.7 123.5400 4.2161e+01 #> 1418 142.9100 1.8390e+01 0.65504000 1.25360000 161.3 87.4770 7.3823e+01 #> 1419 113.4700 2.8331e+01 1.27100000 2.19110000 141.8 62.3230 7.9477e+01 #> 1420 90.1670 -1.2667e+00 -0.07151300 0.11106000 88.9 44.4620 4.4438e+01 #> 1421 251.5200 -2.5152e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1422 242.1100 2.2992e+01 0.48342000 1.56810000 265.1 145.8600 1.1924e+02 #> 1423 233.1800 -2.3780e+01 -0.51913000 -0.18902000 209.4 141.6500 6.7747e+01 #> 1424 224.7100 -7.8211e+01 -1.77170000 -2.33960000 146.5 137.6100 8.8876e+00 #> 1425 216.6800 2.4523e+01 0.57612000 1.58780000 241.2 133.7300 1.0747e+02 #> 1426 201.8200 -4.9223e+01 -1.24150000 -1.48910000 152.6 126.4100 2.6191e+01 #> 1427 188.4400 5.2255e+01 1.41160000 2.78960000 240.7 119.6400 1.2106e+02 #> 1428 176.3900 1.0151e+02 2.92950000 5.12060000 277.9 113.3900 1.6451e+02 #> 1429 165.5200 -8.1201e+00 -0.24973000 0.03295400 157.4 107.6000 4.9802e+01 #> 1430 146.8600 -5.1589e+00 -0.17882000 0.10285000 141.7 97.2730 4.4427e+01 #> 1431 119.1400 -1.8038e+01 -0.77072000 -0.77985000 101.1 80.7560 2.0344e+01 #> 1432 100.3700 -8.8742e+00 -0.45005000 -0.27417000 91.5 68.4180 2.3082e+01 #> 1433 78.2060 -1.6406e+01 -1.06790000 -1.08250000 61.8 51.8770 9.9226e+00 #> 1434 66.3190 -1.8219e+01 -1.39840000 -1.58000000 48.1 41.7220 6.3780e+00 #> 1435 58.8890 2.8011e+01 2.42130000 4.89360000 86.9 34.9620 5.1938e+01 #> 1436 53.4890 -4.8894e+00 -0.46531000 -0.04102000 48.6 30.0790 1.8521e+01 #> 1437 41.8700 -7.3700e+00 -0.89602000 -1.10300000 34.5 20.5900 1.3910e+01 #> 1438 33.2100 5.1901e+00 0.79554000 2.29470000 38.4 14.5800 2.3820e+01 #> 1439 26.3720 1.7276e+00 0.33347000 0.97690000 28.1 10.3870 1.7713e+01 #> 1440 20.9490 2.3512e+00 0.57132000 1.13810000 23.3 7.4103 1.5890e+01 #> 1441 487.1400 -4.8714e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1442 479.0100 -7.6110e+01 -0.80882000 -1.10540000 402.9 875.1500 -4.7225e+02 #> 1443 471.1000 -2.8898e+01 -0.31226000 -0.78934000 442.2 849.9200 -4.0772e+02 #> 1444 463.3900 -9.8793e+01 -1.08530000 -1.25570000 364.6 825.6700 -4.6107e+02 #> 1445 455.8900 1.8921e+02 2.11270000 0.74519000 645.1 802.3800 -1.5728e+02 #> 1446 441.4600 3.4438e+01 0.39710000 -0.29515000 475.9 758.4600 -2.8256e+02 #> 1447 427.7700 -1.3857e+02 -1.64900000 -1.57370000 289.2 717.8600 -4.2866e+02 #> 1448 414.7700 -1.8745e+00 -0.02300600 -0.51326000 412.9 680.3200 -2.6742e+02 #> 1449 402.4300 5.3696e+00 0.06792100 -0.43211000 407.8 645.5900 -2.3779e+02 #> 1450 379.5500 5.9447e+01 0.79729000 0.09704100 439.0 583.6400 -1.4464e+02 #> 1451 340.1200 -1.1815e+01 -0.17683000 -0.48891000 328.3 484.5400 -1.5624e+02 #> 1452 307.6100 5.8892e+01 0.97457000 0.39756000 366.5 410.5100 -4.4010e+01 #> 1453 257.9000 -3.3505e+01 -0.66131000 -0.73695000 224.4 311.2600 -8.6864e+01 #> 1454 222.2200 -2.7125e+01 -0.62134000 -0.67531000 195.1 250.3300 -5.5232e+01 #> 1455 195.5100 -4.6514e+01 -1.21110000 -1.15480000 149.0 209.7700 -6.0771e+01 #> 1456 174.6600 -9.4556e+00 -0.27559000 -0.33966000 165.2 180.4800 -1.5277e+01 #> 1457 131.2200 3.6811e+00 0.14280000 0.10632000 134.9 123.5400 1.1361e+01 #> 1458 102.0200 4.0802e+00 0.20359000 0.22953000 106.1 87.4770 1.8623e+01 #> 1459 80.1400 9.9600e+00 0.63266000 0.72711000 90.1 62.3230 2.7777e+01 #> 1460 63.1550 7.1448e+00 0.57589000 0.70905000 70.3 44.4620 2.5838e+01 #> 1461 185.4200 -1.8542e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1462 178.2000 1.8595e+01 0.53118000 0.78716000 196.8 145.8600 5.0942e+01 #> 1463 171.3200 -2.9423e+01 -0.87423000 -0.87163000 141.9 141.6500 2.4714e-01 #> 1464 164.7600 1.6143e+01 0.49875000 0.68653000 180.9 137.6100 4.3288e+01 #> 1465 158.4900 -1.8593e+01 -0.59718000 -0.58914000 139.9 133.7300 6.1706e+00 #> 1466 146.8100 1.9487e+01 0.67566000 0.79802000 166.3 126.4100 3.9891e+01 #> 1467 136.1800 2.3242e+00 0.08688100 0.09851200 138.5 119.6400 1.8856e+01 #> 1468 126.4800 3.4616e+01 1.39310000 1.45810000 161.1 113.3900 4.7713e+01 #> 1469 117.6500 4.8487e+00 0.20979000 0.15363000 122.5 107.6000 1.4902e+01 #> 1470 102.2500 1.1500e+00 0.05725000 -0.06495500 103.4 97.2730 6.1273e+00 #> 1471 78.7120 -8.7123e+00 -0.56344000 -0.72307000 70.0 80.7560 -1.0756e+01 #> 1472 62.2300 4.6698e+00 0.38199000 0.06737300 66.9 68.4180 -1.5184e+00 #> 1473 42.1460 -1.0546e+01 -1.27380000 -1.28490000 31.6 51.8770 -2.0277e+01 #> 1474 31.3750 -9.7478e-01 -0.15815000 -0.45355000 30.4 41.7220 -1.1322e+01 #> 1475 25.0410 4.1589e+00 0.84545000 0.23440000 29.2 34.9620 -5.7618e+00 #> 1476 20.8990 4.4015e+00 1.07210000 0.39081000 25.3 30.0790 -4.7795e+00 #> 1477 13.6260 -2.8260e+00 -1.05570000 -0.90700000 10.8 20.5900 -9.7898e+00 #> 1478 9.3156 -5.1556e-01 -0.28173000 -0.28069000 8.8 14.5800 -5.7796e+00 #> 1479 6.4120 -1.3120e+00 -1.04160000 -0.63384000 5.1 10.3870 -5.2871e+00 #> 1480 4.4190 1.0810e+00 1.24520000 0.82785000 5.5 7.4103 -1.9103e+00 #> 1481 1785.8000 -1.7858e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1482 1722.8000 -4.3160e+02 -1.27530000 -1.14050000 1291.2 1750.3000 -4.5909e+02 #> 1483 1662.6000 -1.2488e+02 -0.38237000 -0.32467000 1537.7 1699.8000 -1.6213e+02 #> 1484 1605.0000 4.7576e+02 1.50890000 1.41850000 2080.8 1651.3000 4.2945e+02 #> 1485 1550.0000 -1.6385e+02 -0.53809000 -0.51741000 1386.2 1604.8000 -2.1855e+02 #> 1486 1447.2000 -2.7362e+00 -0.00962430 -0.07249800 1444.5 1516.9000 -7.2413e+01 #> 1487 1353.3000 -8.1505e+00 -0.03065900 -0.13480000 1345.1 1435.7000 -9.0623e+01 #> 1488 1267.3000 2.1832e+02 0.87697000 0.64737000 1485.6 1360.6000 1.2496e+02 #> 1489 1188.6000 -9.1080e+01 -0.39008000 -0.53137000 1097.5 1291.2000 -1.9367e+02 #> 1490 1050.4000 2.9140e+02 1.41220000 0.99606000 1341.8 1167.3000 1.7453e+02 #> 1491 835.8200 -6.5520e+01 -0.39904000 -0.66371000 770.3 969.0700 -1.9877e+02 #> 1492 681.5100 -9.0407e+01 -0.67529000 -0.92011000 591.1 821.0200 -2.2992e+02 #> 1493 484.1100 -2.6509e+01 -0.27875000 -0.61070000 457.6 622.5300 -1.6493e+02 #> 1494 368.9300 9.5767e+01 1.32140000 0.54428000 464.7 500.6600 -3.5963e+01 #> 1495 294.8200 -5.5183e+00 -0.09528100 -0.45427000 289.3 419.5400 -1.3024e+02 #> 1496 242.5400 -3.6137e+01 -0.75846000 -0.88764000 206.4 360.9500 -1.5455e+02 #> 1497 145.3900 1.8313e+01 0.64120000 -0.07030600 163.7 247.0800 -8.3378e+01 #> 1498 89.9220 5.3776e+00 0.30442000 -0.32809000 95.3 174.9500 -7.9655e+01 #> 1499 55.8860 -1.8638e-01 -0.01697700 -0.51667000 55.7 124.6500 -6.8945e+01 #> 1500 34.7720 -5.7212e-01 -0.08375500 -0.54735000 34.2 88.9240 -5.4724e+01 #> 1501 1836.7000 -1.8367e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1502 1782.8000 8.8633e+01 0.25308000 0.18009000 1871.4 1750.3000 1.2111e+02 #> 1503 1731.0000 -1.2856e+02 -0.37807000 -0.43355000 1602.4 1699.8000 -9.7434e+01 #> 1504 1681.2000 1.2028e+02 0.36418000 0.29195000 1801.5 1651.3000 1.5015e+02 #> 1505 1633.5000 -2.2787e+02 -0.71011000 -0.75785000 1405.6 1604.8000 -1.9915e+02 #> 1506 1543.6000 5.4613e+02 1.80110000 1.71020000 2089.7 1516.9000 5.7279e+02 #> 1507 1460.6000 9.8570e+01 0.34353000 0.28187000 1559.2 1435.7000 1.2348e+02 #> 1508 1384.1000 -2.0017e+02 -0.73621000 -0.78207000 1183.9 1360.6000 -1.7674e+02 #> 1509 1313.4000 7.8735e+01 0.30517000 0.25234000 1392.1 1291.2000 1.0093e+02 #> 1510 1187.6000 3.1207e+01 0.13377000 0.08995700 1218.8 1167.3000 5.1527e+01 #> 1511 987.4000 -1.7740e+02 -0.91459000 -0.94580000 810.0 969.0700 -1.5907e+02 #> 1512 838.8200 -4.0717e+01 -0.24709000 -0.26426000 798.1 821.0200 -2.2920e+01 #> 1513 641.0900 1.6071e+02 1.27610000 1.29000000 801.8 622.5300 1.7927e+02 #> 1514 520.4600 1.5364e+00 0.01502700 0.03298700 522.0 500.6600 2.1337e+01 #> 1515 440.2200 -9.4716e+01 -1.09530000 -1.07260000 345.5 419.5400 -7.4042e+01 #> 1516 381.9900 4.5209e+01 0.60246000 0.63361000 427.2 360.9500 6.6247e+01 #> 1517 267.0400 -1.1401e+00 -0.02173300 0.01714200 265.9 247.0800 1.8822e+01 #> 1518 192.4400 -8.7370e+00 -0.23112000 -0.18409000 183.7 174.9500 8.7453e+00 #> 1519 139.3900 4.1208e+01 1.50490000 1.45320000 180.6 124.6500 5.5955e+01 #> 1520 101.0800 -1.7682e+01 -0.89047000 -0.77241000 83.4 88.9240 -5.5238e+00 #> 1521 210.6900 -2.1069e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1522 201.1300 -1.0731e+01 -0.27159000 0.32180000 190.4 145.8600 4.4542e+01 #> 1523 192.1100 -4.6413e+01 -1.22980000 -1.01910000 145.7 141.6500 4.0471e+00 #> 1524 183.6100 7.9292e+01 2.19830000 3.36070000 262.9 137.6100 1.2529e+02 #> 1525 175.5800 -1.5484e+01 -0.44890000 -0.12496000 160.1 133.7300 2.6371e+01 #> 1526 160.8700 -6.7167e+01 -2.12540000 -2.28890000 93.7 126.4100 -3.2709e+01 #> 1527 147.7500 3.8945e+01 1.34180000 1.78000000 186.7 119.6400 6.7056e+01 #> 1528 136.0600 1.1638e+01 0.43542000 0.59655000 147.7 113.3900 3.4313e+01 #> 1529 125.6300 -1.8250e+00 -0.07395100 -0.06204400 123.8 107.6000 1.6202e+01 #> 1530 107.9600 -1.1603e+00 -0.05471000 -0.15888000 106.8 97.2730 9.5273e+00 #> 1531 82.3790 6.7214e+00 0.41534000 0.16494000 89.1 80.7560 8.3440e+00 #> 1532 65.5580 -2.0580e+00 -0.15980000 -0.39524000 63.5 68.4180 -4.9184e+00 #> 1533 46.1730 3.4268e+00 0.37779000 0.12115000 49.6 51.8770 -2.2774e+00 #> 1534 35.8580 -1.5793e-01 -0.02242000 -0.13958000 35.7 41.7220 -6.0220e+00 #> 1535 29.3560 -6.2564e+00 -1.08490000 -0.95018000 23.1 34.9620 -1.1862e+01 #> 1536 24.6530 6.4745e-01 0.13369000 -0.02135700 25.3 30.0790 -4.7795e+00 #> 1537 15.3050 3.1953e+00 1.06280000 0.44893000 18.5 20.5900 -2.0898e+00 #> 1538 9.6311 2.3689e+00 1.25210000 0.35215000 12.0 14.5800 -2.5796e+00 #> 1539 6.0675 -1.6747e-01 -0.14050000 -0.57947000 5.9 10.3870 -4.4871e+00 #> 1540 3.8242 -7.2425e-01 -0.96405000 -1.03060000 3.1 7.4103 -4.3103e+00 #> 1541 518.6300 -5.1863e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1542 501.3800 -1.4588e+02 -1.48110000 -1.32270000 355.5 437.5700 -8.2073e+01 #> 1543 484.8500 -2.8459e+00 -0.02988000 0.24021000 482.0 424.9600 5.7041e+01 #> 1544 469.0000 -2.1027e+00 -0.02282200 0.22748000 466.9 412.8400 5.4063e+01 #> 1545 453.8200 3.5281e+01 0.39575000 0.66230000 489.1 401.1900 8.7912e+01 #> 1546 425.3200 -1.0012e+02 -1.19820000 -1.10400000 325.2 379.2300 -5.4028e+01 #> 1547 399.1200 -4.4719e+01 -0.57036000 -0.45879000 354.4 358.9300 -4.5309e+00 #> 1548 375.0300 1.8867e+02 2.56080000 2.86370000 563.7 340.1600 2.2354e+02 #> 1549 352.8800 3.8522e+01 0.55570000 0.67803000 391.4 322.7900 6.8607e+01 #> 1550 313.7100 5.2387e+01 0.85006000 0.91736000 366.1 291.8200 7.4282e+01 #> 1551 252.1900 9.2137e+00 0.18598000 0.11602000 261.4 242.2700 1.9132e+01 #> 1552 207.4100 -2.7908e+01 -0.68496000 -0.81283000 179.5 205.2600 -2.5755e+01 #> 1553 149.7100 -3.9087e+00 -0.13290000 -0.32609000 145.8 155.6300 -9.8322e+00 #> 1554 116.2700 -1.1068e+01 -0.48459000 -0.63970000 105.2 125.1700 -1.9966e+01 #> 1555 95.2010 -2.6012e+00 -0.13909000 -0.31927000 92.6 104.8900 -1.2286e+01 #> 1556 80.6740 5.1255e+00 0.32341000 0.08500200 85.8 90.2380 -4.4384e+00 #> 1557 53.8820 1.4518e+01 1.37150000 0.93747000 68.4 61.7700 6.6305e+00 #> 1558 37.5370 -6.1372e+00 -0.83227000 -0.81957000 31.4 43.7390 -1.2339e+01 #> 1559 26.3360 -1.7364e+00 -0.33562000 -0.43213000 24.6 31.1610 -6.5613e+00 #> 1560 18.5050 1.9953e+00 0.54889000 0.20651000 20.5 22.2310 -1.7309e+00 #> 1561 598.0200 -5.9802e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1562 574.2800 1.0032e+02 0.88927000 1.48480000 674.6 437.5700 2.3703e+02 #> 1563 551.8900 7.0725e-01 0.00652340 0.32635000 552.6 424.9600 1.2764e+02 #> 1564 530.7900 -3.9586e+01 -0.37964000 -0.19126000 491.2 412.8400 7.8363e+01 #> 1565 510.8800 1.3352e+02 1.33040000 1.88660000 644.4 401.1900 2.4321e+02 #> 1566 474.3700 -1.9327e+02 -2.07400000 -2.32560000 281.1 379.2300 -9.8128e+01 #> 1567 441.8400 3.7059e+01 0.42696000 0.65850000 478.9 358.9300 1.1997e+02 #> 1568 412.8100 -9.3411e+01 -1.15190000 -1.24510000 319.4 340.1600 -2.0761e+01 #> 1569 386.8700 1.2933e+01 0.17017000 0.29363000 399.8 322.7900 7.7007e+01 #> 1570 342.8300 7.4274e+01 1.10290000 1.34590000 417.1 291.8200 1.2528e+02 #> 1571 278.3900 2.8707e+01 0.52491000 0.69903000 307.1 242.2700 6.4832e+01 #> 1572 235.0000 -5.2992e+00 -0.11479000 0.03372000 229.7 205.2600 2.4445e+01 #> 1573 182.0600 -3.6759e+01 -1.02780000 -0.92761000 145.3 155.6300 -1.0332e+01 #> 1574 150.6100 2.5921e+00 0.08761000 0.42026000 153.2 125.1700 2.8034e+01 #> 1575 128.4500 4.4852e+01 1.77750000 2.37550000 173.3 104.8900 6.8414e+01 #> 1576 111.0100 -1.2805e+01 -0.58722000 -0.48183000 98.2 90.2380 7.9616e+00 #> 1577 73.2560 -3.2556e+00 -0.22623000 -0.29691000 70.0 61.7700 8.2305e+00 #> 1578 48.6230 1.9177e+01 2.00770000 1.59560000 67.8 43.7390 2.4061e+01 #> 1579 32.2860 -8.1856e+00 -1.29060000 -1.39320000 24.1 31.1610 -7.0613e+00 #> 1580 21.4460 -2.8457e+00 -0.67546000 -0.87496000 18.6 22.2310 -3.6309e+00 #> 1581 787.6900 -7.8769e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1582 766.1200 -1.0516e+01 -0.06987300 -0.29335000 755.6 875.1500 -1.1955e+02 #> 1583 745.3900 -1.3908e+00 -0.00949790 -0.23863000 744.0 849.9200 -1.0592e+02 #> 1584 725.4800 2.2692e+02 1.59220000 1.13760000 952.4 825.6700 1.2673e+02 #> 1585 706.3500 9.1953e+01 0.66268000 0.34599000 798.3 802.3800 -4.0762e+00 #> 1586 670.2900 5.3710e+01 0.40789000 0.13589000 724.0 758.4600 -3.4456e+01 #> 1587 636.9700 -3.6273e+01 -0.28988000 -0.46216000 600.7 717.8600 -1.1716e+02 #> 1588 606.1700 -7.9869e+01 -0.67072000 -0.78975000 526.3 680.3200 -1.5402e+02 #> 1589 577.6700 -1.3687e+02 -1.20610000 -1.25680000 440.8 645.5900 -2.0479e+02 #> 1590 526.8500 2.1753e+01 0.21018000 0.00508760 548.6 583.6400 -3.5036e+01 #> 1591 445.5000 -1.6599e+01 -0.18966000 -0.32557000 428.9 484.5400 -5.5636e+01 #> 1592 384.6000 -2.5800e+01 -0.34148000 -0.44163000 358.8 410.5100 -5.1710e+01 #> 1593 302.3800 1.4716e+01 0.24774000 0.15632000 317.1 311.2600 5.8356e+00 #> 1594 251.0400 -2.1142e+01 -0.42871000 -0.45215000 229.9 250.3300 -2.0432e+01 #> 1595 216.0100 3.5588e+01 0.83865000 0.82179000 251.6 209.7700 4.1829e+01 #> 1596 189.9800 1.2238e+00 0.03279100 0.05970200 191.2 180.4800 1.0723e+01 #> 1597 136.7700 -1.7972e+01 -0.66889000 -0.58802000 118.8 123.5400 -4.7390e+00 #> 1598 100.9800 -1.0766e+00 -0.05427300 0.06661600 99.9 87.4770 1.2423e+01 #> 1599 74.8650 2.1935e+01 1.49150000 1.63710000 96.8 62.3230 3.4477e+01 #> 1600 55.5580 -4.7575e+00 -0.43591000 -0.30108000 50.8 44.4620 6.3381e+00 #> 1601 1112.7000 -1.1127e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1602 1069.3000 3.4492e+02 1.64200000 2.26320000 1414.2 875.1500 5.3905e+02 #> 1603 1028.0000 -1.6393e+02 -0.81173000 -0.62483000 864.1 849.9200 1.4183e+01 #> 1604 988.8400 6.7860e+01 0.34934000 0.68726000 1056.7 825.6700 2.3103e+02 #> 1605 951.6000 -3.2610e+02 -1.74440000 -1.72870000 625.5 802.3800 -1.7688e+02 #> 1606 882.5900 2.7951e+02 1.61210000 2.01430000 1162.1 758.4600 4.0364e+02 #> 1607 820.2300 -3.6173e+02 -2.24490000 -2.30700000 458.5 717.8600 -2.5936e+02 #> 1608 763.8600 -3.0656e+01 -0.20430000 -0.09430900 733.2 680.3200 5.2879e+01 #> 1609 712.8500 1.3115e+02 0.93651000 1.09100000 844.0 645.5900 1.9841e+02 #> 1610 624.8400 -4.5542e+01 -0.37102000 -0.34135000 579.3 583.6400 -4.3365e+00 #> 1611 492.7300 2.7070e+01 0.27967000 0.24958000 519.8 484.5400 3.5264e+01 #> 1612 401.9600 -3.4958e+01 -0.44271000 -0.46946000 367.0 410.5100 -4.3510e+01 #> 1613 292.4600 -9.6963e+01 -1.68770000 -1.58370000 195.5 311.2600 -1.1576e+02 #> 1614 232.4200 4.5585e+01 0.99841000 0.83727000 278.0 250.3300 2.7668e+01 #> 1615 194.7400 3.7257e+01 0.97386000 0.83047000 232.0 209.7700 2.2229e+01 #> 1616 167.8900 -2.6865e+00 -0.08145700 -0.08397700 165.2 180.4800 -1.5277e+01 #> 1617 114.2700 -8.9746e+00 -0.39978000 -0.30822000 105.3 123.5400 -1.8239e+01 #> 1618 79.3950 -9.6947e+00 -0.62158000 -0.44382000 69.7 87.4770 -1.7777e+01 #> 1619 55.2840 9.0164e+00 0.83022000 0.72989000 64.3 62.3230 1.9774e+00 #> 1620 38.5150 2.3846e+00 0.31516000 0.32048000 40.9 44.4620 -3.5619e+00 #> 1621 2463.1000 -2.4631e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1622 2354.2000 -3.9870e+02 -0.86210000 -0.52125000 1955.5 1750.3000 2.0521e+02 #> 1623 2250.7000 -1.1548e+02 -0.26118000 0.18012000 2135.2 1699.8000 4.3537e+02 #> 1624 2152.3000 -1.5509e+02 -0.36681000 -0.02650300 1997.2 1651.3000 3.4585e+02 #> 1625 2058.8000 1.2413e+02 0.30691000 0.73071000 2182.9 1604.8000 5.7815e+02 #> 1626 1885.4000 -2.0908e+02 -0.56450000 -0.45227000 1676.3 1516.9000 1.5939e+02 #> 1627 1728.7000 4.3214e+02 1.27250000 1.51900000 2160.8 1435.7000 7.2508e+02 #> 1628 1587.0000 4.1602e+02 1.33440000 1.41200000 2003.0 1360.6000 6.4236e+02 #> 1629 1458.9000 1.0824e+02 0.37770000 0.25758000 1567.1 1291.2000 2.7593e+02 #> 1630 1238.0000 1.2657e+02 0.52043000 0.19160000 1364.6 1167.3000 1.9733e+02 #> 1631 908.3300 1.0047e+02 0.56305000 -0.07951700 1008.8 969.0700 3.9728e+01 #> 1632 684.9900 2.6308e+01 0.19550000 -0.53725000 711.3 821.0200 -1.0972e+02 #> 1633 425.9000 1.6302e+01 0.19485000 -0.65933000 442.2 622.5300 -1.8033e+02 #> 1634 296.6500 -4.8554e+01 -0.83317000 -1.21980000 248.1 500.6600 -2.5256e+02 #> 1635 225.8800 -1.3811e+00 -0.03112500 -0.73163000 224.5 419.5400 -1.9504e+02 #> 1636 182.3800 -1.1877e+01 -0.33151000 -0.83389000 170.5 360.9500 -1.9045e+02 #> 1637 111.4700 1.1434e+01 0.52219000 -0.31567000 122.9 247.0800 -1.2418e+02 #> 1638 72.2600 1.2640e+01 0.89041000 -0.10857000 84.9 174.9500 -9.0055e+01 #> 1639 47.2040 -1.6037e+00 -0.17294000 -0.59398000 45.6 124.6500 -7.9045e+01 #> 1640 30.8760 -1.2758e+00 -0.21034000 -0.58811000 29.6 88.9240 -5.9324e+01 #> 1641 977.4100 -9.7741e+02 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1642 958.8300 4.2773e+01 0.22708000 -0.46142000 1001.6 1750.3000 -7.4869e+02 #> 1643 940.8200 7.8176e+01 0.42298000 -0.32994000 1019.0 1699.8000 -6.8083e+02 #> 1644 923.3800 -5.0984e+01 -0.28106000 -0.75446000 872.4 1651.3000 -7.7895e+02 #> 1645 906.4800 2.5816e+01 0.14497000 -0.48052000 932.3 1604.8000 -6.7245e+02 #> 1646 874.2300 -2.8863e+02 -1.68060000 -1.60980000 585.6 1516.9000 -9.3131e+02 #> 1647 843.9100 7.8993e+01 0.47649000 -0.23073000 922.9 1435.7000 -5.1282e+02 #> 1648 815.3800 1.3622e+02 0.85044000 0.03037600 951.6 1360.6000 -4.0904e+02 #> 1649 788.5200 -6.4116e+01 -0.41392000 -0.76891000 724.4 1291.2000 -5.6677e+02 #> 1650 739.3200 -8.5117e+01 -0.58606000 -0.85719000 654.2 1167.3000 -5.1307e+02 #> 1651 656.2000 -1.0520e+02 -0.81611000 -0.97484000 551.0 969.0700 -4.1807e+02 #> 1652 589.1200 -1.5052e+02 -1.30060000 -1.29210000 438.6 821.0200 -3.8242e+02 #> 1653 488.1800 5.0825e+01 0.52997000 0.10803000 539.0 622.5300 -8.3529e+01 #> 1654 415.6600 1.9374e+02 2.37270000 1.61360000 609.4 500.6600 1.0874e+02 #> 1655 360.2800 -5.9285e+01 -0.83763000 -0.89252000 301.0 419.5400 -1.1854e+02 #> 1656 315.8300 2.2471e+01 0.36218000 0.08337800 338.3 360.9500 -2.2653e+01 #> 1657 219.6600 9.3406e+00 0.21646000 -0.06599200 229.0 247.0800 -1.8078e+01 #> 1658 155.2900 -3.8935e+00 -0.12763000 -0.40535000 151.4 174.9500 -2.3555e+01 #> 1659 110.1700 1.5426e+01 0.71275000 0.23102000 125.6 124.6500 9.5474e-01 #> 1660 78.2440 -1.4744e+01 -0.95921000 -1.11820000 63.5 88.9240 -2.5424e+01 #> 1661 857.9200 -8.5792e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1662 836.6200 2.5558e+02 1.55510000 1.30910000 1092.2 875.1500 2.1705e+02 #> 1663 816.0500 9.2854e+01 0.57922000 0.43105000 908.9 849.9200 5.8983e+01 #> 1664 796.1700 -5.1275e+01 -0.32783000 -0.39322000 744.9 825.6700 -8.0775e+01 #> 1665 776.9800 6.3320e+01 0.41485000 0.31176000 840.3 802.3800 3.7924e+01 #> 1666 740.5200 -1.6552e+02 -1.13780000 -1.12010000 575.0 758.4600 -1.8346e+02 #> 1667 706.4800 -5.8466e-01 -0.00421260 -0.02655600 705.9 717.8600 -1.1962e+01 #> 1668 674.7000 -1.1810e+02 -0.89102000 -0.85401000 556.6 680.3200 -1.2372e+02 #> 1669 645.0000 1.0003e+01 0.07894800 0.10070000 655.0 645.5900 9.4142e+00 #> 1670 591.2800 -1.9748e+02 -1.70010000 -1.60950000 393.8 583.6400 -1.8984e+02 #> 1671 503.0300 1.3077e+02 1.32340000 1.46750000 633.8 484.5400 1.4926e+02 #> 1672 434.8700 -9.7666e+01 -1.14330000 -1.01500000 337.2 410.5100 -7.3310e+01 #> 1673 339.7500 1.5655e+02 2.34550000 2.68530000 496.3 311.2600 1.8504e+02 #> 1674 279.0400 -4.9035e+01 -0.89455000 -0.77908000 230.0 250.3300 -2.0332e+01 #> 1675 237.9000 -4.2701e+01 -0.91368000 -0.82667000 195.2 209.7700 -1.4571e+01 #> 1676 208.1700 -2.2465e+01 -0.54936000 -0.45181000 185.7 180.4800 5.2233e+00 #> 1677 151.0400 8.6634e+00 0.29198000 0.46556000 159.7 123.5400 3.6161e+01 #> 1678 114.4300 1.5671e+00 0.06971300 0.24587000 116.0 87.4770 2.8523e+01 #> 1679 87.5440 8.9557e+00 0.52075000 0.78103000 96.5 62.3230 3.4177e+01 #> 1680 67.1290 5.8706e+00 0.44517000 0.68258000 73.0 44.4620 2.8538e+01 #> 1681 114.2400 -1.1424e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1682 110.9900 3.3909e+01 1.55520000 0.91917000 144.9 145.8600 -9.5752e-01 #> 1683 107.8600 9.3614e-01 0.04418000 -0.23884000 108.8 141.6500 -3.2853e+01 #> 1684 104.8600 -4.5580e+00 -0.22127000 -0.44649000 100.3 137.6100 -3.7312e+01 #> 1685 101.9700 -3.0268e+01 -1.51110000 -1.44140000 71.7 133.7300 -6.2029e+01 #> 1686 96.5180 -1.4918e+01 -0.78679000 -0.89538000 81.6 126.4100 -4.4809e+01 #> 1687 91.4760 -1.1876e+01 -0.66088000 -0.80759000 79.6 119.6400 -4.0044e+01 #> 1688 86.8090 -9.4089e+00 -0.55174000 -0.73154000 77.4 113.3900 -3.5987e+01 #> 1689 82.4860 2.5114e+01 1.54990000 0.89399000 107.6 107.6000 2.3615e-03 #> 1690 74.7600 4.5396e+00 0.30910000 -0.08016500 79.3 97.2730 -1.7973e+01 #> 1691 62.3430 5.5572e+00 0.45376000 0.02153300 67.9 80.7560 -1.2856e+01 #> 1692 52.9880 -7.8876e+00 -0.75775000 -0.93180000 45.1 68.4180 -2.3318e+01 #> 1693 40.2380 -3.9381e+00 -0.49821000 -0.70543000 36.3 51.8770 -1.5577e+01 #> 1694 32.1900 9.5149e-03 0.00150460 -0.28267000 32.2 41.7220 -9.5220e+00 #> 1695 26.6820 -6.0816e+00 -1.16030000 -1.13510000 20.6 34.9620 -1.4362e+01 #> 1696 22.6170 2.6831e+00 0.60389000 0.21055000 25.3 30.0790 -4.7795e+00 #> 1697 14.6430 3.0574e+00 1.06290000 0.51122000 17.7 20.5900 -2.8898e+00 #> 1698 9.7563 1.2437e+00 0.64891000 0.17995000 11.0 14.5800 -3.5796e+00 #> 1699 6.5350 -1.4350e+00 -1.11780000 -0.93494000 5.1 10.3870 -5.2871e+00 #> 1700 4.3829 3.1712e-01 0.36832000 -0.04938400 4.7 7.4103 -2.7103e+00 #> 1701 529.1100 -5.2911e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1702 513.6800 5.7224e+01 0.56709000 0.68818000 570.9 437.5700 1.3333e+02 #> 1703 498.8600 -8.5821e-01 -0.00875740 0.04744300 498.0 424.9600 7.3041e+01 #> 1704 484.6300 -3.4327e+01 -0.36057000 -0.34514000 450.3 412.8400 3.7463e+01 #> 1705 470.9600 -4.2577e+00 -0.04602000 0.01257900 466.7 401.1900 6.5512e+01 #> 1706 445.2100 1.7390e+01 0.19883000 0.29773000 462.6 379.2300 8.3372e+01 #> 1707 421.4400 4.7361e+01 0.57207000 0.73220000 468.8 358.9300 1.0987e+02 #> 1708 399.4800 -1.0081e+01 -0.12845000 -0.06068600 389.4 340.1600 4.9239e+01 #> 1709 379.1900 -9.1887e+01 -1.23350000 -1.32590000 287.3 322.7900 -3.5493e+01 #> 1710 343.0600 8.6542e+01 1.28420000 1.59530000 429.6 291.8200 1.3778e+02 #> 1711 285.4700 7.3327e+01 1.30750000 1.66140000 358.8 242.2700 1.1653e+02 #> 1712 242.6800 3.4916e+01 0.73239000 1.01590000 277.6 205.2600 7.2345e+01 #> 1713 185.7600 -5.2661e+01 -1.44310000 -1.50830000 133.1 155.6300 -2.2532e+01 #> 1714 151.1700 -2.1567e+01 -0.72624000 -0.64879000 129.6 125.1700 4.4341e+00 #> 1715 128.3000 3.6199e+01 1.43620000 1.89270000 164.5 104.8900 5.9614e+01 #> 1716 111.8200 -2.0424e+01 -0.92973000 -0.89501000 91.4 90.2380 1.1616e+00 #> 1717 79.4810 1.2019e+01 0.76980000 1.03780000 91.5 61.7700 2.9730e+01 #> 1718 58.3440 -1.1443e+00 -0.09983500 -0.05891200 57.2 43.7390 1.3461e+01 #> 1719 43.0680 6.1325e+00 0.72484000 0.80397000 49.2 31.1610 1.8039e+01 #> 1720 31.8290 -2.1287e+00 -0.34044000 -0.46022000 29.7 22.2310 7.4691e+00 #> 1721 144.1700 -1.4417e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1722 139.6800 3.1717e+01 1.15590000 1.00760000 171.4 145.8600 2.5542e+01 #> 1723 135.3500 -2.8055e+01 -1.05510000 -1.03110000 107.3 141.6500 -3.4353e+01 #> 1724 131.1800 -1.6581e+01 -0.64342000 -0.66127000 114.6 137.6100 -2.3012e+01 #> 1725 127.1600 2.9446e+00 0.11788000 0.02763000 130.1 133.7300 -3.6294e+00 #> 1726 119.5300 1.4872e+01 0.63337000 0.47974000 134.4 126.4100 7.9906e+00 #> 1727 112.4300 -7.4309e+00 -0.33644000 -0.42101000 105.0 119.6400 -1.4644e+01 #> 1728 105.8300 -1.2226e+01 -0.58811000 -0.66436000 93.6 113.3900 -1.9787e+01 #> 1729 99.6790 -1.5787e+00 -0.08062400 -0.22362000 98.1 107.6000 -9.4976e+00 #> 1730 88.6250 2.1075e+01 1.21050000 0.88234000 109.7 97.2730 1.2427e+01 #> 1731 70.7050 3.9479e-01 0.02842300 -0.23438000 71.1 80.7560 -9.6560e+00 #> 1732 57.1560 7.5443e+00 0.67191000 0.21690000 64.7 68.4180 -3.7184e+00 #> 1733 38.9730 -2.7325e-01 -0.03569100 -0.48108000 38.7 51.8770 -1.3177e+01 #> 1734 28.1650 3.7349e+00 0.67503000 -0.10742000 31.9 41.7220 -9.8220e+00 #> 1735 21.4860 2.4137e+00 0.57185000 -0.27305000 23.9 34.9620 -1.1062e+01 #> 1736 17.1510 -4.7515e+00 -1.41020000 -1.47400000 12.4 30.0790 -1.7679e+01 #> 1737 10.3470 -9.4707e-01 -0.46593000 -0.86812000 9.4 20.5900 -1.1190e+01 #> 1738 6.9695 7.3047e-01 0.53353000 -0.20947000 7.7 14.5800 -6.8796e+00 #> 1739 4.8324 -4.3239e-01 -0.45548000 -0.56138000 4.4 10.3870 -5.9871e+00 #> 1740 3.3750 4.2499e-01 0.64100000 0.14101000 3.8 7.4103 -3.6103e+00 #> 1741 369.0900 -3.6909e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1742 361.3200 1.1977e+01 0.16874000 -0.07838500 373.3 437.5700 -6.4273e+01 #> 1743 353.8000 -2.7300e+01 -0.39279000 -0.52413000 326.5 424.9600 -9.8459e+01 #> 1744 346.5100 -1.9712e+01 -0.28958000 -0.42956000 326.8 412.8400 -8.6037e+01 #> 1745 339.4500 -5.6150e+01 -0.84203000 -0.87727000 283.3 401.1900 -1.1789e+02 #> 1746 325.9700 3.0727e+01 0.47984000 0.24450000 356.7 379.2300 -2.2528e+01 #> 1747 313.3100 -3.8211e+01 -0.62082000 -0.66567000 275.1 358.9300 -8.3831e+01 #> 1748 301.4100 -8.6707e+01 -1.46440000 -1.37980000 214.7 340.1600 -1.2546e+02 #> 1749 290.2100 4.6790e+01 0.82073000 0.61337000 337.0 322.7900 1.4207e+01 #> 1750 269.7500 8.8551e+01 1.67110000 1.41980000 358.3 291.8200 6.6482e+01 #> 1751 235.4100 1.8091e+01 0.39121000 0.33809000 253.5 242.2700 1.1232e+01 #> 1752 208.0500 -2.1649e+01 -0.52970000 -0.51220000 186.4 205.2600 -1.8855e+01 #> 1753 167.9700 4.9827e+01 1.51000000 1.55940000 217.8 155.6300 6.2168e+01 #> 1754 140.5200 1.2479e+01 0.45205000 0.47012000 153.0 125.1700 2.7834e+01 #> 1755 120.6100 1.6086e+01 0.67890000 0.68652000 136.7 104.8900 3.1814e+01 #> 1756 105.3700 6.6323e+00 0.32042000 0.25727000 112.0 90.2380 2.1762e+01 #> 1757 74.2090 1.8915e+00 0.12975000 -0.07214600 76.1 61.7700 1.4330e+01 #> 1758 53.9150 1.0853e+00 0.10247000 -0.18474000 55.0 43.7390 1.1261e+01 #> 1759 39.4700 -2.9698e+00 -0.38302000 -0.74445000 36.5 31.1610 5.3387e+00 #> 1760 28.9550 2.4490e-01 0.04305500 -0.30661000 29.2 22.2310 6.9691e+00 #> 1761 297.6300 -2.9763e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1762 292.0000 3.7803e+01 0.65903000 0.02165000 329.8 437.5700 -1.0777e+02 #> 1763 286.5500 -6.6546e+01 -1.18220000 -1.24950000 220.0 424.9600 -2.0496e+02 #> 1764 281.2700 2.4031e+01 0.43491000 -0.10543000 305.3 412.8400 -1.0754e+02 #> 1765 276.1600 8.4739e+01 1.56200000 0.70619000 360.9 401.1900 -4.0288e+01 #> 1766 266.4300 -7.7326e+01 -1.47740000 -1.43480000 189.1 379.2300 -1.9013e+02 #> 1767 257.2900 -6.1926e+00 -0.12252000 -0.44222000 251.1 358.9300 -1.0783e+02 #> 1768 248.7200 -3.2119e+01 -0.65737000 -0.81459000 216.6 340.1600 -1.2356e+02 #> 1769 240.6700 -4.1766e+01 -0.88341000 -0.96767000 198.9 322.7900 -1.2389e+02 #> 1770 225.9700 1.9427e+01 0.43764000 0.06319200 245.4 291.8200 -4.6418e+01 #> 1771 201.3700 2.0933e+01 0.52918000 0.22416000 222.3 242.2700 -1.9968e+01 #> 1772 181.7700 1.1125e+01 0.31156000 0.12408000 192.9 205.2600 -1.2355e+01 #> 1773 152.9300 2.4670e+00 0.08211500 0.03986800 155.4 155.6300 -2.3222e-01 #> 1774 132.8300 -2.8533e+01 -1.09350000 -0.99877000 104.3 125.1700 -2.0866e+01 #> 1775 117.8500 8.0530e+00 0.34785000 0.44191000 125.9 104.8900 2.1014e+01 #> 1776 105.9700 3.3828e+01 1.62490000 1.81490000 139.8 90.2380 4.9562e+01 #> 1777 80.0650 -2.1465e+01 -1.36470000 -1.36170000 58.6 61.7700 -3.1695e+00 #> 1778 61.6830 5.0174e+00 0.41407000 0.67098000 66.7 43.7390 2.2961e+01 #> 1779 47.7170 1.0383e+01 1.10770000 1.53750000 58.1 31.1610 2.6939e+01 #> 1780 36.9530 -5.1527e+00 -0.70982000 -0.80035000 31.8 22.2310 9.5691e+00 #> 1781 111.8400 -1.1184e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1782 109.1300 -4.0529e+01 -1.89050000 -1.71330000 68.6 145.8600 -7.7258e+01 #> 1783 106.5200 -5.9186e+00 -0.28285000 -0.49730000 100.6 141.6500 -4.1053e+01 #> 1784 104.0000 2.6599e+01 1.30190000 0.71218000 130.6 137.6100 -7.0124e+00 #> 1785 101.5700 1.5527e+01 0.77815000 0.32137000 117.1 133.7300 -1.6629e+01 #> 1786 96.9720 2.1428e+01 1.12480000 0.60326000 118.4 126.4100 -8.0094e+00 #> 1787 92.6890 7.9107e+00 0.43445000 0.08280700 100.6 119.6400 -1.9044e+01 #> 1788 88.7010 -1.4501e+01 -0.83217000 -0.89920000 74.2 113.3900 -3.9187e+01 #> 1789 84.9830 4.8167e+00 0.28852000 -0.01063300 89.8 107.6000 -1.7798e+01 #> 1790 78.2830 -3.0283e+01 -1.96920000 -1.80570000 48.0 97.2730 -4.9273e+01 #> 1791 67.3320 3.4681e+00 0.26220000 0.01966000 70.8 80.7560 -9.9560e+00 #> 1792 58.9060 2.9363e-01 0.02537400 -0.15096000 59.2 68.4180 -9.2184e+00 #> 1793 47.1180 -3.1177e+00 -0.33683000 -0.42329000 44.0 51.8770 -7.8774e+00 #> 1794 39.4520 -3.2517e+00 -0.41956000 -0.46355000 36.2 41.7220 -5.5220e+00 #> 1795 34.0810 -3.3808e+00 -0.50496000 -0.51229000 30.7 34.9620 -4.2618e+00 #> 1796 30.0360 -3.3359e+00 -0.56537000 -0.54477000 26.7 30.0790 -3.3795e+00 #> 1797 21.7430 5.9570e+00 1.39470000 1.38760000 27.7 20.5900 7.1102e+00 #> 1798 16.1770 8.2294e-01 0.25896000 0.30587000 17.0 14.5800 2.4204e+00 #> 1799 12.1010 -2.0082e-01 -0.08448000 -0.04376500 11.9 10.3870 1.5129e+00 #> 1800 9.0633 7.3675e-01 0.41380000 0.41710000 9.8 7.4103 2.3897e+00 #> 1801 1643.7000 -1.6437e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1802 1583.7000 1.7847e+02 0.57364000 1.49190000 1762.2 875.1500 8.8705e+02 #> 1803 1526.3000 -1.8211e+02 -0.60735000 -0.81014000 1344.2 849.9200 4.9428e+02 #> 1804 1471.4000 8.7032e+01 0.30110000 0.99412000 1558.4 825.6700 7.3273e+02 #> 1805 1418.8000 3.8020e+02 1.36410000 3.09050000 1799.0 802.3800 9.9662e+02 #> 1806 1320.4000 -3.7668e+01 -0.14522000 0.17896000 1282.7 758.4600 5.2424e+02 #> 1807 1230.2000 -2.7392e+02 -1.13340000 -1.67150000 956.3 717.8600 2.3844e+02 #> 1808 1147.7000 1.3480e+00 0.00597900 0.53434000 1149.0 680.3200 4.6868e+02 #> 1809 1072.0000 4.9260e+02 2.33920000 4.85140000 1564.6 645.5900 9.1901e+02 #> 1810 939.1000 -3.8770e+02 -2.10160000 -3.10950000 551.4 583.6400 -3.2236e+01 #> 1811 733.2500 1.0815e+02 0.75078000 1.77130000 841.4 484.5400 3.5686e+02 #> 1812 586.8500 1.5955e+01 0.13840000 0.73234000 602.8 410.5100 1.9229e+02 #> 1813 405.9400 -1.4636e+01 -0.18354000 0.13502000 391.3 311.2600 8.0036e+01 #> 1814 308.7400 7.2458e+01 1.19470000 1.51170000 381.2 250.3300 1.3087e+02 #> 1815 252.8100 1.2992e+01 0.26161000 0.32443000 265.8 209.7700 5.6029e+01 #> 1816 217.5400 -2.5739e+01 -0.60229000 -0.67925000 191.8 180.4800 1.1323e+01 #> 1817 158.5100 -3.8709e+01 -1.24310000 -1.45230000 119.8 123.5400 -3.7390e+00 #> 1818 122.4100 1.1995e+01 0.49883000 0.61815000 134.4 87.4770 4.6923e+01 #> 1819 95.3620 9.7382e+00 0.51983000 0.75591000 105.1 62.3230 4.2777e+01 #> 1820 74.4040 6.9957e+00 0.47862000 0.76967000 81.4 44.4620 3.6938e+01 #> 1821 2191.8000 -2.1918e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1822 2109.8000 -1.8811e+02 -0.45387000 -0.32518000 1921.7 1750.3000 1.7141e+02 #> 1823 2032.2000 4.7927e+02 1.20050000 1.54160000 2511.5 1699.8000 8.1167e+02 #> 1824 1958.8000 -2.1216e+02 -0.55137000 -0.48502000 1746.6 1651.3000 9.5251e+01 #> 1825 1889.2000 -6.7376e+01 -0.18155000 -0.08665000 1821.8 1604.8000 2.1705e+02 #> 1826 1760.8000 1.9283e+02 0.55747000 0.70331000 1953.6 1516.9000 4.3669e+02 #> 1827 1645.4000 4.0990e+02 1.26810000 1.45480000 2055.3 1435.7000 6.1958e+02 #> 1828 1541.6000 -4.0912e+02 -1.35090000 -1.46090000 1132.5 1360.6000 -2.2814e+02 #> 1829 1448.1000 2.5525e+02 0.89725000 0.98795000 1703.4 1291.2000 4.1223e+02 #> 1830 1287.7000 -9.3419e+01 -0.36929000 -0.40600000 1194.3 1167.3000 2.7027e+01 #> 1831 1048.4000 -1.9007e+02 -0.92292000 -0.97841000 858.3 969.0700 -1.1077e+02 #> 1832 883.6200 1.1368e+02 0.65488000 0.74694000 997.3 821.0200 1.7628e+02 #> 1833 679.2200 -1.4972e+02 -1.12210000 -1.08300000 529.5 622.5300 -9.3029e+01 #> 1834 557.9100 1.2069e+02 1.10120000 1.35580000 678.6 500.6600 1.7794e+02 #> 1835 473.9500 -2.4153e+01 -0.25942000 -0.14900000 449.8 419.5400 3.0258e+01 #> 1836 409.0800 1.3012e+02 1.61920000 1.79510000 539.2 360.9500 1.7825e+02 #> 1837 270.9100 -1.0308e+01 -0.19369000 -0.29099000 260.6 247.0800 1.3522e+01 #> 1838 180.9700 -8.2668e+00 -0.23254000 -0.43477000 172.7 174.9500 -2.2547e+00 #> 1839 120.9800 -5.5762e+00 -0.23464000 -0.48755000 115.4 124.6500 -9.2453e+00 #> 1840 80.9050 5.7951e+00 0.36462000 -0.07211300 86.7 88.9240 -2.2238e+00 #> 1841 719.5900 -7.1959e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1842 702.6800 -2.3248e+02 -1.68410000 -1.54320000 470.2 875.1500 -4.0495e+02 #> 1843 686.3500 -7.6251e+01 -0.56553000 -0.64922000 610.1 849.9200 -2.3982e+02 #> 1844 670.6000 2.3104e+01 0.17538000 -0.04936000 693.7 825.6700 -1.3197e+02 #> 1845 655.3900 1.7021e+02 1.32200000 0.88407000 825.6 802.3800 2.3224e+01 #> 1846 626.5400 1.0276e+02 0.83493000 0.51137000 729.3 758.4600 -2.9156e+01 #> 1847 599.6400 -7.1336e+01 -0.60559000 -0.65550000 528.3 717.8600 -1.8956e+02 #> 1848 574.5400 2.0436e+02 1.81060000 1.36200000 778.9 680.3200 9.8579e+01 #> 1849 551.1200 -8.0221e+01 -0.74096000 -0.75475000 470.9 645.5900 -1.7469e+02 #> 1850 508.8000 -1.8780e+02 -1.87890000 -1.71750000 321.0 583.6400 -2.6264e+02 #> 1851 439.3400 4.4261e+01 0.51283000 0.38467000 483.6 484.5400 -9.3615e-01 #> 1852 385.5900 6.4079e+00 0.08459500 0.04547800 392.0 410.5100 -1.8510e+01 #> 1853 309.8600 8.1414e+00 0.13375000 0.16597000 318.0 311.2600 6.7356e+00 #> 1854 260.2400 -4.6839e+01 -0.91620000 -0.80462000 213.4 250.3300 -3.6932e+01 #> 1855 225.3200 1.3882e+01 0.31362000 0.47216000 239.2 209.7700 2.9429e+01 #> 1856 198.9700 -2.1656e+00 -0.05540600 0.14087000 196.8 180.4800 1.6323e+01 #> 1857 144.8900 -6.0292e+01 -2.11820000 -1.98270000 84.6 123.5400 -3.8939e+01 #> 1858 108.5200 4.5983e+01 2.15700000 2.63370000 154.5 87.4770 6.7023e+01 #> 1859 81.7380 8.2619e+00 0.51453000 0.84829000 90.0 62.3230 2.7677e+01 #> 1860 61.6520 -1.3552e+01 -1.11890000 -0.94448000 48.1 44.4620 3.6381e+00 #> 1861 95.8640 -9.5864e+01 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1862 94.3860 1.8145e+00 0.09785800 -0.47059000 96.2 145.8600 -4.9658e+01 #> 1863 92.9540 7.9463e+00 0.43516000 -0.22426000 100.9 141.6500 -4.0753e+01 #> 1864 91.5670 -6.6670e+00 -0.37063000 -0.76141000 84.9 137.6100 -5.2712e+01 #> 1865 90.2240 -3.1236e+00 -0.17624000 -0.61344000 87.1 133.7300 -4.6629e+01 #> 1866 87.6610 9.7390e+00 0.56554000 -0.06484700 97.4 126.4100 -2.9009e+01 #> 1867 85.2540 -7.5415e-01 -0.04502900 -0.46499000 84.5 119.6400 -3.5144e+01 #> 1868 82.9920 -1.7992e+01 -1.10360000 -1.20030000 65.0 113.3900 -4.8387e+01 #> 1869 80.8650 -1.9649e+00 -0.12369000 -0.46769000 78.9 107.6000 -2.8698e+01 #> 1870 76.9770 2.5123e+01 1.66130000 0.92070000 102.1 97.2730 4.8273e+00 #> 1871 70.4470 -8.0471e+00 -0.58147000 -0.68582000 62.4 80.7560 -1.8356e+01 #> 1872 65.2260 -5.7261e+00 -0.44688000 -0.51055000 59.5 68.4180 -8.9184e+00 #> 1873 57.4940 -8.7943e+00 -0.77864000 -0.69914000 48.7 51.8770 -3.1774e+00 #> 1874 52.0540 -4.0539e+00 -0.39644000 -0.26913000 48.0 41.7220 6.2780e+00 #> 1875 47.9450 1.2555e+01 1.33310000 1.59570000 60.5 34.9620 2.5538e+01 #> 1876 44.6320 1.1068e+01 1.26240000 1.67930000 55.7 30.0790 2.5621e+01 #> 1877 37.0730 1.0266e+00 0.14096000 0.61858000 38.1 20.5900 1.7510e+01 #> 1878 31.2430 -3.9434e+00 -0.64249000 -0.50042000 27.3 14.5800 1.2720e+01 #> 1879 26.4080 -3.8075e+00 -0.73396000 -0.88018000 22.6 10.3870 1.2213e+01 #> 1880 22.3360 6.5635e+00 1.49580000 3.56680000 28.9 7.4103 2.1490e+01 #> 1881 1724.9000 -1.7249e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1882 1695.8000 -5.0189e+02 -1.50660000 -1.41990000 1193.9 1750.3000 -5.5639e+02 #> 1883 1667.4000 -1.7902e+02 -0.54653000 -0.51506000 1488.4 1699.8000 -2.1143e+02 #> 1884 1639.7000 -6.8640e+01 -0.21309000 -0.18480000 1571.1 1651.3000 -8.0249e+01 #> 1885 1612.7000 -1.7323e+02 -0.54679000 -0.48475000 1439.5 1604.8000 -1.6525e+02 #> 1886 1560.7000 -4.4706e+02 -1.45820000 -1.34160000 1113.6 1516.9000 -4.0331e+02 #> 1887 1511.1000 9.5229e+00 0.03208000 0.14270000 1520.6 1435.7000 8.4877e+01 #> 1888 1463.8000 -2.5184e+02 -0.87577000 -0.73813000 1212.0 1360.6000 -1.4864e+02 #> 1889 1418.8000 3.2526e+02 1.16700000 1.37560000 1744.1 1291.2000 4.5293e+02 #> 1890 1335.0000 2.8485e+02 1.08610000 1.39080000 1619.9 1167.3000 4.5263e+02 #> 1891 1189.5000 1.3683e+02 0.58557000 0.99066000 1326.3 969.0700 3.5723e+02 #> 1892 1068.5000 5.9943e+02 2.85590000 3.84650000 1667.9 821.0200 8.4688e+02 #> 1893 882.2300 -1.6583e+02 -0.95685000 -0.87364000 716.4 622.5300 9.3871e+01 #> 1894 748.7000 3.2840e+02 2.23280000 3.62480000 1077.1 500.6600 5.7644e+02 #> 1895 650.0200 -5.8820e+01 -0.46063000 -0.38759000 591.2 419.5400 1.7166e+02 #> 1896 574.6500 -2.1452e+01 -0.19003000 -0.05960700 553.2 360.9500 1.9225e+02 #> 1897 425.7300 1.9974e+01 0.23883000 0.44958000 445.7 247.0800 1.9862e+02 #> 1898 332.2200 4.2280e+01 0.64784000 1.07700000 374.5 174.9500 1.9955e+02 #> 1899 264.0900 -4.2906e+00 -0.08270300 -0.20042000 259.8 124.6500 1.3515e+02 #> 1900 211.2900 -2.2894e+01 -0.55155000 -0.99783000 188.4 88.9240 9.9476e+01 #> 1901 492.6200 -4.9262e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1902 476.5400 5.3060e+01 0.56680000 0.68442000 529.6 437.5700 9.2027e+01 #> 1903 461.1800 -5.8675e+01 -0.64766000 -0.58674000 402.5 424.9600 -2.2459e+01 #> 1904 446.4900 -1.1929e+02 -1.36000000 -1.33580000 327.2 412.8400 -8.5637e+01 #> 1905 432.4600 1.2264e+02 1.44370000 1.55690000 555.1 401.1900 1.5391e+02 #> 1906 406.2100 2.1893e+01 0.27436000 0.32654000 428.1 379.2300 4.8872e+01 #> 1907 382.2000 2.0990e+00 0.02795600 0.05501500 384.3 358.9300 2.5369e+01 #> 1908 360.2300 8.1370e+01 1.14980000 1.19600000 441.6 340.1600 1.0144e+02 #> 1909 340.1100 -1.7208e+01 -0.25755000 -0.26447000 322.9 322.7900 1.0708e-01 #> 1910 304.7400 -7.4441e+01 -1.24350000 -1.28840000 230.3 291.8200 -6.1518e+01 #> 1911 249.6800 5.0193e+00 0.10233000 0.07639100 254.7 242.2700 1.2432e+01 #> 1912 209.8900 5.7077e+00 0.13843000 0.12342000 215.6 205.2600 1.0345e+01 #> 1913 158.4300 5.3871e+01 1.73090000 1.75670000 212.3 155.6300 5.6668e+01 #> 1914 127.6600 -2.8459e+01 -1.13480000 -1.02960000 99.2 125.1700 -2.5966e+01 #> 1915 107.1600 -2.3559e+01 -1.11910000 -0.97792000 83.6 104.8900 -2.1286e+01 #> 1916 92.0890 -7.5885e+00 -0.41948000 -0.29551000 84.5 90.2380 -5.7384e+00 #> 1917 61.7900 1.2110e+01 0.99770000 0.91415000 73.9 61.7700 1.2130e+01 #> 1918 42.3780 1.2522e+01 1.50420000 1.16170000 54.9 43.7390 1.1161e+01 #> 1919 29.1530 -2.0527e+00 -0.35842000 -0.50778000 27.1 31.1610 -4.0613e+00 #> 1920 20.0690 -3.0694e+00 -0.77853000 -0.87887000 17.0 22.2310 -5.2309e+00 #> 1921 3382.5000 -3.3825e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1922 3218.3000 -2.2013e+02 -0.34818000 0.11535000 2998.2 1750.3000 1.2479e+03 #> 1923 3063.1000 -2.1406e+00 -0.00355740 0.72829000 3061.0 1699.8000 1.3612e+03 #> 1924 2916.4000 6.6181e+01 0.11552000 0.88018000 2982.6 1651.3000 1.3313e+03 #> 1925 2777.7000 4.2404e+01 0.07771100 0.73292000 2820.1 1604.8000 1.2153e+03 #> 1926 2522.5000 -4.5740e+02 -0.92304000 -1.14190000 2065.1 1516.9000 5.4819e+02 #> 1927 2294.3000 1.2815e+03 2.84340000 4.96370000 3575.8 1435.7000 2.1401e+03 #> 1928 2090.1000 -1.1894e+02 -0.28967000 -0.18836000 1971.2 1360.6000 6.1056e+02 #> 1929 1907.5000 4.2332e+02 1.12970000 1.76840000 2330.8 1291.2000 1.0396e+03 #> 1930 1597.6000 -2.1609e+02 -0.68855000 -0.83273000 1381.5 1167.3000 2.1423e+02 #> 1931 1149.1000 -1.0360e+02 -0.45893000 -0.61969000 1045.5 969.0700 7.6428e+01 #> 1932 858.0600 1.3137e+01 0.07793400 -0.19336000 871.2 821.0200 5.0180e+01 #> 1933 539.7000 -3.9798e+01 -0.37538000 -0.61858000 499.9 622.5300 -1.2263e+02 #> 1934 392.2600 6.6538e+01 0.86347000 0.23490000 458.8 500.6600 -4.1863e+01 #> 1935 315.3100 -7.1108e+01 -1.14800000 -1.10170000 244.2 419.5400 -1.7534e+02 #> 1936 268.4000 5.2898e+01 1.00320000 0.40550000 321.3 360.9500 -3.9653e+01 #> 1937 186.6800 -2.8882e+01 -0.78755000 -0.73942000 157.8 247.0800 -8.9278e+01 #> 1938 134.8200 7.3762e+00 0.27850000 0.11235000 142.2 174.9500 -3.2755e+01 #> 1939 97.7050 -7.5049e+00 -0.39101000 -0.33588000 90.2 124.6500 -3.4445e+01 #> 1940 70.8460 1.2054e+01 0.86612000 0.63391000 82.9 88.9240 -6.0238e+00 #> 1941 731.1400 -7.3114e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1942 693.1400 -1.1084e+02 -0.81401000 -0.52957000 582.3 437.5700 1.4473e+02 #> 1943 657.6300 -2.9327e+01 -0.22701000 0.30263000 628.3 424.9600 2.0334e+02 #> 1944 624.4400 2.5496e+02 2.07850000 3.66410000 879.4 412.8400 4.6656e+02 #> 1945 593.4100 -1.4031e+02 -1.20360000 -1.29680000 453.1 401.1900 5.1912e+01 #> 1946 537.2800 5.1819e+01 0.49096000 0.95596000 589.1 379.2300 2.0987e+02 #> 1947 488.1800 1.7892e+02 1.86570000 2.55310000 667.1 358.9300 3.0817e+02 #> 1948 445.1900 -6.7893e+01 -0.77631000 -0.88380000 377.3 340.1600 3.7139e+01 #> 1949 407.5200 -4.7422e+01 -0.59236000 -0.70099000 360.1 322.7900 3.7307e+01 #> 1950 345.4500 -6.6046e+01 -0.97325000 -1.14700000 279.4 291.8200 -1.2418e+01 #> 1951 260.0700 3.8728e+01 0.75804000 0.57432000 298.8 242.2700 5.6532e+01 #> 1952 207.6200 -3.9721e+01 -0.97388000 -0.98592000 167.9 205.2600 -3.7355e+01 #> 1953 151.7300 -5.1825e+01 -1.73880000 -1.50360000 99.9 155.6300 -5.5732e+01 #> 1954 123.7300 -5.6260e+00 -0.23147000 0.02116900 118.1 125.1700 -7.0659e+00 #> 1955 105.9300 3.4367e+01 1.65150000 1.91660000 140.3 104.8900 3.5414e+01 #> 1956 92.4700 -1.6770e+01 -0.92320000 -0.59753000 75.7 90.2380 -1.4538e+01 #> 1957 63.2780 6.2223e+00 0.50056000 0.68601000 69.5 61.7700 7.7305e+00 #> 1958 43.5690 1.0231e+01 1.19540000 1.15480000 53.8 43.7390 1.0061e+01 #> 1959 30.0070 -3.0740e-01 -0.05214800 -0.06885800 29.7 31.1610 -1.4613e+00 #> 1960 20.6740 -1.1740e+00 -0.28908000 -0.34762000 19.5 22.2310 -2.7309e+00 #> 1961 170.0700 -1.7007e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1962 162.5600 2.2641e+01 0.70898000 0.95326000 185.2 145.8600 3.9342e+01 #> 1963 155.4900 -3.4489e+01 -1.12910000 -1.03370000 121.0 141.6500 -2.0653e+01 #> 1964 148.8300 2.0369e+01 0.69669000 0.80980000 169.2 137.6100 3.1588e+01 #> 1965 142.5600 1.8241e+01 0.65135000 0.70634000 160.8 133.7300 2.7071e+01 #> 1966 131.0800 -2.4281e+01 -0.94292000 -0.96968000 106.8 126.4100 -1.9609e+01 #> 1967 120.8800 3.2220e+01 1.35680000 1.20640000 153.1 119.6400 3.3456e+01 #> 1968 111.8000 1.7396e+01 0.79203000 0.59267000 129.2 113.3900 1.5813e+01 #> 1969 103.7200 -3.3719e+01 -1.65490000 -1.72000000 70.0 107.6000 -3.7598e+01 #> 1970 90.0610 -3.0761e+01 -1.73870000 -1.78470000 59.3 97.2730 -3.7973e+01 #> 1971 70.2990 1.0001e+01 0.72418000 0.37014000 80.3 80.7560 -4.5603e-01 #> 1972 57.2320 -4.6316e+00 -0.41196000 -0.51321000 52.6 68.4180 -1.5818e+01 #> 1973 41.7990 -1.2799e+01 -1.55870000 -1.24620000 29.0 51.8770 -2.2877e+01 #> 1974 33.1040 -3.0037e+00 -0.46189000 -0.26237000 30.1 41.7220 -1.1622e+01 #> 1975 27.2800 -7.8800e+00 -1.47040000 -0.98073000 19.4 34.9620 -1.5562e+01 #> 1976 22.8850 1.3215e+01 2.93940000 2.24130000 36.1 30.0790 6.0205e+00 #> 1977 13.9350 -2.6351e+00 -0.96259000 -0.63303000 11.3 20.5900 -9.2898e+00 #> 1978 8.5555 -1.0555e+00 -0.62800000 -0.48259000 7.5 14.5800 -7.0796e+00 #> 1979 5.2558 6.4418e-01 0.62391000 0.10602000 5.9 10.3870 -4.4871e+00 #> 1980 3.2302 -3.0219e-02 -0.04762200 -0.27769000 3.2 7.4103 -4.2103e+00 #> 1981 1082.1000 -1.0821e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1982 1038.6000 -3.1032e+02 -1.52090000 -1.29210000 728.3 875.1500 -1.4685e+02 #> 1983 997.5300 2.8667e+02 1.46290000 2.01310000 1284.2 849.9200 4.3428e+02 #> 1984 958.6800 -7.8984e+01 -0.41939000 -0.14354000 879.7 825.6700 5.4025e+01 #> 1985 921.9500 -1.4775e+02 -0.81578000 -0.62316000 774.2 802.3800 -2.8176e+01 #> 1986 854.3200 1.8668e+02 1.11230000 1.39440000 1041.0 758.4600 2.8254e+02 #> 1987 793.7400 -2.6534e+02 -1.70170000 -1.69130000 528.4 717.8600 -1.8946e+02 #> 1988 739.4000 1.6290e+02 1.12150000 1.23580000 902.3 680.3200 2.2198e+02 #> 1989 690.6000 5.0703e+01 0.37373000 0.39805000 741.3 645.5900 9.5714e+01 #> 1990 607.1500 1.2905e+02 1.08200000 1.03130000 736.2 583.6400 1.5256e+02 #> 1991 483.4500 -1.2185e+02 -1.28300000 -1.36120000 361.6 484.5400 -1.2294e+02 #> 1992 398.8800 -1.1484e+01 -0.14655000 -0.25758000 387.4 410.5100 -2.3110e+01 #> 1993 294.5900 -2.9488e+01 -0.50955000 -0.54383000 265.1 311.2600 -4.6164e+01 #> 1994 233.0900 7.5815e+01 1.65580000 1.36820000 308.9 250.3300 5.8568e+01 #> 1995 191.0100 1.4788e+01 0.39410000 0.18596000 205.8 209.7700 -3.9711e+00 #> 1996 159.1400 -7.7440e+00 -0.24770000 -0.43095000 151.4 180.4800 -2.9077e+01 #> 1997 94.9080 1.3792e+01 0.73973000 0.00985110 108.7 123.5400 -1.4839e+01 #> 1998 57.1100 -1.0972e-01 -0.00977990 -0.64125000 57.0 87.4770 -3.0477e+01 #> 1999 34.3910 -7.3913e+00 -1.09400000 -1.24270000 27.0 62.3230 -3.5323e+01 #> 2000 20.7200 1.6796e+00 0.41262000 -0.50263000 22.4 44.4620 -2.2062e+01 #> 2001 153.1400 -1.5314e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2002 147.5400 4.8358e+01 1.66840000 1.71000000 195.9 145.8600 5.0042e+01 #> 2003 142.2100 1.4985e+01 0.53638000 0.58560000 157.2 141.6500 1.5547e+01 #> 2004 137.1500 -3.4148e+01 -1.26740000 -1.16970000 103.0 137.6100 -3.4612e+01 #> 2005 132.3300 -2.5827e+01 -0.99353000 -0.92813000 106.5 133.7300 -2.7229e+01 #> 2006 123.3800 -1.9575e+01 -0.80768000 -0.78944000 103.8 126.4100 -2.2609e+01 #> 2007 115.2700 -1.2966e+01 -0.57260000 -0.60240000 102.3 119.6400 -1.7344e+01 #> 2008 107.9100 4.4186e+01 2.08430000 1.82860000 152.1 113.3900 3.8713e+01 #> 2009 101.2400 -1.5443e+01 -0.77646000 -0.84324000 85.8 107.6000 -2.1798e+01 #> 2010 89.6790 -1.2579e+01 -0.71403000 -0.81909000 77.1 97.2730 -2.0173e+01 #> 2011 72.1490 5.9506e+00 0.41984000 0.15506000 78.1 80.7560 -2.6560e+00 #> 2012 59.9170 -2.9169e+00 -0.24782000 -0.42365000 57.0 68.4180 -1.1418e+01 #> 2013 44.7700 -1.4270e+01 -1.62250000 -1.51610000 30.5 51.8770 -2.1377e+01 #> 2014 36.1090 9.0825e-02 0.01280400 -0.03031200 36.2 41.7220 -5.5220e+00 #> 2015 30.4570 -4.4571e+00 -0.74494000 -0.60434000 26.0 34.9620 -8.9618e+00 #> 2016 26.3090 -1.7092e+00 -0.33070000 -0.21116000 24.6 30.0790 -5.4795e+00 #> 2017 17.8420 7.1581e+00 2.04230000 1.74630000 25.0 20.5900 4.4102e+00 #> 2018 12.3130 6.8703e-01 0.28404000 0.26361000 13.0 14.5800 -1.5796e+00 #> 2019 8.5139 -7.1394e-01 -0.42686000 -0.31975000 7.8 10.3870 -2.5871e+00 #> 2020 5.8901 1.0986e-01 0.09494600 0.00842470 6.0 7.4103 -1.4103e+00 #> 2021 562.1200 -5.6212e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2022 549.8800 2.3821e+01 0.22052000 -0.37768000 573.7 875.1500 -3.0145e+02 #> 2023 538.0100 6.7691e+01 0.64047000 -0.08593400 605.7 849.9200 -2.4422e+02 #> 2024 526.5000 1.6007e+00 0.01547700 -0.49631000 528.1 825.6700 -2.9757e+02 #> 2025 515.3400 -7.5939e+01 -0.75011000 -1.00640000 439.4 802.3800 -3.6298e+02 #> 2026 494.0200 8.6082e+01 0.88701000 0.12505000 580.1 758.4600 -1.7836e+02 #> 2027 473.9600 -1.3276e+02 -1.42590000 -1.45120000 341.2 717.8600 -3.7666e+02 #> 2028 455.0700 3.7265e+00 0.04168400 -0.42348000 458.8 680.3200 -2.2152e+02 #> 2029 437.2900 8.0310e+01 0.93488000 0.21765000 517.6 645.5900 -1.2799e+02 #> 2030 404.7400 2.5602e+00 0.03220000 -0.39317000 407.3 583.6400 -1.7634e+02 #> 2031 349.9700 -7.8772e+01 -1.14580000 -1.22210000 271.2 484.5400 -2.1334e+02 #> 2032 306.2500 7.5051e-01 0.01247500 -0.34366000 307.0 410.5100 -1.0351e+02 #> 2033 242.2500 2.1852e+01 0.45918000 0.03632600 264.1 311.2600 -4.7164e+01 #> 2034 198.7300 6.5734e+00 0.16838000 -0.16926000 205.3 250.3300 -4.5032e+01 #> 2035 167.6100 -1.0813e+01 -0.32838000 -0.54849000 156.8 209.7700 -5.2971e+01 #> 2036 144.2300 -1.5128e+01 -0.53393000 -0.69752000 129.1 180.4800 -5.1377e+01 #> 2037 98.1940 1.7106e+01 0.88679000 0.45185000 115.3 123.5400 -8.2390e+00 #> 2038 69.6140 -1.0314e+01 -0.75417000 -0.75807000 59.3 87.4770 -2.8177e+01 #> 2039 49.8920 4.4076e+00 0.44970000 0.18969000 54.3 62.3230 -8.0226e+00 #> 2040 35.8700 2.7303e+00 0.38747000 0.17235000 38.6 44.4620 -5.8619e+00 #> 2041 400.6900 -4.0069e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2042 389.8100 -3.4109e+01 -0.44542000 -0.49348000 355.7 437.5700 -8.1873e+01 #> 2043 379.3800 -8.5773e+00 -0.11509000 -0.20793000 370.8 424.9600 -5.4159e+01 #> 2044 369.3800 1.2842e+02 1.76980000 1.43220000 497.8 412.8400 8.4963e+01 #> 2045 359.7900 -3.4394e+01 -0.48662000 -0.53096000 325.4 401.1900 -7.5788e+01 #> 2046 341.7900 -3.5492e+01 -0.52860000 -0.56748000 306.3 379.2300 -7.2928e+01 #> 2047 325.2300 -1.0713e+02 -1.67680000 -1.58220000 218.1 358.9300 -1.4083e+02 #> 2048 309.9800 1.0562e+02 1.73450000 1.45310000 415.6 340.1600 7.5439e+01 #> 2049 295.9300 -1.8026e+01 -0.31008000 -0.36370000 277.9 322.7900 -4.4893e+01 #> 2050 271.0000 3.8005e+01 0.71389000 0.58170000 309.0 291.8200 1.7182e+01 #> 2051 231.4300 -5.9830e+01 -1.31600000 -1.25510000 171.6 242.2700 -7.0668e+01 #> 2052 202.0300 -6.8330e+00 -0.17217000 -0.13398000 195.2 205.2600 -1.0055e+01 #> 2053 162.3600 -3.9057e+01 -1.22460000 -1.09480000 123.3 155.6300 -3.2332e+01 #> 2054 137.1300 5.9651e+00 0.22143000 0.46921000 143.1 125.1700 1.7934e+01 #> 2055 119.3400 3.9160e+01 1.67040000 2.09760000 158.5 104.8900 5.3614e+01 #> 2056 105.6100 -3.8613e+01 -1.86110000 -1.71610000 67.0 90.2380 -2.3238e+01 #> 2057 76.1520 -6.8517e+00 -0.45801000 -0.20395000 69.3 61.7700 7.5305e+00 #> 2058 55.7770 2.0723e+01 1.89120000 2.33060000 76.5 43.7390 3.2761e+01 #> 2059 40.9450 2.7545e+00 0.34245000 0.51535000 43.7 31.1610 1.2539e+01 #> 2060 30.0750 -7.3747e+00 -1.24820000 -1.23690000 22.7 22.2310 4.6906e-01 #> 2061 1701.2000 -1.7012e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2062 1653.8000 -1.1438e+01 -0.03520500 -0.05269100 1642.4 1750.3000 -1.0789e+02 #> 2063 1608.3000 1.1150e+02 0.35290000 0.30748000 1719.8 1699.8000 1.9966e+01 #> 2064 1564.5000 1.3200e+02 0.42948000 0.38482000 1696.5 1651.3000 4.5151e+01 #> 2065 1522.4000 -3.0197e+02 -1.00970000 -0.92823000 1220.4 1604.8000 -3.8435e+02 #> 2066 1442.8000 -5.9219e+01 -0.20893000 -0.18269000 1383.6 1516.9000 -1.3331e+02 #> 2067 1369.1000 6.7386e+02 2.50540000 2.34590000 2043.0 1435.7000 6.0728e+02 #> 2068 1300.8000 -1.1515e+02 -0.45059000 -0.38798000 1185.7 1360.6000 -1.7494e+02 #> 2069 1237.5000 -1.6761e+02 -0.68947000 -0.60375000 1069.9 1291.2000 -2.2127e+02 #> 2070 1124.1000 -4.0335e+02 -1.82650000 -1.66520000 720.8 1167.3000 -4.4647e+02 #> 2071 941.3600 -4.9916e+02 -2.69920000 -2.49610000 442.2 969.0700 -5.2687e+02 #> 2072 803.1600 1.4740e+01 0.09342200 0.18026000 817.9 821.0200 -3.1203e+00 #> 2073 614.1300 2.4077e+02 1.99570000 1.98860000 854.9 622.5300 2.3237e+02 #> 2074 494.4900 9.5806e+01 0.98625000 0.95653000 590.3 500.6600 8.9637e+01 #> 2075 412.5400 -7.1441e+00 -0.08815300 -0.12115000 405.4 419.5400 -1.4142e+01 #> 2076 352.0600 1.7140e+01 0.24783000 0.13951000 369.2 360.9500 8.2465e+00 #> 2077 232.9000 -5.1100e+01 -1.11690000 -1.14290000 181.8 247.0800 -6.5278e+01 #> 2078 158.7400 -3.6701e-02 -0.00117690 -0.21133000 158.7 174.9500 -1.6255e+01 #> 2079 108.8000 1.0204e+01 0.47742000 0.14767000 119.0 124.6500 -5.6453e+00 #> 2080 74.6680 3.2119e-02 0.00218970 -0.20119000 74.7 88.9240 -1.4224e+01 #> 2081 382.0600 -3.8206e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2082 370.4300 -7.6929e+01 -1.05720000 -1.04970000 293.5 437.5700 -1.4407e+02 #> 2083 359.3600 1.1954e+02 1.69340000 1.21590000 478.9 424.9600 5.3941e+01 #> 2084 348.8100 8.4492e+01 1.23310000 0.82350000 433.3 412.8400 2.0463e+01 #> 2085 338.7600 3.1539e+01 0.47393000 0.18484000 370.3 401.1900 -3.0888e+01 #> 2086 320.0700 2.2335e+01 0.35522000 0.06969700 342.4 379.2300 -3.6828e+01 #> 2087 303.0800 -4.0680e+01 -0.68325000 -0.80481000 262.4 358.9300 -9.6531e+01 #> 2088 287.6300 -8.8035e+01 -1.55800000 -1.54260000 199.6 340.1600 -1.4056e+02 #> 2089 273.5800 2.2923e+01 0.42652000 0.10261000 296.5 322.7900 -2.6293e+01 #> 2090 249.0900 -2.4588e+01 -0.50249000 -0.67706000 224.5 291.8200 -6.7318e+01 #> 2091 211.5600 -2.3757e+01 -0.57164000 -0.71946000 187.8 242.2700 -5.4468e+01 #> 2092 184.9000 -4.2700e+01 -1.17560000 -1.21140000 142.2 205.2600 -6.3055e+01 #> 2093 150.8200 -5.0617e+01 -1.70840000 -1.63730000 100.2 155.6300 -5.5432e+01 #> 2094 130.2000 -1.5396e+01 -0.60196000 -0.51433000 114.8 125.1700 -1.0366e+01 #> 2095 115.8500 -1.5754e+01 -0.69219000 -0.54294000 100.1 104.8900 -4.7855e+00 #> 2096 104.6700 1.6634e+01 0.80902000 1.08730000 121.3 90.2380 3.1062e+01 #> 2097 79.5740 1.3126e+01 0.83972000 1.24920000 92.7 61.7700 3.0930e+01 #> 2098 61.1030 1.5497e+01 1.29100000 1.81580000 76.6 43.7390 3.2861e+01 #> 2099 46.9690 6.1311e+00 0.66448000 1.03240000 53.1 31.1610 2.1939e+01 #> 2100 36.1160 -4.6158e+00 -0.65058000 -0.66327000 31.5 22.2310 9.2691e+00 #> 2101 608.7800 -6.0878e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2102 597.4000 -6.5797e+01 -0.56066000 -0.79848000 531.6 875.1500 -3.4355e+02 #> 2103 586.3300 4.1967e+01 0.36435000 -0.12880000 628.3 849.9200 -2.2162e+02 #> 2104 575.5800 8.8922e+01 0.78644000 0.18989000 664.5 825.6700 -1.6117e+02 #> 2105 565.1200 -1.8272e+02 -1.64590000 -1.54080000 382.4 802.3800 -4.1998e+02 #> 2106 545.0700 -5.8975e+01 -0.55077000 -0.72921000 486.1 758.4600 -2.7236e+02 #> 2107 526.1200 2.0781e+01 0.20107000 -0.15179000 546.9 717.8600 -1.7096e+02 #> 2108 508.1900 3.8911e+01 0.38977000 0.01749300 547.1 680.3200 -1.3322e+02 #> 2109 491.2200 8.1478e+01 0.84434000 0.39003000 572.7 645.5900 -7.2886e+01 #> 2110 459.9500 1.5455e+02 1.71050000 1.12250000 614.5 583.6400 3.0864e+01 #> 2111 406.6300 -1.7163e+02 -2.14860000 -1.86380000 235.0 484.5400 -2.4954e+02 #> 2112 363.3400 -1.2784e+02 -1.79110000 -1.57280000 235.5 410.5100 -1.7501e+02 #> 2113 298.5900 7.4308e+01 1.26680000 1.14640000 372.9 311.2600 6.1636e+01 #> 2114 253.4600 -2.8460e+01 -0.57158000 -0.49152000 225.0 250.3300 -2.5332e+01 #> 2115 220.5700 1.0326e+01 0.23830000 0.29116000 230.9 209.7700 2.1129e+01 #> 2116 195.4800 1.3318e+01 0.34681000 0.41162000 208.8 180.4800 2.8323e+01 #> 2117 144.7700 -3.5173e+01 -1.23670000 -1.20560000 109.6 123.5400 -1.3939e+01 #> 2118 111.5300 6.4717e+00 0.29539000 0.45110000 118.0 87.4770 3.0523e+01 #> 2119 86.8950 4.4047e+00 0.25803000 0.45068000 91.3 62.3230 2.8977e+01 #> 2120 67.9300 9.8699e+00 0.73962000 1.03710000 77.8 44.4620 3.3338e+01 #> 2121 176.7400 -1.7674e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2122 172.4100 -3.0508e+01 -0.90076000 -0.96497000 141.9 145.8600 -3.9575e+00 #> 2123 168.2200 1.7980e+01 0.54409000 0.68159000 186.2 141.6500 4.4547e+01 #> 2124 164.1700 2.1829e+01 0.67684000 0.85259000 186.0 137.6100 4.8388e+01 #> 2125 160.2600 1.4443e+01 0.45877000 0.62160000 174.7 133.7300 4.0971e+01 #> 2126 152.8100 -2.4012e+01 -0.79989000 -0.81166000 128.8 126.4100 2.3906e+00 #> 2127 145.8500 3.0150e+01 1.05230000 1.38880000 176.0 119.6400 5.6356e+01 #> 2128 139.3400 -9.7369e+00 -0.35572000 -0.25719000 129.6 113.3900 1.6213e+01 #> 2129 133.2400 -3.2942e+01 -1.25850000 -1.33470000 100.3 107.6000 -7.2976e+00 #> 2130 122.1900 3.0105e+01 1.25410000 1.77330000 152.3 97.2730 5.5027e+01 #> 2131 103.9800 -2.8798e+00 -0.14098000 0.08496800 101.1 80.7560 2.0344e+01 #> 2132 89.8600 1.7440e+01 0.98797000 1.58570000 107.3 68.4180 3.8882e+01 #> 2133 70.1220 1.7178e+01 1.24710000 1.97840000 87.3 51.8770 3.5423e+01 #> 2134 57.5740 -5.1738e+00 -0.45745000 -0.34941000 52.4 41.7220 1.0678e+01 #> 2135 49.1720 7.8278e+00 0.81035000 1.39670000 57.0 34.9620 2.2038e+01 #> 2136 43.2000 -8.2996e+00 -0.97799000 -1.05700000 34.9 30.0790 4.8205e+00 #> 2137 32.0510 -4.4511e+00 -0.70694000 -0.64567000 27.6 20.5900 7.0102e+00 #> 2138 25.0180 -3.4177e+00 -0.69542000 -0.62616000 21.6 14.5800 7.0204e+00 #> 2139 19.7620 8.3381e+00 2.14780000 3.79820000 28.1 10.3870 1.7713e+01 #> 2140 15.6550 -3.3553e+00 -1.09100000 -1.31500000 12.3 7.4103 4.8897e+00 #> 2141 552.8300 -5.5283e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2142 536.4900 -4.1590e+01 -0.39462000 -0.29299000 494.9 437.5700 5.7327e+01 #> 2143 520.8800 -8.3803e+00 -0.08189900 0.07300200 512.5 424.9600 8.7541e+01 #> 2144 505.9700 -1.4577e+02 -1.46660000 -1.55320000 360.2 412.8400 -5.2637e+01 #> 2145 491.7200 1.9268e+02 1.99470000 2.51930000 684.4 401.1900 2.8321e+02 #> 2146 465.1000 -4.4797e+01 -0.49030000 -0.40340000 420.3 379.2300 4.1072e+01 #> 2147 440.7700 7.2430e+01 0.83649000 1.17510000 513.2 358.9300 1.5427e+02 #> 2148 418.5300 1.2371e+01 0.15047000 0.37048000 430.9 340.1600 9.0739e+01 #> 2149 398.1800 8.8521e+01 1.13170000 1.55550000 486.7 322.7900 1.6391e+02 #> 2150 362.4700 -8.1701e+00 -0.11474000 0.08587700 354.3 291.8200 6.2482e+01 #> 2151 307.0600 -1.0686e+02 -1.77150000 -1.91580000 200.2 242.2700 -4.2068e+01 #> 2152 267.2000 3.5401e+01 0.67444000 1.19410000 302.6 205.2600 9.7345e+01 #> 2153 215.9000 -1.8098e+01 -0.42672000 -0.15767000 197.8 155.6300 4.2168e+01 #> 2154 185.2400 -6.1136e+01 -1.68010000 -1.96480000 124.1 125.1700 -1.0659e+00 #> 2155 164.5400 3.9161e+01 1.21160000 2.40420000 203.7 104.8900 9.8814e+01 #> 2156 148.9000 5.4799e+01 1.87340000 3.60430000 203.7 90.2380 1.1346e+02 #> 2157 114.9600 -1.8860e+01 -0.83514000 -0.88688000 96.1 61.7700 3.4330e+01 #> 2158 90.0750 -9.7750e+00 -0.55242000 -0.41009000 80.3 43.7390 3.6561e+01 #> 2159 70.7030 -9.8032e+00 -0.70581000 -0.72679000 60.9 31.1610 2.9739e+01 #> 2160 55.5210 1.4279e+01 1.30920000 3.00450000 69.8 22.2310 4.7569e+01 #> 2161 1340.9000 -1.3409e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2162 1312.6000 -1.0385e+02 -0.40272000 -0.69439000 1208.8 1750.3000 -5.4149e+02 #> 2163 1285.2000 -2.0420e+01 -0.08087900 -0.43855000 1264.8 1699.8000 -4.3503e+02 #> 2164 1258.6000 -2.6994e+01 -0.10918000 -0.44749000 1231.6 1651.3000 -4.1975e+02 #> 2165 1232.7000 -6.5445e+01 -0.27025000 -0.55905000 1167.3 1604.8000 -4.3745e+02 #> 2166 1183.3000 1.0302e+02 0.44318000 0.01774800 1286.3 1516.9000 -2.3061e+02 #> 2167 1136.6000 2.3566e+02 1.05540000 0.52657000 1372.3 1435.7000 -6.3423e+01 #> 2168 1092.6000 -6.8050e+01 -0.31703000 -0.53426000 1024.6 1360.6000 -3.3604e+02 #> 2169 1051.1000 -1.0284e+02 -0.49804000 -0.66211000 948.3 1291.2000 -3.4287e+02 #> 2170 974.9600 1.5914e+02 0.83087000 0.45834000 1134.1 1167.3000 -3.3173e+01 #> 2171 846.2400 -3.4040e+01 -0.20477000 -0.33798000 812.2 969.0700 -1.5687e+02 #> 2172 743.0500 2.4505e+02 1.67870000 1.35670000 988.1 821.0200 1.6708e+02 #> 2173 591.7500 -1.0955e+02 -0.94238000 -0.93486000 482.2 622.5300 -1.4033e+02 #> 2174 489.3300 -6.0928e+01 -0.63383000 -0.64804000 428.4 500.6600 -7.2263e+01 #> 2175 416.9200 8.7613e-01 0.01069700 -0.03784200 417.8 419.5400 -1.7421e+00 #> 2176 363.2800 -6.2808e+00 -0.08800900 -0.13153000 357.0 360.9500 -3.9535e+00 #> 2177 259.7700 -2.3266e+01 -0.45593000 -0.46328000 236.5 247.0800 -1.0578e+01 #> 2178 195.2500 -3.2489e+00 -0.08470400 -0.05254900 192.0 174.9500 1.7045e+01 #> 2179 148.8700 3.7135e+01 1.26980000 1.35890000 186.0 124.6500 6.1355e+01 #> 2180 113.9700 -6.7137e-01 -0.02998600 0.10520000 113.3 88.9240 2.4376e+01 #> 2181 322.2600 -3.2226e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2182 305.6500 -3.2948e+01 -0.54873000 -0.64752000 272.7 145.8600 1.2684e+02 #> 2183 289.9700 2.5432e+01 0.44647000 1.72440000 315.4 141.6500 1.7375e+02 #> 2184 275.1600 1.0736e+01 0.19861000 1.04550000 285.9 137.6100 1.4829e+02 #> 2185 261.1900 6.1112e+01 1.19110000 3.18910000 322.3 133.7300 1.8857e+02 #> 2186 235.5300 2.6069e+01 0.56342000 1.56910000 261.6 126.4100 1.3519e+02 #> 2187 212.6500 -5.6547e+00 -0.13536000 0.07705600 207.0 119.6400 8.7356e+01 #> 2188 192.2500 -7.1653e+01 -1.89720000 -2.93150000 120.6 113.3900 7.2131e+00 #> 2189 174.0600 5.0045e+01 1.46360000 2.39700000 224.1 107.6000 1.1650e+02 #> 2190 143.3300 5.7673e+01 2.04840000 2.65480000 201.0 97.2730 1.0373e+02 #> 2191 99.2910 -1.9391e+01 -0.99415000 -1.09640000 79.9 80.7560 -8.5603e-01 #> 2192 71.1510 -5.0696e-02 -0.00362700 -0.27803000 71.1 68.4180 2.6816e+00 #> 2193 41.1650 5.7354e+00 0.70924000 -0.01680600 46.9 51.8770 -4.9774e+00 #> 2194 27.9480 -2.1478e+00 -0.39121000 -0.76943000 25.8 41.7220 -1.5922e+01 #> 2195 21.4810 2.7187e+00 0.64426000 -0.26270000 24.2 34.9620 -1.0762e+01 #> 2196 17.8070 -1.5069e+00 -0.43077000 -0.87113000 16.3 30.0790 -1.3779e+01 #> 2197 11.9510 6.4923e-01 0.27654000 -0.42998000 12.6 20.5900 -7.9898e+00 #> 2198 8.4452 -1.0452e+00 -0.63000000 -0.88682000 7.4 14.5800 -7.1796e+00 #> 2199 5.9953 6.0473e-01 0.51346000 -0.12237000 6.6 10.3870 -3.7871e+00 #> 2200 4.2590 4.1044e-02 0.04905700 -0.34137000 4.3 7.4103 -3.1103e+00 #> 2201 1679.6000 -1.6796e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2202 1645.1000 2.4625e+02 0.76196000 0.45064000 1891.4 1750.3000 1.4111e+02 #> 2203 1611.8000 2.3855e+01 0.07533900 -0.15133000 1635.7 1699.8000 -6.4134e+01 #> 2204 1579.6000 1.7977e+02 0.57932000 0.32810000 1759.4 1651.3000 1.0805e+02 #> 2205 1548.5000 -1.6633e+00 -0.00546810 -0.19125000 1546.8 1604.8000 -5.7952e+01 #> 2206 1489.1000 -5.3731e+01 -0.18367000 -0.32611000 1435.4 1516.9000 -8.1513e+01 #> 2207 1433.6000 -1.1136e+02 -0.39543000 -0.49932000 1322.2 1435.7000 -1.1352e+02 #> 2208 1381.5000 -1.0099e+02 -0.37213000 -0.45304000 1280.5 1360.6000 -8.0142e+01 #> 2209 1332.7000 -1.2437e+02 -0.47508000 -0.53127000 1208.3 1291.2000 -8.2872e+01 #> 2210 1243.9000 -1.8049e+00 -0.00738610 -0.02242000 1242.1 1167.3000 7.4827e+01 #> 2211 1096.4000 2.0421e+02 0.94811000 1.07700000 1300.6 969.0700 3.3153e+02 #> 2212 980.4500 -4.1551e+01 -0.21573000 -0.10865000 938.9 821.0200 1.1788e+02 #> 2213 813.7900 1.3571e+02 0.84888000 1.24170000 949.5 622.5300 3.2697e+02 #> 2214 702.1400 2.3916e+02 1.73390000 2.50500000 941.3 500.6600 4.4064e+02 #> 2215 622.2800 5.1620e+01 0.42227000 0.84626000 673.9 419.5400 2.5436e+02 #> 2216 561.3000 -5.6100e+01 -0.50878000 -0.45802000 505.2 360.9500 1.4425e+02 #> 2217 433.6300 -2.6289e+00 -0.03086100 0.23317000 431.0 247.0800 1.8392e+02 #> 2218 344.0800 -2.3185e+01 -0.34300000 -0.35231000 320.9 174.9500 1.4595e+02 #> 2219 274.6200 3.4821e+00 0.06454700 0.30343000 278.1 124.6500 1.5345e+02 #> 2220 219.4900 3.2814e+01 0.76104000 1.50690000 252.3 88.9240 1.6338e+02 #> 2221 664.0100 -6.6401e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2222 651.1100 -2.5311e+01 -0.19788000 -0.48437000 625.8 875.1500 -2.4935e+02 #> 2223 638.6100 -1.0421e+02 -0.83066000 -0.94953000 534.4 849.9200 -3.1552e+02 #> 2224 626.4900 -2.3590e+01 -0.19168000 -0.45507000 602.9 825.6700 -2.2277e+02 #> 2225 614.7400 4.1557e+01 0.34412000 -0.03327900 656.3 802.3800 -1.4608e+02 #> 2226 592.3100 6.3287e+01 0.54390000 0.15003000 655.6 758.4600 -1.0286e+02 #> 2227 571.2200 -2.2952e+02 -2.04540000 -1.85500000 341.7 717.8600 -3.7616e+02 #> 2228 551.3800 1.3692e+02 1.26410000 0.78078000 688.3 680.3200 7.9788e+00 #> 2229 532.7000 -2.8797e+01 -0.27519000 -0.42580000 503.9 645.5900 -1.4169e+02 #> 2230 498.5200 1.1578e+02 1.18230000 0.81316000 614.3 583.6400 3.0664e+01 #> 2231 441.0100 -3.0612e+01 -0.35335000 -0.40247000 410.4 484.5400 -7.4136e+01 #> 2232 395.0300 4.2767e+01 0.55109000 0.45587000 437.8 410.5100 2.7290e+01 #> 2233 327.3000 1.1698e+01 0.18193000 0.20888000 339.0 311.2600 2.7736e+01 #> 2234 280.4800 4.8422e+01 0.87883000 0.97576000 328.9 250.3300 7.8568e+01 #> 2235 246.1400 -6.9402e+00 -0.14353000 -0.05740500 239.2 209.7700 2.9429e+01 #> 2236 219.4900 -5.0092e+01 -1.16170000 -1.17720000 169.4 180.4800 -1.1077e+01 #> 2237 163.4100 3.2094e+01 0.99980000 1.27030000 195.5 123.5400 7.1961e+01 #> 2238 124.9700 2.2827e+01 0.92978000 1.20670000 147.8 87.4770 6.0323e+01 #> 2239 96.1930 -1.0993e+01 -0.58175000 -0.72441000 85.2 62.3230 2.2877e+01 #> 2240 74.1670 6.3292e-01 0.04344000 0.04330100 74.8 44.4620 3.0338e+01 #> 2241 2347.4000 -2.3474e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2242 2238.6000 2.2144e+02 0.50356000 1.02030000 2460.0 1750.3000 7.0971e+02 #> 2243 2137.7000 8.8558e+01 0.21088000 0.58022000 2226.3 1699.8000 5.2647e+02 #> 2244 2044.3000 7.9777e+02 1.98650000 2.61140000 2842.1 1651.3000 1.1908e+03 #> 2245 1957.7000 -4.6353e+02 -1.20530000 -1.19690000 1494.2 1604.8000 -1.1055e+02 #> 2246 1802.8000 -3.5868e+02 -1.01280000 -1.02370000 1444.1 1516.9000 -7.2813e+01 #> 2247 1669.0000 -9.6243e+01 -0.29353000 -0.24742000 1572.8 1435.7000 1.3708e+02 #> 2248 1553.2000 -4.6554e+02 -1.52570000 -1.62790000 1087.7 1360.6000 -2.7294e+02 #> 2249 1452.6000 -1.3872e+02 -0.48611000 -0.47963000 1313.9 1291.2000 2.2728e+01 #> 2250 1288.0000 3.2511e+02 1.28490000 1.49630000 1613.1 1167.3000 4.4583e+02 #> 2251 1060.1000 -1.2151e+02 -0.58346000 -0.43033000 938.6 969.0700 -3.0472e+01 #> 2252 912.3900 -1.5429e+02 -0.86081000 -0.64412000 758.1 821.0200 -6.2920e+01 #> 2253 727.2300 -4.8727e+01 -0.34108000 0.04156500 678.5 622.5300 5.5971e+01 #> 2254 604.2900 3.2591e+02 2.74540000 3.60550000 930.2 500.6600 4.2954e+02 #> 2255 508.8200 -8.2118e+01 -0.82155000 -0.74403000 426.7 419.5400 7.1579e+00 #> 2256 430.1600 1.1644e+02 1.37790000 1.43770000 546.6 360.9500 1.8565e+02 #> 2257 261.0900 -5.4908e+00 -0.10705000 -0.45741000 255.6 247.0800 8.5220e+00 #> 2258 158.5900 -5.5385e+01 -1.77780000 -1.79480000 103.2 174.9500 -7.1755e+01 #> 2259 96.3260 1.1174e+01 0.59052000 -0.23217000 107.5 124.6500 -1.7145e+01 #> 2260 58.5330 -1.5332e+00 -0.13334000 -0.64708000 57.0 88.9240 -3.1924e+01 #> 2261 2242.0000 -2.2420e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2262 2162.0000 1.8382e+02 0.43281000 0.54375000 2345.8 1750.3000 5.9551e+02 #> 2263 2085.3000 7.7196e+01 0.18844000 0.25160000 2162.5 1699.8000 4.6267e+02 #> 2264 2011.9000 9.8444e+01 0.24908000 0.31939000 2110.3 1651.3000 4.5895e+02 #> 2265 1941.5000 5.3490e+02 1.40250000 1.65810000 2476.4 1604.8000 8.7165e+02 #> 2266 1809.5000 5.6199e+01 0.15810000 0.20572000 1865.7 1516.9000 3.4879e+02 #> 2267 1688.3000 -3.9212e+01 -0.11823000 -0.11180000 1649.1 1435.7000 2.1338e+02 #> 2268 1577.0000 -4.2271e+02 -1.36450000 -1.50480000 1154.3 1360.6000 -2.0634e+02 #> 2269 1474.7000 5.0258e+01 0.17348000 0.21068000 1525.0 1291.2000 2.3383e+02 #> 2270 1294.3000 6.9176e+01 0.27206000 0.30541000 1363.5 1167.3000 1.9623e+02 #> 2271 1012.2000 -6.1831e+01 -0.31095000 -0.31122000 950.4 969.0700 -1.8672e+01 #> 2272 808.6400 -1.0134e+02 -0.63793000 -0.62684000 707.3 821.0200 -1.1372e+02 #> 2273 550.7000 2.2170e+02 2.04940000 1.53030000 772.4 622.5300 1.4987e+02 #> 2274 406.1700 3.6232e+01 0.45409000 0.07944600 442.4 500.6600 -5.8263e+01 #> 2275 319.1200 -2.8319e+01 -0.45173000 -0.67242000 290.8 419.5400 -1.2874e+02 #> 2276 262.0600 -3.8583e+00 -0.07494800 -0.46758000 258.2 360.9500 -1.0275e+02 #> 2277 165.0600 4.5439e+00 0.14014000 -0.34719000 169.6 247.0800 -7.7478e+01 #> 2278 110.5900 -1.4388e+01 -0.66230000 -0.74751000 96.2 174.9500 -7.8755e+01 #> 2279 74.9170 -4.3171e+00 -0.29334000 -0.39877000 70.6 124.6500 -5.4045e+01 #> 2280 50.8640 7.0356e+00 0.70411000 0.28070000 57.9 88.9240 -3.1024e+01 #> 2281 396.4100 -3.9641e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2282 385.2300 4.7473e+01 0.62731000 0.45189000 432.7 437.5700 -4.8726e+00 #> 2283 374.5200 -2.7420e+01 -0.37269000 -0.40816000 347.1 424.9600 -7.7859e+01 #> 2284 364.2600 -6.5665e+01 -0.91764000 -0.88092000 298.6 412.8400 -1.1424e+02 #> 2285 354.4400 -7.2840e+01 -1.04610000 -0.99641000 281.6 401.1900 -1.1959e+02 #> 2286 336.0000 1.9097e+01 0.28932000 0.15438000 355.1 379.2300 -2.4128e+01 #> 2287 319.0600 2.4442e+01 0.38996000 0.24187000 343.5 358.9300 -1.5431e+01 #> 2288 303.4700 -5.8370e+01 -0.97911000 -0.95863000 245.1 340.1600 -9.5061e+01 #> 2289 289.1100 1.4749e+02 2.59680000 2.19560000 436.6 322.7900 1.1381e+02 #> 2290 263.6600 -3.0560e+01 -0.59002000 -0.61863000 233.1 291.8200 -5.8718e+01 #> 2291 223.2500 -2.9549e+00 -0.06737500 -0.12948000 220.3 242.2700 -2.1968e+01 #> 2292 193.1400 -5.1044e+01 -1.34530000 -1.28860000 142.1 205.2600 -6.3155e+01 #> 2293 152.1200 5.9792e+00 0.20008000 0.21374000 158.1 155.6300 2.4678e+00 #> 2294 125.5800 -2.1785e+01 -0.88303000 -0.80450000 103.8 125.1700 -2.1366e+01 #> 2295 106.5900 2.4406e+01 1.16550000 1.16770000 131.0 104.8900 2.6114e+01 #> 2296 91.8800 3.5420e+01 1.96240000 1.88200000 127.3 90.2380 3.7062e+01 #> 2297 60.9910 -1.6991e+01 -1.41810000 -1.39110000 44.0 61.7700 -1.7770e+01 #> 2298 41.0600 2.3403e+00 0.29014000 -0.00229000 43.4 43.7390 -3.3866e-01 #> 2299 27.6960 -4.4959e+00 -0.82634000 -0.93670000 23.2 31.1610 -7.9613e+00 #> 2300 18.6930 1.4071e+00 0.38319000 -0.07552500 20.1 22.2310 -2.1309e+00 #> 2301 763.8000 -7.6380e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2302 747.5700 -7.0174e+01 -0.47783000 -0.54059000 677.4 875.1500 -1.9775e+02 #> 2303 731.8700 -2.7027e+02 -1.87980000 -1.70680000 461.6 849.9200 -3.8832e+02 #> 2304 716.6700 -6.1367e+01 -0.43588000 -0.48441000 655.3 825.6700 -1.7037e+02 #> 2305 701.9500 1.1385e+02 0.82562000 0.59866000 815.8 802.3800 1.3424e+01 #> 2306 673.9100 -5.2610e+01 -0.39740000 -0.42174000 621.3 758.4600 -1.3716e+02 #> 2307 647.6200 -1.4862e+02 -1.16820000 -1.07580000 499.0 717.8600 -2.1886e+02 #> 2308 622.9600 2.8764e+02 2.35050000 2.04250000 910.6 680.3200 2.3028e+02 #> 2309 599.8100 1.5489e+02 1.31450000 1.16200000 754.7 645.5900 1.0911e+02 #> 2310 557.6700 4.9433e+01 0.45123000 0.43719000 607.1 583.6400 2.3464e+01 #> 2311 487.4900 -5.3789e+01 -0.56167000 -0.45094000 433.7 484.5400 -5.0836e+01 #> 2312 432.2400 -1.1944e+02 -1.40660000 -1.26550000 312.8 410.5100 -9.7710e+01 #> 2313 352.8900 4.7909e+01 0.69109000 0.93073000 400.8 311.2600 8.9536e+01 #> 2314 300.1000 4.0000e+01 0.67849000 0.98589000 340.1 250.3300 8.9768e+01 #> 2315 262.8500 -9.7249e+01 -1.88340000 -1.92880000 165.6 209.7700 -4.4171e+01 #> 2316 234.9000 -3.1962e+00 -0.06926600 0.17541000 231.7 180.4800 5.1223e+01 #> 2317 178.2500 8.1483e+00 0.23270000 0.56907000 186.4 123.5400 6.2861e+01 #> 2318 139.9000 3.0202e+01 1.09890000 1.77090000 170.1 87.4770 8.2623e+01 #> 2319 110.6600 -7.8568e+00 -0.36143000 -0.31108000 102.8 62.3230 4.0477e+01 #> 2320 87.6980 9.5017e+00 0.55153000 0.97478000 97.2 44.4620 5.2738e+01 #> 2321 1313.0000 -1.3130e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2322 1256.6000 1.3366e+02 0.54143000 1.37000000 1390.3 875.1500 5.1515e+02 #> 2323 1203.5000 -2.2954e+02 -0.97087000 -0.81375000 974.0 849.9200 1.2408e+02 #> 2324 1153.5000 -2.0454e+02 -0.90262000 -0.76424000 949.0 825.6700 1.2333e+02 #> 2325 1106.4000 -1.3429e+00 -0.00617850 0.40905000 1105.1 802.3800 3.0272e+02 #> 2326 1020.2000 1.0426e+02 0.52018000 1.00440000 1124.5 758.4600 3.6604e+02 #> 2327 943.6400 9.8262e+01 0.53008000 0.92037000 1041.9 717.8600 3.2404e+02 #> 2328 875.4700 4.8123e+02 2.79810000 3.68830000 1356.7 680.3200 6.7638e+02 #> 2329 814.7300 -2.1373e+02 -1.33540000 -1.51300000 601.0 645.5900 -4.4586e+01 #> 2330 712.1000 -8.7104e+01 -0.62266000 -0.67160000 625.0 583.6400 4.1364e+01 #> 2331 563.4400 1.9658e+01 0.17760000 0.24050000 583.1 484.5400 9.8564e+01 #> 2332 464.8700 -5.2972e+01 -0.58006000 -0.55945000 411.9 410.5100 1.3898e+00 #> 2333 347.6500 -2.2347e+01 -0.32722000 -0.17155000 325.3 311.2600 1.4036e+01 #> 2334 280.5800 6.5916e+01 1.19590000 1.49520000 346.5 250.3300 9.6168e+01 #> 2335 234.8500 1.1553e+01 0.25042000 0.41406000 246.4 209.7700 3.6629e+01 #> 2336 199.7300 -3.2130e+01 -0.81888000 -0.77262000 167.6 180.4800 -1.2877e+01 #> 2337 126.2300 5.0570e+01 2.03930000 1.52740000 176.8 123.5400 5.3261e+01 #> 2338 80.3430 -1.3743e+01 -0.87072000 -1.11730000 66.6 87.4770 -2.0877e+01 #> 2339 51.1610 -2.8613e+00 -0.28469000 -0.74621000 48.3 62.3230 -1.4023e+01 #> 2340 32.5920 -9.9231e-01 -0.15498000 -0.68399000 31.6 44.4620 -1.2862e+01 #> 2341 116.7800 -1.1678e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2342 114.5600 -1.8958e+01 -0.84239000 -0.91065000 95.6 145.8600 -5.0258e+01 #> 2343 112.4000 -2.3098e+01 -1.04610000 -1.06100000 89.3 141.6500 -5.2353e+01 #> 2344 110.3000 -1.3999e+01 -0.64607000 -0.73598000 96.3 137.6100 -4.1312e+01 #> 2345 108.2600 3.2742e+01 1.53960000 1.01720000 141.0 133.7300 7.2706e+00 #> 2346 104.3400 -6.8423e+00 -0.33381000 -0.45426000 97.5 126.4100 -2.8909e+01 #> 2347 100.6400 -2.9838e+01 -1.50930000 -1.39760000 70.8 119.6400 -4.8844e+01 #> 2348 97.1330 1.0867e+01 0.56948000 0.33726000 108.0 113.3900 -5.3869e+00 #> 2349 93.8150 5.3850e+00 0.29219000 0.13149000 99.2 107.6000 -8.3976e+00 #> 2350 87.6940 -2.7938e+00 -0.16217000 -0.21661000 84.9 97.2730 -1.2373e+01 #> 2351 77.2390 1.2961e+01 0.85419000 0.75853000 90.2 80.7560 9.4440e+00 #> 2352 68.7280 1.8372e+01 1.36070000 1.31080000 87.1 68.4180 1.8682e+01 #> 2353 55.9440 8.2561e+00 0.75124000 0.81681000 64.2 51.8770 1.2323e+01 #> 2354 46.9780 -2.6783e+00 -0.29021000 -0.25186000 44.3 41.7220 2.5780e+00 #> 2355 40.4110 -7.1065e-01 -0.08952000 -0.06290600 39.7 34.9620 4.7382e+00 #> 2356 35.3830 1.4217e+01 2.04540000 2.26070000 49.6 30.0790 1.9521e+01 #> 2357 25.2470 -4.7469e+00 -0.95711000 -1.13490000 20.5 20.5900 -8.9834e-02 #> 2358 18.7410 -2.3409e+00 -0.63584000 -0.82082000 16.4 14.5800 1.8204e+00 #> 2359 14.0740 -1.7440e-01 -0.06307800 -0.19462000 13.9 10.3870 3.5129e+00 #> 2360 10.6080 5.9248e-01 0.28433000 0.18157000 11.2 7.4103 3.7897e+00 #> 2361 677.3800 -6.7738e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2362 649.9100 2.5089e+02 1.96510000 3.36630000 900.8 437.5700 4.6323e+02 #> 2363 623.7100 -1.6806e+01 -0.13717000 0.25736000 606.9 424.9600 1.8194e+02 #> 2364 598.7000 2.8501e+01 0.24233000 0.79451000 627.2 412.8400 2.1436e+02 #> 2365 574.8300 -4.6235e+01 -0.40943000 -0.14708000 528.6 401.1900 1.2741e+02 #> 2366 530.3300 -7.4526e+01 -0.71536000 -0.57464000 455.8 379.2300 7.6572e+01 #> 2367 489.7800 -8.3667e-02 -0.00086958 0.39151000 489.7 358.9300 1.3077e+02 #> 2368 452.8400 -1.6794e+02 -1.88790000 -2.07700000 284.9 340.1600 -5.5261e+01 #> 2369 419.1800 -1.9878e+02 -2.41400000 -2.67800000 220.4 322.7900 -1.0239e+02 #> 2370 360.5100 1.0839e+02 1.53040000 2.10190000 468.9 291.8200 1.7708e+02 #> 2371 271.0400 8.9559e+01 1.68200000 1.93800000 360.6 242.2700 1.1833e+02 #> 2372 208.7500 1.7151e+01 0.41823000 0.49017000 225.9 205.2600 2.0645e+01 #> 2373 134.0500 6.6491e+00 0.25249000 0.09124500 140.7 155.6300 -1.4932e+01 #> 2374 95.5390 -1.4739e+01 -0.78532000 -0.81541000 80.8 125.1700 -4.4366e+01 #> 2375 74.2110 -1.0811e+01 -0.74155000 -0.88411000 63.4 104.8900 -4.1486e+01 #> 2376 61.2110 5.7888e+00 0.48141000 -0.16775000 67.0 90.2380 -2.3238e+01 #> 2377 40.5250 8.1752e+00 1.02690000 0.23169000 48.7 61.7700 -1.3070e+01 #> 2378 28.8050 -7.5050e+00 -1.32630000 -1.07270000 21.3 43.7390 -2.2439e+01 #> 2379 20.6890 -2.3887e+00 -0.58774000 -0.39329000 18.3 31.1610 -1.2861e+01 #> 2380 14.8850 2.9150e+00 0.99688000 0.83121000 17.8 22.2310 -4.4309e+00 #> 2381 179.5200 -1.7952e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2382 171.5500 -7.0450e+00 -0.20906000 -0.01462600 164.5 145.8600 1.8642e+01 #> 2383 163.9700 6.4257e+00 0.19948000 0.37565000 170.4 141.6500 2.8747e+01 #> 2384 156.7900 -1.0787e+01 -0.35023000 -0.27673000 146.0 137.6100 8.3876e+00 #> 2385 149.9600 -2.8636e+00 -0.09720400 -0.05710700 147.1 133.7300 1.3371e+01 #> 2386 137.3300 7.7682e+00 0.28794000 0.23877000 145.1 126.4100 1.8691e+01 #> 2387 125.9400 1.0662e+01 0.43095000 0.28068000 136.6 119.6400 1.6956e+01 #> 2388 115.6600 -2.5663e-01 -0.01129500 -0.22564000 115.4 113.3900 2.0131e+00 #> 2389 106.3700 4.9226e+01 2.35570000 1.84620000 155.6 107.6000 4.8002e+01 #> 2390 90.4080 -7.6080e+00 -0.42837000 -0.74617000 82.8 97.2730 -1.4473e+01 #> 2391 66.6330 -9.8332e+00 -0.75121000 -1.07450000 56.8 80.7560 -2.3956e+01 #> 2392 50.5330 -1.2633e+01 -1.27260000 -1.42840000 37.9 68.4180 -3.0518e+01 #> 2393 31.7030 1.7973e+00 0.28858000 -0.48473000 33.5 51.8770 -1.8377e+01 #> 2394 22.0420 9.0584e+00 2.09200000 0.39982000 31.1 41.7220 -1.0622e+01 #> 2395 16.5190 -1.1186e+00 -0.34470000 -0.81144000 15.4 34.9620 -1.9562e+01 #> 2396 12.9770 -1.1771e+00 -0.46172000 -0.85320000 11.8 30.0790 -1.8279e+01 #> 2397 7.0728 -4.7278e-01 -0.34027000 -0.75616000 6.6 20.5900 -1.3990e+01 #> 2398 4.0361 -8.3611e-01 -1.05450000 -0.95934000 3.2 14.5800 -1.1380e+01 #> 2399 2.3172 -1.7233e-02 -0.03785800 -0.51740000 2.3 10.3870 -8.0871e+00 #> 2400 1.3320 1.6797e-01 0.64189000 -0.24222000 1.5 7.4103 -5.9103e+00 #> WRES NMREP #> 1 0.00000000 1 #> 2 -0.85205000 1 #> 3 0.89732000 1 #> 4 -1.21190000 1 #> 5 -0.03483100 1 #> 6 0.06513500 1 #> 7 -0.05702000 1 #> 8 -0.64233000 1 #> 9 -0.47823000 1 #> 10 -1.25250000 1 #> 11 -0.00117670 1 #> 12 0.03637000 1 #> 13 0.69963000 1 #> 14 0.35382000 1 #> 15 -1.64090000 1 #> 16 -0.20239000 1 #> 17 -0.08790800 1 #> 18 -0.74647000 1 #> 19 2.04240000 1 #> 20 1.79380000 1 #> 21 0.00000000 1 #> 22 -0.17455000 1 #> 23 2.52750000 1 #> 24 0.97245000 1 #> 25 -1.01010000 1 #> 26 0.40229000 1 #> 27 0.52795000 1 #> 28 -1.52690000 1 #> 29 -1.90690000 1 #> 30 -0.92852000 1 #> 31 -0.27263000 1 #> 32 -1.22650000 1 #> 33 -0.74863000 1 #> 34 -0.76608000 1 #> 35 -0.54072000 1 #> 36 -0.17748000 1 #> 37 0.35001000 1 #> 38 -0.44609000 1 #> 39 0.07422200 1 #> 40 0.36595000 1 #> 41 0.00000000 1 #> 42 2.39650000 1 #> 43 -0.76039000 1 #> 44 -1.29050000 1 #> 45 -0.27871000 1 #> 46 0.37156000 1 #> 47 -1.07240000 1 #> 48 0.99647000 1 #> 49 -1.53710000 1 #> 50 0.60827000 1 #> 51 0.18639000 1 #> 52 -1.15090000 1 #> 53 -0.07080900 1 #> 54 -0.12565000 1 #> 55 -1.12740000 1 #> 56 -0.52927000 1 #> 57 -0.28428000 1 #> 58 -0.81706000 1 #> 59 0.38334000 1 #> 60 -0.08098700 1 #> 61 0.00000000 1 #> 62 0.69171000 1 #> 63 -0.62810000 1 #> 64 -0.58919000 1 #> 65 -0.62680000 1 #> 66 -0.00233820 1 #> 67 -1.12230000 1 #> 68 -0.26808000 1 #> 69 -0.95086000 1 #> 70 -0.07304700 1 #> 71 -0.27444000 1 #> 72 2.00140000 1 #> 73 -2.24370000 1 #> 74 0.05577700 1 #> 75 0.08478800 1 #> 76 -0.57307000 1 #> 77 2.22120000 1 #> 78 2.60850000 1 #> 79 1.27470000 1 #> 80 2.12090000 1 #> 81 0.00000000 1 #> 82 -1.11390000 1 #> 83 0.63639000 1 #> 84 -0.67938000 1 #> 85 -0.55962000 1 #> 86 -0.17441000 1 #> 87 -0.07682800 1 #> 88 0.33895000 1 #> 89 -0.15863000 1 #> 90 0.40523000 1 #> 91 -0.06804600 1 #> 92 -0.38238000 1 #> 93 1.19330000 1 #> 94 -0.58011000 1 #> 95 -0.52274000 1 #> 96 -1.16240000 1 #> 97 -0.45003000 1 #> 98 1.28390000 1 #> 99 0.76687000 1 #> 100 3.06760000 1 #> 101 0.00000000 1 #> 102 0.23015000 1 #> 103 -0.82410000 1 #> 104 -0.90432000 1 #> 105 -0.21592000 1 #> 106 0.56661000 1 #> 107 0.43114000 1 #> 108 0.13049000 1 #> 109 -0.21323000 1 #> 110 -1.36860000 1 #> 111 1.09720000 1 #> 112 -0.17678000 1 #> 113 -0.85886000 1 #> 114 -0.87364000 1 #> 115 0.07166100 1 #> 116 -0.22592000 1 #> 117 0.34891000 1 #> 118 -0.39144000 1 #> 119 -0.24004000 1 #> 120 0.11592000 1 #> 121 0.00000000 1 #> 122 0.43035000 1 #> 123 0.64372000 1 #> 124 0.31871000 1 #> 125 -0.06869400 1 #> 126 -0.33131000 1 #> 127 -0.13909000 1 #> 128 -1.42080000 1 #> 129 0.06669100 1 #> 130 -1.06410000 1 #> 131 -0.40081000 1 #> 132 -0.51008000 1 #> 133 -0.79208000 1 #> 134 -1.06780000 1 #> 135 -0.03539100 1 #> 136 -0.11941000 1 #> 137 -0.70814000 1 #> 138 -0.44079000 1 #> 139 -0.07418700 1 #> 140 0.34213000 1 #> 141 0.00000000 1 #> 142 -0.16762000 1 #> 143 0.37546000 1 #> 144 -0.14928000 1 #> 145 4.48040000 1 #> 146 1.45030000 1 #> 147 -0.26673000 1 #> 148 0.28333000 1 #> 149 -1.13410000 1 #> 150 0.07102300 1 #> 151 -0.08179200 1 #> 152 -1.45650000 1 #> 153 -0.26117000 1 #> 154 -0.76530000 1 #> 155 0.27978000 1 #> 156 -0.14549000 1 #> 157 -0.50166000 1 #> 158 -0.29695000 1 #> 159 -0.31244000 1 #> 160 0.62918000 1 #> 161 0.00000000 1 #> 162 0.47322000 1 #> 163 0.10498000 1 #> 164 0.98268000 1 #> 165 -0.48809000 1 #> 166 -0.94613000 1 #> 167 -0.14670000 1 #> 168 -0.98063000 1 #> 169 -0.27753000 1 #> 170 0.91470000 1 #> 171 -0.59961000 1 #> 172 -1.59040000 1 #> 173 -0.43954000 1 #> 174 0.64693000 1 #> 175 -1.19580000 1 #> 176 -0.73125000 1 #> 177 -0.16589000 1 #> 178 0.59848000 1 #> 179 0.25633000 1 #> 180 0.25327000 1 #> 181 0.00000000 1 #> 182 -0.33502000 1 #> 183 -0.25785000 1 #> 184 1.45220000 1 #> 185 -1.74150000 1 #> 186 0.98055000 1 #> 187 0.69538000 1 #> 188 1.74500000 1 #> 189 0.29968000 1 #> 190 -0.17286000 1 #> 191 1.61450000 1 #> 192 -0.55775000 1 #> 193 -1.66970000 1 #> 194 0.24571000 1 #> 195 1.29420000 1 #> 196 0.15023000 1 #> 197 -0.99817000 1 #> 198 -1.15360000 1 #> 199 -0.62140000 1 #> 200 0.18050000 1 #> 201 0.00000000 1 #> 202 0.11452000 1 #> 203 -0.54857000 1 #> 204 0.58558000 1 #> 205 0.87749000 1 #> 206 -1.45950000 1 #> 207 1.30950000 1 #> 208 2.05340000 1 #> 209 0.40678000 1 #> 210 -0.39199000 1 #> 211 1.62400000 1 #> 212 0.65625000 1 #> 213 -0.75628000 1 #> 214 -0.84447000 1 #> 215 1.81910000 1 #> 216 -1.18030000 1 #> 217 -1.00770000 1 #> 218 0.52824000 1 #> 219 1.62640000 1 #> 220 0.66644000 1 #> 221 0.00000000 1 #> 222 0.03550100 1 #> 223 -0.38004000 1 #> 224 -0.14039000 1 #> 225 -0.00797400 1 #> 226 -1.22730000 1 #> 227 -0.89177000 1 #> 228 -0.00552860 1 #> 229 -0.55774000 1 #> 230 0.16917000 1 #> 231 -0.66679000 1 #> 232 0.00113430 1 #> 233 -0.00376600 1 #> 234 0.24750000 1 #> 235 -0.39002000 1 #> 236 1.79140000 1 #> 237 0.12580000 1 #> 238 1.23170000 1 #> 239 -1.11430000 1 #> 240 3.45920000 1 #> 241 0.00000000 1 #> 242 -1.06050000 1 #> 243 -0.59795000 1 #> 244 0.31426000 1 #> 245 -1.07680000 1 #> 246 -0.28719000 1 #> 247 -0.37303000 1 #> 248 -0.74735000 1 #> 249 -0.64138000 1 #> 250 -1.13450000 1 #> 251 -0.76881000 1 #> 252 0.14377000 1 #> 253 -0.95760000 1 #> 254 0.31906000 1 #> 255 0.19768000 1 #> 256 0.09597800 1 #> 257 -0.26055000 1 #> 258 -1.70740000 1 #> 259 1.69550000 1 #> 260 0.93695000 1 #> 261 0.00000000 1 #> 262 1.06840000 1 #> 263 -0.33977000 1 #> 264 -0.19829000 1 #> 265 0.62772000 1 #> 266 -0.43625000 1 #> 267 -0.14059000 1 #> 268 -0.29629000 1 #> 269 1.51960000 1 #> 270 -0.96404000 1 #> 271 -0.40184000 1 #> 272 2.29270000 1 #> 273 0.36819000 1 #> 274 -0.80535000 1 #> 275 -1.17810000 1 #> 276 0.50814000 1 #> 277 0.79356000 1 #> 278 0.19990000 1 #> 279 0.13253000 1 #> 280 0.10352000 1 #> 281 0.00000000 1 #> 282 -0.33121000 1 #> 283 0.72187000 1 #> 284 0.25620000 1 #> 285 -0.46374000 1 #> 286 -1.29010000 1 #> 287 -0.15118000 1 #> 288 0.50502000 1 #> 289 -0.44855000 1 #> 290 -0.95252000 1 #> 291 -0.07400200 1 #> 292 0.19069000 1 #> 293 -1.00330000 1 #> 294 -0.08938900 1 #> 295 -0.94755000 1 #> 296 0.18408000 1 #> 297 -0.61929000 1 #> 298 -0.18813000 1 #> 299 -0.10758000 1 #> 300 0.20520000 1 #> 301 0.00000000 1 #> 302 -0.35468000 1 #> 303 0.11855000 1 #> 304 -0.23807000 1 #> 305 -0.06530600 1 #> 306 0.38250000 1 #> 307 -0.76714000 1 #> 308 -0.58719000 1 #> 309 0.27235000 1 #> 310 -1.16430000 1 #> 311 0.17757000 1 #> 312 0.32205000 1 #> 313 0.50918000 1 #> 314 -1.44650000 1 #> 315 -1.27890000 1 #> 316 -0.68531000 1 #> 317 -0.48264000 1 #> 318 0.05352700 1 #> 319 1.37450000 1 #> 320 -0.09057700 1 #> 321 0.00000000 1 #> 322 1.70310000 1 #> 323 1.29730000 1 #> 324 1.13440000 1 #> 325 0.74215000 1 #> 326 -1.68510000 1 #> 327 -0.09345600 1 #> 328 -0.72054000 1 #> 329 1.64810000 1 #> 330 -1.32550000 1 #> 331 -0.92102000 1 #> 332 -0.43014000 1 #> 333 1.72420000 1 #> 334 -0.77865000 1 #> 335 -1.52800000 1 #> 336 -1.42660000 1 #> 337 -0.40402000 1 #> 338 0.49825000 1 #> 339 0.58318000 1 #> 340 0.84438000 1 #> 341 0.00000000 1 #> 342 -0.70218000 1 #> 343 -0.15450000 1 #> 344 -0.05797800 1 #> 345 -0.65399000 1 #> 346 1.08090000 1 #> 347 -0.98122000 1 #> 348 0.96652000 1 #> 349 -0.30658000 1 #> 350 -0.01368100 1 #> 351 -0.04581400 1 #> 352 -0.18187000 1 #> 353 -0.34215000 1 #> 354 -1.54750000 1 #> 355 0.61409000 1 #> 356 -0.75120000 1 #> 357 1.04720000 1 #> 358 -0.73351000 1 #> 359 0.76483000 1 #> 360 0.98314000 1 #> 361 0.00000000 1 #> 362 3.66310000 1 #> 363 0.27170000 1 #> 364 -0.21149000 1 #> 365 0.18681000 1 #> 366 1.82160000 1 #> 367 0.03548300 1 #> 368 -1.60650000 1 #> 369 1.97860000 1 #> 370 -0.75540000 1 #> 371 -0.30978000 1 #> 372 -1.74330000 1 #> 373 -0.91579000 1 #> 374 -0.46261000 1 #> 375 -0.00062148 1 #> 376 0.14696000 1 #> 377 -0.56361000 1 #> 378 0.13561000 1 #> 379 0.28047000 1 #> 380 1.91310000 1 #> 381 0.00000000 1 #> 382 0.14061000 1 #> 383 0.09515800 1 #> 384 -0.13076000 1 #> 385 0.71904000 1 #> 386 1.40110000 1 #> 387 0.11395000 1 #> 388 0.00930380 1 #> 389 0.56784000 1 #> 390 0.02972600 1 #> 391 0.67082000 1 #> 392 -0.59681000 1 #> 393 -1.12350000 1 #> 394 -1.06330000 1 #> 395 -0.10051000 1 #> 396 0.07307000 1 #> 397 -1.07100000 1 #> 398 2.30010000 1 #> 399 0.77265000 1 #> 400 4.96570000 1 #> 401 0.00000000 1 #> 402 -0.27690000 1 #> 403 -0.92999000 1 #> 404 1.04450000 1 #> 405 -0.56973000 1 #> 406 -0.11744000 1 #> 407 -1.16360000 1 #> 408 -1.04900000 1 #> 409 0.56570000 1 #> 410 -0.49870000 1 #> 411 2.36100000 1 #> 412 -1.13420000 1 #> 413 -0.05151900 1 #> 414 0.49546000 1 #> 415 -1.07830000 1 #> 416 -0.42447000 1 #> 417 0.35905000 1 #> 418 -1.16890000 1 #> 419 -0.82536000 1 #> 420 0.20822000 1 #> 421 0.00000000 1 #> 422 0.34780000 1 #> 423 -0.34759000 1 #> 424 -1.45510000 1 #> 425 0.97823000 1 #> 426 -1.23570000 1 #> 427 -0.82195000 1 #> 428 0.20571000 1 #> 429 1.02260000 1 #> 430 1.27230000 1 #> 431 0.34733000 1 #> 432 -1.52170000 1 #> 433 -0.25754000 1 #> 434 -0.24253000 1 #> 435 2.11670000 1 #> 436 0.67641000 1 #> 437 -0.41830000 1 #> 438 -1.53850000 1 #> 439 -0.38884000 1 #> 440 0.42325000 1 #> 441 0.00000000 1 #> 442 0.68884000 1 #> 443 1.63510000 1 #> 444 -0.07717000 1 #> 445 -0.95043000 1 #> 446 0.32628000 1 #> 447 -0.59715000 1 #> 448 -0.82467000 1 #> 449 -0.75016000 1 #> 450 -0.17750000 1 #> 451 0.20763000 1 #> 452 0.17194000 1 #> 453 -1.53300000 1 #> 454 0.48109000 1 #> 455 -0.32634000 1 #> 456 0.17241000 1 #> 457 -0.22634000 1 #> 458 -0.92815000 1 #> 459 -0.81233000 1 #> 460 0.06972200 1 #> 461 0.00000000 1 #> 462 -0.65886000 1 #> 463 1.62830000 1 #> 464 0.06186700 1 #> 465 -0.11417000 1 #> 466 -0.60923000 1 #> 467 -1.11230000 1 #> 468 -0.79389000 1 #> 469 -2.02090000 1 #> 470 2.24220000 1 #> 471 0.94863000 1 #> 472 0.34141000 1 #> 473 -0.34733000 1 #> 474 0.71961000 1 #> 475 -1.75060000 1 #> 476 2.19570000 1 #> 477 -0.59972000 1 #> 478 -0.31960000 1 #> 479 0.50775000 1 #> 480 1.28510000 1 #> 481 0.00000000 1 #> 482 0.24242000 1 #> 483 0.48405000 1 #> 484 -0.21919000 1 #> 485 -0.04979500 1 #> 486 0.68516000 1 #> 487 -0.20151000 1 #> 488 -0.88468000 1 #> 489 -0.91279000 1 #> 490 -0.54073000 1 #> 491 -1.38470000 1 #> 492 1.05030000 1 #> 493 0.18887000 1 #> 494 0.71158000 1 #> 495 0.15469000 1 #> 496 -1.09190000 1 #> 497 -0.45541000 1 #> 498 -0.28352000 1 #> 499 -0.52437000 1 #> 500 -0.50110000 1 #> 501 0.00000000 1 #> 502 -0.75355000 1 #> 503 1.89270000 1 #> 504 2.63410000 1 #> 505 -1.29300000 1 #> 506 0.37101000 1 #> 507 -0.74853000 1 #> 508 -0.92432000 1 #> 509 -0.76866000 1 #> 510 2.31070000 1 #> 511 -0.33249000 1 #> 512 1.21540000 1 #> 513 -0.62064000 1 #> 514 0.38129000 1 #> 515 0.33345000 1 #> 516 -0.67387000 1 #> 517 1.17880000 1 #> 518 1.06850000 1 #> 519 -0.97650000 1 #> 520 -0.12424000 1 #> 521 0.00000000 1 #> 522 -0.74309000 1 #> 523 1.09190000 1 #> 524 -0.45520000 1 #> 525 -1.08750000 1 #> 526 -0.61507000 1 #> 527 -0.26185000 1 #> 528 2.43040000 1 #> 529 1.99810000 1 #> 530 -0.35145000 1 #> 531 -0.01752100 1 #> 532 0.11921000 1 #> 533 -0.74229000 1 #> 534 2.01740000 1 #> 535 -0.64393000 1 #> 536 0.59858000 1 #> 537 -1.75230000 1 #> 538 3.33750000 1 #> 539 -0.39753000 1 #> 540 -0.53662000 1 #> 541 0.00000000 1 #> 542 -0.65151000 1 #> 543 0.06052800 1 #> 544 0.38026000 1 #> 545 -0.39562000 1 #> 546 -1.06870000 1 #> 547 0.76536000 1 #> 548 0.06971700 1 #> 549 0.27084000 1 #> 550 -0.24825000 1 #> 551 -0.98004000 1 #> 552 0.05552500 1 #> 553 -0.66645000 1 #> 554 -0.95193000 1 #> 555 0.97459000 1 #> 556 0.21717000 1 #> 557 -1.08680000 1 #> 558 1.26470000 1 #> 559 -0.25932000 1 #> 560 0.55061000 1 #> 561 0.00000000 1 #> 562 0.32610000 1 #> 563 1.48770000 1 #> 564 1.30150000 1 #> 565 1.31960000 1 #> 566 -0.55922000 1 #> 567 -2.19660000 1 #> 568 2.86000000 1 #> 569 0.39804000 1 #> 570 -0.10817000 1 #> 571 -0.84947000 1 #> 572 -0.24824000 1 #> 573 -0.81665000 1 #> 574 0.46789000 1 #> 575 -0.88391000 1 #> 576 -0.40333000 1 #> 577 0.18383000 1 #> 578 0.12128000 1 #> 579 -0.01930100 1 #> 580 0.87465000 1 #> 581 0.00000000 1 #> 582 -0.70710000 1 #> 583 -0.72172000 1 #> 584 -0.97522000 1 #> 585 0.28072000 1 #> 586 1.78010000 1 #> 587 0.07254600 1 #> 588 -0.02958400 1 #> 589 -0.73685000 1 #> 590 -0.18121000 1 #> 591 -1.14830000 1 #> 592 -0.61619000 1 #> 593 -1.56730000 1 #> 594 0.80359000 1 #> 595 1.27450000 1 #> 596 -0.09543200 1 #> 597 -0.64555000 1 #> 598 1.15250000 1 #> 599 2.07390000 1 #> 600 -1.20860000 1 #> 601 0.00000000 1 #> 602 0.23299000 1 #> 603 1.26900000 1 #> 604 2.86490000 1 #> 605 -0.49973000 1 #> 606 -1.41900000 1 #> 607 0.06293800 1 #> 608 -0.80637000 1 #> 609 2.39740000 1 #> 610 -1.41120000 1 #> 611 0.07097200 1 #> 612 -0.56112000 1 #> 613 0.81279000 1 #> 614 -0.35633000 1 #> 615 -0.33613000 1 #> 616 -0.72785000 1 #> 617 -0.84817000 1 #> 618 -0.50237000 1 #> 619 -0.00763920 1 #> 620 0.62325000 1 #> 621 0.00000000 1 #> 622 0.73413000 1 #> 623 0.65715000 1 #> 624 -0.59257000 1 #> 625 0.18316000 1 #> 626 1.32630000 1 #> 627 -0.18265000 1 #> 628 -0.78161000 1 #> 629 0.42714000 1 #> 630 -0.56102000 1 #> 631 -0.26224000 1 #> 632 -1.35190000 1 #> 633 0.89835000 1 #> 634 0.64725000 1 #> 635 -0.24379000 1 #> 636 1.69680000 1 #> 637 -1.16160000 1 #> 638 -1.02750000 1 #> 639 -0.50309000 1 #> 640 1.09230000 1 #> 641 0.00000000 1 #> 642 0.83013000 1 #> 643 1.07750000 1 #> 644 1.55440000 1 #> 645 0.80920000 1 #> 646 2.69780000 1 #> 647 0.28039000 1 #> 648 0.05302100 1 #> 649 -1.37340000 1 #> 650 0.17583000 1 #> 651 -1.72960000 1 #> 652 0.76875000 1 #> 653 0.65381000 1 #> 654 1.77100000 1 #> 655 0.42009000 1 #> 656 -0.35284000 1 #> 657 -0.18421000 1 #> 658 2.36320000 1 #> 659 -0.35190000 1 #> 660 0.15278000 1 #> 661 0.00000000 1 #> 662 0.61270000 1 #> 663 0.89059000 1 #> 664 0.03397300 1 #> 665 -0.71019000 1 #> 666 -0.68453000 1 #> 667 -1.11880000 1 #> 668 0.89902000 1 #> 669 -0.19518000 1 #> 670 -0.08483700 1 #> 671 0.54692000 1 #> 672 0.03935700 1 #> 673 -0.64278000 1 #> 674 1.16680000 1 #> 675 -0.01120900 1 #> 676 -1.49520000 1 #> 677 -0.20551000 1 #> 678 -0.29441000 1 #> 679 -0.08795500 1 #> 680 0.19099000 1 #> 681 0.00000000 1 #> 682 1.24920000 1 #> 683 0.85992000 1 #> 684 0.63373000 1 #> 685 0.55416000 1 #> 686 -1.20050000 1 #> 687 0.48126000 1 #> 688 -1.50310000 1 #> 689 -1.30970000 1 #> 690 1.46960000 1 #> 691 0.49855000 1 #> 692 -1.36010000 1 #> 693 0.75560000 1 #> 694 -0.89601000 1 #> 695 -0.35584000 1 #> 696 0.79546000 1 #> 697 0.61224000 1 #> 698 0.23465000 1 #> 699 -0.61332000 1 #> 700 0.07893000 1 #> 701 0.00000000 1 #> 702 1.45110000 1 #> 703 -1.04620000 1 #> 704 -0.03516800 1 #> 705 -0.27573000 1 #> 706 -0.25752000 1 #> 707 -0.83243000 1 #> 708 -0.14943000 1 #> 709 0.95305000 1 #> 710 1.19830000 1 #> 711 -1.12480000 1 #> 712 -0.93240000 1 #> 713 -0.12522000 1 #> 714 -1.11360000 1 #> 715 -1.34000000 1 #> 716 0.44339000 1 #> 717 2.14740000 1 #> 718 0.59785000 1 #> 719 -0.97906000 1 #> 720 1.41350000 1 #> 721 0.00000000 1 #> 722 -0.29874000 1 #> 723 -1.69730000 1 #> 724 1.44960000 1 #> 725 -1.14810000 1 #> 726 -0.67772000 1 #> 727 -0.42083000 1 #> 728 0.55002000 1 #> 729 -1.11510000 1 #> 730 1.60370000 1 #> 731 1.49030000 1 #> 732 0.49205000 1 #> 733 0.34780000 1 #> 734 -0.29323000 1 #> 735 0.07609200 1 #> 736 -0.64948000 1 #> 737 0.59680000 1 #> 738 0.41648000 1 #> 739 0.88634000 1 #> 740 0.10455000 1 #> 741 0.00000000 1 #> 742 1.33550000 1 #> 743 0.19067000 1 #> 744 0.59502000 1 #> 745 -0.24041000 1 #> 746 0.44642000 1 #> 747 -0.92626000 1 #> 748 0.12706000 1 #> 749 -0.45533000 1 #> 750 1.65100000 1 #> 751 0.63642000 1 #> 752 -1.27270000 1 #> 753 0.88865000 1 #> 754 0.63511000 1 #> 755 0.82377000 1 #> 756 -1.60240000 1 #> 757 -0.48822000 1 #> 758 2.02790000 1 #> 759 1.20880000 1 #> 760 1.51470000 1 #> 761 0.00000000 1 #> 762 0.91396000 1 #> 763 -0.48773000 1 #> 764 0.36544000 1 #> 765 -0.78031000 1 #> 766 0.98476000 1 #> 767 0.27803000 1 #> 768 -0.13967000 1 #> 769 0.93087000 1 #> 770 2.50360000 1 #> 771 1.48060000 1 #> 772 -1.49790000 1 #> 773 -1.43400000 1 #> 774 0.20636000 1 #> 775 2.71590000 1 #> 776 -1.01540000 1 #> 777 0.27962000 1 #> 778 0.63973000 1 #> 779 1.83400000 1 #> 780 0.88023000 1 #> 781 0.00000000 1 #> 782 -0.38399000 1 #> 783 -0.49058000 1 #> 784 -1.13700000 1 #> 785 -0.22466000 1 #> 786 -0.69979000 1 #> 787 -1.11670000 1 #> 788 -0.15721000 1 #> 789 -0.90717000 1 #> 790 0.63595000 1 #> 791 -0.64713000 1 #> 792 -0.47205000 1 #> 793 -0.54629000 1 #> 794 -1.02160000 1 #> 795 1.00470000 1 #> 796 -1.35180000 1 #> 797 2.04200000 1 #> 798 0.40995000 1 #> 799 0.93474000 1 #> 800 3.02370000 1 #> 801 0.00000000 1 #> 802 -0.01802100 1 #> 803 -0.06626100 1 #> 804 -0.54358000 1 #> 805 -0.92966000 1 #> 806 0.55799000 1 #> 807 -1.09560000 1 #> 808 -0.13876000 1 #> 809 -1.11750000 1 #> 810 -1.25890000 1 #> 811 0.00206650 1 #> 812 2.21880000 1 #> 813 0.50869000 1 #> 814 -0.01734600 1 #> 815 0.36850000 1 #> 816 -0.35294000 1 #> 817 0.56797000 1 #> 818 -0.71076000 1 #> 819 1.18250000 1 #> 820 -1.13630000 1 #> 821 0.00000000 1 #> 822 0.15106000 1 #> 823 0.29087000 1 #> 824 0.22597000 1 #> 825 1.35390000 1 #> 826 1.58920000 1 #> 827 -0.79899000 1 #> 828 -1.26330000 1 #> 829 -0.92565000 1 #> 830 0.61134000 1 #> 831 -0.74799000 1 #> 832 -0.72641000 1 #> 833 -0.61422000 1 #> 834 -0.83253000 1 #> 835 -0.26287000 1 #> 836 0.08468700 1 #> 837 -0.32501000 1 #> 838 -0.27870000 1 #> 839 0.08383800 1 #> 840 0.25316000 1 #> 841 0.00000000 1 #> 842 0.25597000 1 #> 843 1.43980000 1 #> 844 0.67893000 1 #> 845 -0.82862000 1 #> 846 -2.00990000 1 #> 847 3.76220000 1 #> 848 -0.02393500 1 #> 849 -1.13860000 1 #> 850 -0.87771000 1 #> 851 -0.65632000 1 #> 852 0.67043000 1 #> 853 -1.06060000 1 #> 854 -1.43520000 1 #> 855 0.10585000 1 #> 856 1.60030000 1 #> 857 -0.21252000 1 #> 858 0.49395000 1 #> 859 0.07881900 1 #> 860 -0.09968100 1 #> 861 0.00000000 1 #> 862 0.96120000 1 #> 863 -0.31420000 1 #> 864 -0.82179000 1 #> 865 -0.22207000 1 #> 866 0.27161000 1 #> 867 -0.67843000 1 #> 868 -0.65655000 1 #> 869 -0.96588000 1 #> 870 0.37214000 1 #> 871 -0.98610000 1 #> 872 -0.65069000 1 #> 873 -0.56769000 1 #> 874 -0.78833000 1 #> 875 -0.69028000 1 #> 876 -0.63726000 1 #> 877 -0.19314000 1 #> 878 -0.74497000 1 #> 879 -0.02267900 1 #> 880 0.16413000 1 #> 881 0.00000000 1 #> 882 1.20380000 1 #> 883 0.64492000 1 #> 884 -1.20470000 1 #> 885 -0.99020000 1 #> 886 2.17390000 1 #> 887 0.49095000 1 #> 888 0.60978000 1 #> 889 0.68040000 1 #> 890 -1.26900000 1 #> 891 -0.49983000 1 #> 892 -1.40040000 1 #> 893 -1.56420000 1 #> 894 -1.34410000 1 #> 895 -1.13350000 1 #> 896 -0.89233000 1 #> 897 -0.49130000 1 #> 898 0.38840000 1 #> 899 0.38410000 1 #> 900 1.20900000 1 #> 901 0.00000000 1 #> 902 2.81220000 1 #> 903 -2.59200000 1 #> 904 1.77570000 1 #> 905 0.67749000 1 #> 906 0.63992000 1 #> 907 1.10620000 1 #> 908 2.10360000 1 #> 909 -0.00357840 1 #> 910 -1.23530000 1 #> 911 -1.75060000 1 #> 912 1.80630000 1 #> 913 0.64745000 1 #> 914 1.92170000 1 #> 915 -0.79810000 1 #> 916 1.57980000 1 #> 917 -0.70430000 1 #> 918 -0.28545000 1 #> 919 -0.02930000 1 #> 920 -0.80654000 1 #> 921 0.00000000 1 #> 922 -0.23956000 1 #> 923 0.26242000 1 #> 924 -1.24380000 1 #> 925 -1.24550000 1 #> 926 -0.47120000 1 #> 927 0.53292000 1 #> 928 -0.66694000 1 #> 929 -0.53782000 1 #> 930 0.46510000 1 #> 931 -0.96918000 1 #> 932 -0.81331000 1 #> 933 0.16036000 1 #> 934 -1.10230000 1 #> 935 -0.64322000 1 #> 936 -0.02505500 1 #> 937 1.84970000 1 #> 938 2.15500000 1 #> 939 0.70791000 1 #> 940 1.24080000 1 #> 941 0.00000000 1 #> 942 -0.84473000 1 #> 943 0.06093900 1 #> 944 -0.03603300 1 #> 945 0.21669000 1 #> 946 -0.57105000 1 #> 947 -1.29490000 1 #> 948 -0.53531000 1 #> 949 -0.53422000 1 #> 950 -0.24201000 1 #> 951 -0.35182000 1 #> 952 -0.22096000 1 #> 953 -0.32819000 1 #> 954 -0.26736000 1 #> 955 -0.84322000 1 #> 956 -0.59206000 1 #> 957 0.06657100 1 #> 958 0.43332000 1 #> 959 -0.11298000 1 #> 960 -0.05090900 1 #> 961 0.00000000 1 #> 962 0.67631000 1 #> 963 -1.17440000 1 #> 964 -1.24110000 1 #> 965 0.15507000 1 #> 966 0.82015000 1 #> 967 0.74926000 1 #> 968 -0.59207000 1 #> 969 -0.54110000 1 #> 970 -1.38850000 1 #> 971 2.21560000 1 #> 972 -1.05200000 1 #> 973 0.64682000 1 #> 974 -1.07320000 1 #> 975 -0.41461000 1 #> 976 0.39333000 1 #> 977 -1.27470000 1 #> 978 -0.48047000 1 #> 979 0.81548000 1 #> 980 0.08481700 1 #> 981 0.00000000 1 #> 982 -1.04250000 1 #> 983 0.32646000 1 #> 984 1.84990000 1 #> 985 0.42087000 1 #> 986 -0.49816000 1 #> 987 0.96123000 1 #> 988 1.96770000 1 #> 989 -2.00180000 1 #> 990 -0.74732000 1 #> 991 -0.88172000 1 #> 992 3.65960000 1 #> 993 0.29451000 1 #> 994 -0.98975000 1 #> 995 -0.04271300 1 #> 996 0.37011000 1 #> 997 -0.77908000 1 #> 998 -0.92761000 1 #> 999 -0.98860000 1 #> 1000 -0.67164000 1 #> 1001 0.00000000 1 #> 1002 0.49262000 1 #> 1003 0.98890000 1 #> 1004 0.24513000 1 #> 1005 0.21132000 1 #> 1006 -0.77120000 1 #> 1007 -0.65370000 1 #> 1008 -0.33392000 1 #> 1009 0.06545200 1 #> 1010 -0.15847000 1 #> 1011 0.69422000 1 #> 1012 -1.21130000 1 #> 1013 -0.42691000 1 #> 1014 0.43302000 1 #> 1015 -1.15570000 1 #> 1016 -0.25924000 1 #> 1017 -0.99066000 1 #> 1018 -0.74594000 1 #> 1019 -0.50641000 1 #> 1020 1.92080000 1 #> 1021 0.00000000 1 #> 1022 -0.24882000 1 #> 1023 -0.29897000 1 #> 1024 0.13366000 1 #> 1025 -1.11620000 1 #> 1026 0.90685000 1 #> 1027 -0.71598000 1 #> 1028 -1.15820000 1 #> 1029 1.54350000 1 #> 1030 -0.30783000 1 #> 1031 -1.27910000 1 #> 1032 0.44763000 1 #> 1033 0.14697000 1 #> 1034 -1.35080000 1 #> 1035 0.22563000 1 #> 1036 -0.66204000 1 #> 1037 1.73700000 1 #> 1038 -0.30918000 1 #> 1039 2.76140000 1 #> 1040 -0.64466000 1 #> 1041 0.00000000 1 #> 1042 0.86792000 1 #> 1043 -0.22881000 1 #> 1044 0.75579000 1 #> 1045 0.79667000 1 #> 1046 1.06680000 1 #> 1047 -1.38250000 1 #> 1048 0.48341000 1 #> 1049 1.69880000 1 #> 1050 0.10778000 1 #> 1051 -0.66041000 1 #> 1052 -1.30890000 1 #> 1053 -0.01726000 1 #> 1054 0.15929000 1 #> 1055 0.99273000 1 #> 1056 0.35068000 1 #> 1057 0.03487400 1 #> 1058 0.95581000 1 #> 1059 0.16666000 1 #> 1060 0.73673000 1 #> 1061 0.00000000 1 #> 1062 -0.39147000 1 #> 1063 -1.71400000 1 #> 1064 0.52016000 1 #> 1065 -0.05355700 1 #> 1066 -0.90272000 1 #> 1067 0.44239000 1 #> 1068 -0.42134000 1 #> 1069 0.29456000 1 #> 1070 -0.70171000 1 #> 1071 -0.22371000 1 #> 1072 0.04003000 1 #> 1073 0.20318000 1 #> 1074 0.41436000 1 #> 1075 -0.30668000 1 #> 1076 0.91998000 1 #> 1077 -0.42383000 1 #> 1078 -0.94565000 1 #> 1079 0.80972000 1 #> 1080 1.25660000 1 #> 1081 0.00000000 1 #> 1082 1.20660000 1 #> 1083 -0.76149000 1 #> 1084 2.97150000 1 #> 1085 0.32060000 1 #> 1086 -0.57519000 1 #> 1087 -0.69728000 1 #> 1088 -0.46560000 1 #> 1089 1.41520000 1 #> 1090 0.12578000 1 #> 1091 -0.63037000 1 #> 1092 -0.38034000 1 #> 1093 0.30624000 1 #> 1094 -0.20048000 1 #> 1095 2.19280000 1 #> 1096 -0.02858000 1 #> 1097 -0.54917000 1 #> 1098 -0.68500000 1 #> 1099 1.36830000 1 #> 1100 -0.52998000 1 #> 1101 0.00000000 1 #> 1102 0.26106000 1 #> 1103 -0.69733000 1 #> 1104 -1.19520000 1 #> 1105 -0.28920000 1 #> 1106 -1.14670000 1 #> 1107 -0.00862910 1 #> 1108 -0.49949000 1 #> 1109 0.26729000 1 #> 1110 -0.44749000 1 #> 1111 -0.67692000 1 #> 1112 -0.30032000 1 #> 1113 0.20909000 1 #> 1114 -0.82347000 1 #> 1115 -1.14990000 1 #> 1116 0.54665000 1 #> 1117 -0.47627000 1 #> 1118 3.33440000 1 #> 1119 -0.02456500 1 #> 1120 5.78050000 1 #> 1121 0.00000000 1 #> 1122 -0.16425000 1 #> 1123 -0.49447000 1 #> 1124 1.27420000 1 #> 1125 -0.63609000 1 #> 1126 0.80300000 1 #> 1127 0.08206700 1 #> 1128 0.64433000 1 #> 1129 0.59870000 1 #> 1130 1.42670000 1 #> 1131 0.57616000 1 #> 1132 2.57480000 1 #> 1133 -1.85500000 1 #> 1134 -0.31925000 1 #> 1135 -0.19378000 1 #> 1136 0.44568000 1 #> 1137 0.27584000 1 #> 1138 -1.58720000 1 #> 1139 0.47193000 1 #> 1140 1.54310000 1 #> 1141 0.00000000 1 #> 1142 2.11130000 1 #> 1143 -0.42117000 1 #> 1144 -0.74641000 1 #> 1145 1.22990000 1 #> 1146 -0.87398000 1 #> 1147 -0.30812000 1 #> 1148 -0.98136000 1 #> 1149 -1.06100000 1 #> 1150 -0.34576000 1 #> 1151 -0.89871000 1 #> 1152 0.61034000 1 #> 1153 -0.16476000 1 #> 1154 -0.57594000 1 #> 1155 0.74824000 1 #> 1156 -0.38791000 1 #> 1157 0.29896000 1 #> 1158 -0.44383000 1 #> 1159 -0.95558000 1 #> 1160 -0.44431000 1 #> 1161 0.00000000 1 #> 1162 1.37320000 1 #> 1163 0.24010000 1 #> 1164 -1.53070000 1 #> 1165 -0.71215000 1 #> 1166 2.63870000 1 #> 1167 1.00320000 1 #> 1168 0.39142000 1 #> 1169 2.73420000 1 #> 1170 0.42198000 1 #> 1171 -1.32070000 1 #> 1172 -0.71014000 1 #> 1173 -0.73842000 1 #> 1174 -0.63782000 1 #> 1175 -0.17929000 1 #> 1176 -0.40670000 1 #> 1177 -0.30421000 1 #> 1178 0.22120000 1 #> 1179 1.53680000 1 #> 1180 -0.14913000 1 #> 1181 0.00000000 1 #> 1182 -0.29040000 1 #> 1183 0.90520000 1 #> 1184 -0.36962000 1 #> 1185 0.37222000 1 #> 1186 -0.95932000 1 #> 1187 0.78140000 1 #> 1188 0.68522000 1 #> 1189 0.70400000 1 #> 1190 -0.44601000 1 #> 1191 -2.48930000 1 #> 1192 -0.72351000 1 #> 1193 -0.56025000 1 #> 1194 0.29594000 1 #> 1195 0.98103000 1 #> 1196 -0.06335300 1 #> 1197 1.26130000 1 #> 1198 -0.25815000 1 #> 1199 -0.52757000 1 #> 1200 -0.34672000 1 #> 1201 0.00000000 1 #> 1202 0.58121000 1 #> 1203 0.61996000 1 #> 1204 -0.56544000 1 #> 1205 0.57951000 1 #> 1206 -1.77820000 1 #> 1207 1.23550000 1 #> 1208 -0.97794000 1 #> 1209 0.72882000 1 #> 1210 -0.22954000 1 #> 1211 -0.37783000 1 #> 1212 0.17484000 1 #> 1213 -1.50680000 1 #> 1214 -0.42189000 1 #> 1215 -0.52473000 1 #> 1216 -0.38889000 1 #> 1217 -0.45894000 1 #> 1218 -0.07957500 1 #> 1219 0.07119900 1 #> 1220 0.47634000 1 #> 1221 0.00000000 1 #> 1222 0.26907000 1 #> 1223 -0.65353000 1 #> 1224 0.70136000 1 #> 1225 0.28158000 1 #> 1226 1.03110000 1 #> 1227 -0.07367400 1 #> 1228 -0.30112000 1 #> 1229 0.24691000 1 #> 1230 -0.43139000 1 #> 1231 3.00220000 1 #> 1232 -0.90635000 1 #> 1233 -0.26870000 1 #> 1234 -0.23743000 1 #> 1235 0.37940000 1 #> 1236 1.19780000 1 #> 1237 -0.70060000 1 #> 1238 0.38760000 1 #> 1239 0.66907000 1 #> 1240 0.69492000 1 #> 1241 0.00000000 1 #> 1242 -0.40033000 1 #> 1243 0.94003000 1 #> 1244 -0.70107000 1 #> 1245 0.53795000 1 #> 1246 -0.54934000 1 #> 1247 -1.46530000 1 #> 1248 -0.99203000 1 #> 1249 0.45683000 1 #> 1250 -1.20000000 1 #> 1251 0.83402000 1 #> 1252 -1.26330000 1 #> 1253 -0.15955000 1 #> 1254 0.27773000 1 #> 1255 2.51390000 1 #> 1256 -1.42260000 1 #> 1257 1.00550000 1 #> 1258 2.45340000 1 #> 1259 1.86210000 1 #> 1260 3.53080000 1 #> 1261 0.00000000 1 #> 1262 -1.01230000 1 #> 1263 1.87200000 1 #> 1264 -0.48116000 1 #> 1265 1.43770000 1 #> 1266 -0.12245000 1 #> 1267 -1.31310000 1 #> 1268 0.10767000 1 #> 1269 -0.68282000 1 #> 1270 0.08742200 1 #> 1271 0.08169600 1 #> 1272 0.43258000 1 #> 1273 -0.68759000 1 #> 1274 -0.44859000 1 #> 1275 0.02950300 1 #> 1276 0.13466000 1 #> 1277 -0.86393000 1 #> 1278 -0.50689000 1 #> 1279 -0.09752700 1 #> 1280 -0.76470000 1 #> 1281 0.00000000 1 #> 1282 0.37966000 1 #> 1283 0.08109200 1 #> 1284 -0.02219100 1 #> 1285 -0.05746400 1 #> 1286 0.09271900 1 #> 1287 1.15370000 1 #> 1288 1.83410000 1 #> 1289 -1.37220000 1 #> 1290 -0.63831000 1 #> 1291 -1.13910000 1 #> 1292 1.78800000 1 #> 1293 -0.42358000 1 #> 1294 -0.61075000 1 #> 1295 0.00405960 1 #> 1296 -1.20960000 1 #> 1297 -0.00401660 1 #> 1298 0.05594600 1 #> 1299 0.65997000 1 #> 1300 -0.50508000 1 #> 1301 0.00000000 1 #> 1302 -0.48152000 1 #> 1303 -0.51829000 1 #> 1304 -0.38602000 1 #> 1305 0.04876600 1 #> 1306 -0.44208000 1 #> 1307 -0.47744000 1 #> 1308 -0.25228000 1 #> 1309 -0.62137000 1 #> 1310 -0.76207000 1 #> 1311 -0.41003000 1 #> 1312 0.23338000 1 #> 1313 -0.38166000 1 #> 1314 0.44974000 1 #> 1315 -0.32263000 1 #> 1316 -1.21380000 1 #> 1317 -0.61977000 1 #> 1318 -0.88939000 1 #> 1319 -0.74332000 1 #> 1320 -0.29079000 1 #> 1321 0.00000000 1 #> 1322 -1.37920000 1 #> 1323 0.05659500 1 #> 1324 -0.25680000 1 #> 1325 1.36590000 1 #> 1326 0.03534700 1 #> 1327 -0.28656000 1 #> 1328 -0.57535000 1 #> 1329 -1.00280000 1 #> 1330 0.53069000 1 #> 1331 -0.69654000 1 #> 1332 -0.75671000 1 #> 1333 -1.38340000 1 #> 1334 0.21680000 1 #> 1335 1.42050000 1 #> 1336 -0.14836000 1 #> 1337 -0.96550000 1 #> 1338 -0.11744000 1 #> 1339 -0.73130000 1 #> 1340 -0.91578000 1 #> 1341 0.00000000 1 #> 1342 -0.04374000 1 #> 1343 -0.82357000 1 #> 1344 -1.34750000 1 #> 1345 0.28312000 1 #> 1346 -0.07398800 1 #> 1347 1.55300000 1 #> 1348 -0.63780000 1 #> 1349 -0.64520000 1 #> 1350 0.36814000 1 #> 1351 -0.81947000 1 #> 1352 0.03245700 1 #> 1353 5.00730000 1 #> 1354 -0.83736000 1 #> 1355 -0.43331000 1 #> 1356 1.60980000 1 #> 1357 0.37864000 1 #> 1358 0.54774000 1 #> 1359 -1.66980000 1 #> 1360 -1.65300000 1 #> 1361 0.00000000 1 #> 1362 -0.14691000 1 #> 1363 0.35177000 1 #> 1364 -0.11668000 1 #> 1365 -1.17710000 1 #> 1366 -0.53905000 1 #> 1367 1.36670000 1 #> 1368 0.09751300 1 #> 1369 0.73557000 1 #> 1370 1.80080000 1 #> 1371 0.00651620 1 #> 1372 -0.13081000 1 #> 1373 -0.14477000 1 #> 1374 -1.72270000 1 #> 1375 -1.30090000 1 #> 1376 1.28810000 1 #> 1377 -0.61540000 1 #> 1378 0.45106000 1 #> 1379 0.37708000 1 #> 1380 1.13380000 1 #> 1381 0.00000000 1 #> 1382 -0.46986000 1 #> 1383 -0.01642300 1 #> 1384 -0.82845000 1 #> 1385 -0.44482000 1 #> 1386 -0.79132000 1 #> 1387 0.17317000 1 #> 1388 -0.43516000 1 #> 1389 0.81366000 1 #> 1390 -1.03090000 1 #> 1391 0.67223000 1 #> 1392 -1.93850000 1 #> 1393 -0.56738000 1 #> 1394 1.07300000 1 #> 1395 -0.63560000 1 #> 1396 -0.61499000 1 #> 1397 -0.05004400 1 #> 1398 -0.15411000 1 #> 1399 -0.15011000 1 #> 1400 1.10400000 1 #> 1401 0.00000000 1 #> 1402 0.65785000 1 #> 1403 -0.84021000 1 #> 1404 -0.01641900 1 #> 1405 0.14309000 1 #> 1406 0.72509000 1 #> 1407 -0.17777000 1 #> 1408 -0.34448000 1 #> 1409 -0.81825000 1 #> 1410 0.88619000 1 #> 1411 -1.79000000 1 #> 1412 0.05659800 1 #> 1413 0.65893000 1 #> 1414 -0.66696000 1 #> 1415 -1.04250000 1 #> 1416 1.13080000 1 #> 1417 -0.10616000 1 #> 1418 1.49450000 1 #> 1419 2.59600000 1 #> 1420 0.59840000 1 #> 1421 0.00000000 1 #> 1422 1.65870000 1 #> 1423 0.03156600 1 #> 1424 -1.96760000 1 #> 1425 1.67510000 1 #> 1426 -1.20660000 1 #> 1427 2.80980000 1 #> 1428 5.03850000 1 #> 1429 0.18394000 1 #> 1430 0.22810000 1 #> 1431 -0.69265000 1 #> 1432 -0.22398000 1 #> 1433 -1.04700000 1 #> 1434 -1.48670000 1 #> 1435 4.67620000 1 #> 1436 0.07242900 1 #> 1437 -0.72035000 1 #> 1438 2.58570000 1 #> 1439 1.73380000 1 #> 1440 2.40550000 1 #> 1441 0.00000000 1 #> 1442 -0.88429000 1 #> 1443 -0.62610000 1 #> 1444 -1.04490000 1 #> 1445 0.69659000 1 #> 1446 -0.23590000 1 #> 1447 -1.41340000 1 #> 1448 -0.47397000 1 #> 1449 -0.41933000 1 #> 1450 0.04835400 1 #> 1451 -0.57019000 1 #> 1452 0.30149000 1 #> 1453 -0.84404000 1 #> 1454 -0.70145000 1 #> 1455 -1.11440000 1 #> 1456 -0.17981000 1 #> 1457 0.39404000 1 #> 1458 0.54000000 1 #> 1459 1.06500000 1 #> 1460 1.07650000 1 #> 1461 0.00000000 1 #> 1462 0.84911000 1 #> 1463 -0.81695000 1 #> 1464 0.73949000 1 #> 1465 -0.54579000 1 #> 1466 0.83773000 1 #> 1467 0.12190000 1 #> 1468 1.48960000 1 #> 1469 0.15508000 1 #> 1470 -0.09050500 1 #> 1471 -0.81382000 1 #> 1472 -0.01249000 1 #> 1473 -1.44060000 1 #> 1474 -0.54444000 1 #> 1475 0.18518000 1 #> 1476 0.36356000 1 #> 1477 -0.79093000 1 #> 1478 -0.12180000 1 #> 1479 -0.34660000 1 #> 1480 0.94376000 1 #> 1481 0.00000000 1 #> 1482 -1.13190000 1 #> 1483 -0.31425000 1 #> 1484 1.43000000 1 #> 1485 -0.50260000 1 #> 1486 -0.05463400 1 #> 1487 -0.11475000 1 #> 1488 0.67028000 1 #> 1489 -0.51077000 1 #> 1490 1.02310000 1 #> 1491 -0.65463000 1 #> 1492 -0.92442000 1 #> 1493 -0.62333000 1 #> 1494 0.53849000 1 #> 1495 -0.45181000 1 #> 1496 -0.86013000 1 #> 1497 -0.03634600 1 #> 1498 -0.23845000 1 #> 1499 -0.34024000 1 #> 1500 -0.28165000 1 #> 1501 0.00000000 1 #> 1502 0.18187000 1 #> 1503 -0.43271000 1 #> 1504 0.29368000 1 #> 1505 -0.75752000 1 #> 1506 1.71330000 1 #> 1507 0.28309000 1 #> 1508 -0.78208000 1 #> 1509 0.25320000 1 #> 1510 0.09038500 1 #> 1511 -0.94658000 1 #> 1512 -0.26449000 1 #> 1513 1.29080000 1 #> 1514 0.03452800 1 #> 1515 -1.07030000 1 #> 1516 0.63711000 1 #> 1517 0.02117600 1 #> 1518 -0.18100000 1 #> 1519 1.48060000 1 #> 1520 -0.78372000 1 #> 1521 0.00000000 1 #> 1522 0.36600000 1 #> 1523 -0.95379000 1 #> 1524 3.38810000 1 #> 1525 -0.06950400 1 #> 1526 -2.25000000 1 #> 1527 1.85450000 1 #> 1528 0.64934000 1 #> 1529 -0.03683700 1 #> 1530 -0.16380000 1 #> 1531 0.12734000 1 #> 1532 -0.50946000 1 #> 1533 0.01486200 1 #> 1534 -0.22726000 1 #> 1535 -1.00830000 1 #> 1536 -0.00997470 1 #> 1537 0.54466000 1 #> 1538 0.48294000 1 #> 1539 -0.33324000 1 #> 1540 -0.62774000 1 #> 1541 0.00000000 1 #> 1542 -1.34710000 1 #> 1543 0.22527000 1 #> 1544 0.21555000 1 #> 1545 0.65435000 1 #> 1546 -1.10980000 1 #> 1547 -0.45807000 1 #> 1548 2.87500000 1 #> 1549 0.68996000 1 #> 1550 0.93824000 1 #> 1551 0.14266000 1 #> 1552 -0.79563000 1 #> 1553 -0.31098000 1 #> 1554 -0.64150000 1 #> 1555 -0.32289000 1 #> 1556 0.08280000 1 #> 1557 0.93855000 1 #> 1558 -0.77387000 1 #> 1559 -0.36705000 1 #> 1560 0.26256000 1 #> 1561 0.00000000 1 #> 1562 1.55660000 1 #> 1563 0.40213000 1 #> 1564 -0.11826000 1 #> 1565 1.94220000 1 #> 1566 -2.26880000 1 #> 1567 0.69068000 1 #> 1568 -1.22850000 1 #> 1569 0.29312000 1 #> 1570 1.31430000 1 #> 1571 0.62201000 1 #> 1572 -0.04749600 1 #> 1573 -0.92765000 1 #> 1574 0.46276000 1 #> 1575 2.46120000 1 #> 1576 -0.35397000 1 #> 1577 -0.20964000 1 #> 1578 1.76710000 1 #> 1579 -1.50400000 1 #> 1580 -0.95555000 1 #> 1581 0.00000000 1 #> 1582 -0.29487000 1 #> 1583 -0.24030000 1 #> 1584 1.11610000 1 #> 1585 0.33769000 1 #> 1586 0.13277000 1 #> 1587 -0.45705000 1 #> 1588 -0.78083000 1 #> 1589 -1.24420000 1 #> 1590 0.01190900 1 #> 1591 -0.31389000 1 #> 1592 -0.42792000 1 #> 1593 0.17302000 1 #> 1594 -0.43680000 1 #> 1595 0.84023000 1 #> 1596 0.07802600 1 #> 1597 -0.56196000 1 #> 1598 0.10904000 1 #> 1599 1.72330000 1 #> 1600 -0.23412000 1 #> 1601 0.00000000 1 #> 1602 2.33720000 1 #> 1603 -0.55911000 1 #> 1604 0.74899000 1 #> 1605 -1.67890000 1 #> 1606 2.06490000 1 #> 1607 -2.29500000 1 #> 1608 -0.07995800 1 #> 1609 1.10730000 1 #> 1610 -0.36753000 1 #> 1611 0.20170000 1 #> 1612 -0.55268000 1 #> 1613 -1.68110000 1 #> 1614 0.80851000 1 #> 1615 0.81940000 1 #> 1616 -0.08377600 1 #> 1617 -0.29847000 1 #> 1618 -0.43014000 1 #> 1619 0.72068000 1 #> 1620 0.32727000 1 #> 1621 0.00000000 1 #> 1622 -0.53188000 1 #> 1623 0.17622000 1 #> 1624 -0.01901500 1 #> 1625 0.75403000 1 #> 1626 -0.42904000 1 #> 1627 1.61840000 1 #> 1628 1.53630000 1 #> 1629 0.33495000 1 #> 1630 0.27625000 1 #> 1631 -0.02663000 1 #> 1632 -0.56658000 1 #> 1633 -0.73623000 1 #> 1634 -1.31190000 1 #> 1635 -0.75148000 1 #> 1636 -0.78112000 1 #> 1637 -0.11618000 1 #> 1638 0.21472000 1 #> 1639 0.01380500 1 #> 1640 0.16340000 1 #> 1641 0.00000000 1 #> 1642 -0.33609000 1 #> 1643 -0.22913000 1 #> 1644 -0.60328000 1 #> 1645 -0.37232000 1 #> 1646 -1.38600000 1 #> 1647 -0.17637000 1 #> 1648 0.04897800 1 #> 1649 -0.69300000 1 #> 1650 -0.80812000 1 #> 1651 -0.98123000 1 #> 1652 -1.34280000 1 #> 1653 0.02671700 1 #> 1654 1.57950000 1 #> 1655 -0.96403000 1 #> 1656 0.06377400 1 #> 1657 0.01395000 1 #> 1658 -0.21640000 1 #> 1659 0.47083000 1 #> 1660 -0.70081000 1 #> 1661 0.00000000 1 #> 1662 1.29670000 1 #> 1663 0.42443000 1 #> 1664 -0.39668000 1 #> 1665 0.30928000 1 #> 1666 -1.12240000 1 #> 1667 -0.02467200 1 #> 1668 -0.85520000 1 #> 1669 0.10583000 1 #> 1670 -1.61770000 1 #> 1671 1.48530000 1 #> 1672 -1.02350000 1 #> 1673 2.69550000 1 #> 1674 -0.78337000 1 #> 1675 -0.82360000 1 #> 1676 -0.43972000 1 #> 1677 0.50633000 1 #> 1678 0.30259000 1 #> 1679 0.88389000 1 #> 1680 0.83978000 1 #> 1681 0.00000000 1 #> 1682 0.90403000 1 #> 1683 -0.20094000 1 #> 1684 -0.40072000 1 #> 1685 -1.35370000 1 #> 1686 -0.83554000 1 #> 1687 -0.75493000 1 #> 1688 -0.68504000 1 #> 1689 0.87752000 1 #> 1690 -0.06386100 1 #> 1691 0.03005200 1 #> 1692 -0.89744000 1 #> 1693 -0.67893000 1 #> 1694 -0.26677000 1 #> 1695 -1.08440000 1 #> 1696 0.21268000 1 #> 1697 0.49868000 1 #> 1698 0.19454000 1 #> 1699 -0.77941000 1 #> 1700 0.02309600 1 #> 1701 0.00000000 1 #> 1702 0.71163000 1 #> 1703 0.06887500 1 #> 1704 -0.32426000 1 #> 1705 0.03417600 1 #> 1706 0.31947000 1 #> 1707 0.75317000 1 #> 1708 -0.03801700 1 #> 1709 -1.29830000 1 #> 1710 1.61040000 1 #> 1711 1.67320000 1 #> 1712 1.03000000 1 #> 1713 -1.48110000 1 #> 1714 -0.63583000 1 #> 1715 1.88870000 1 #> 1716 -0.89208000 1 #> 1717 1.05120000 1 #> 1718 -0.03532100 1 #> 1719 0.88465000 1 #> 1720 -0.41060000 1 #> 1721 0.00000000 1 #> 1722 1.01670000 1 #> 1723 -1.01380000 1 #> 1724 -0.64263000 1 #> 1725 0.04835200 1 #> 1726 0.50587000 1 #> 1727 -0.39499000 1 #> 1728 -0.63864000 1 #> 1729 -0.19435000 1 #> 1730 0.92270000 1 #> 1731 -0.21506000 1 #> 1732 0.22916000 1 #> 1733 -0.50140000 1 #> 1734 -0.13962000 1 #> 1735 -0.29723000 1 #> 1736 -1.40180000 1 #> 1737 -0.72765000 1 #> 1738 -0.07961400 1 #> 1739 -0.28506000 1 #> 1740 0.30845000 1 #> 1741 0.00000000 1 #> 1742 0.00256230 1 #> 1743 -0.43746000 1 #> 1744 -0.35138000 1 #> 1745 -0.79832000 1 #> 1746 0.29635000 1 #> 1747 -0.62051000 1 #> 1748 -1.35160000 1 #> 1749 0.63652000 1 #> 1750 1.43590000 1 #> 1751 0.29539000 1 #> 1752 -0.61704000 1 #> 1753 1.47870000 1 #> 1754 0.34801000 1 #> 1755 0.57757000 1 #> 1756 0.16002000 1 #> 1757 -0.11290000 1 #> 1758 -0.17215000 1 #> 1759 -0.69036000 1 #> 1760 -0.19398000 1 #> 1761 0.00000000 1 #> 1762 0.08531300 1 #> 1763 -1.09430000 1 #> 1764 -0.04065300 1 #> 1765 0.71452000 1 #> 1766 -1.31650000 1 #> 1767 -0.39092000 1 #> 1768 -0.76719000 1 #> 1769 -0.93632000 1 #> 1770 0.04962600 1 #> 1771 0.17179000 1 #> 1772 0.03591100 1 #> 1773 -0.08784000 1 #> 1774 -1.20560000 1 #> 1775 0.37327000 1 #> 1776 1.87580000 1 #> 1777 -1.40100000 1 #> 1778 0.84200000 1 #> 1779 1.87060000 1 #> 1780 -0.42806000 1 #> 1781 0.00000000 1 #> 1782 -1.61330000 1 #> 1783 -0.46165000 1 #> 1784 0.69047000 1 #> 1785 0.31692000 1 #> 1786 0.58723000 1 #> 1787 0.08431600 1 #> 1788 -0.87139000 1 #> 1789 -0.01058700 1 #> 1790 -1.77720000 1 #> 1791 0.01200900 1 #> 1792 -0.15749000 1 #> 1793 -0.42034000 1 #> 1794 -0.44359000 1 #> 1795 -0.47522000 1 #> 1796 -0.49337000 1 #> 1797 1.47080000 1 #> 1798 0.40441000 1 #> 1799 0.07186300 1 #> 1800 0.56637000 1 #> 1801 0.00000000 1 #> 1802 1.75110000 1 #> 1803 -0.30054000 1 #> 1804 1.24770000 1 #> 1805 3.04250000 1 #> 1806 0.45139000 1 #> 1807 -1.21180000 1 #> 1808 0.66117000 1 #> 1809 4.42160000 1 #> 1810 -2.72710000 1 #> 1811 1.62000000 1 #> 1812 0.60509000 1 #> 1813 -0.00409050 1 #> 1814 1.51410000 1 #> 1815 0.30938000 1 #> 1816 -0.70138000 1 #> 1817 -1.33980000 1 #> 1818 0.97995000 1 #> 1819 1.27070000 1 #> 1820 1.45580000 1 #> 1821 0.00000000 1 #> 1822 -0.28116000 1 #> 1823 1.58640000 1 #> 1824 -0.44712000 1 #> 1825 -0.05162800 1 #> 1826 0.73187000 1 #> 1827 1.47640000 1 #> 1828 -1.45690000 1 #> 1829 0.98939000 1 #> 1830 -0.42634000 1 #> 1831 -1.02140000 1 #> 1832 0.69189000 1 #> 1833 -1.08820000 1 #> 1834 1.37030000 1 #> 1835 -0.08785300 1 #> 1836 1.88860000 1 #> 1837 -0.25018000 1 #> 1838 -0.44192000 1 #> 1839 -0.52278000 1 #> 1840 -0.09854400 1 #> 1841 0.00000000 1 #> 1842 -1.46550000 1 #> 1843 -0.60593000 1 #> 1844 -0.02714700 1 #> 1845 0.87984000 1 #> 1846 0.51423000 1 #> 1847 -0.63671000 1 #> 1848 1.34930000 1 #> 1849 -0.75048000 1 #> 1850 -1.72640000 1 #> 1851 0.36306000 1 #> 1852 0.01395700 1 #> 1853 0.14098000 1 #> 1854 -0.82886000 1 #> 1855 0.48871000 1 #> 1856 0.16827000 1 #> 1857 -1.95320000 1 #> 1858 2.73580000 1 #> 1859 0.95140000 1 #> 1860 -0.87875000 1 #> 1861 0.00000000 1 #> 1862 -0.31316000 1 #> 1863 -0.09368300 1 #> 1864 -0.59861000 1 #> 1865 -0.47083000 1 #> 1866 0.03221500 1 #> 1867 -0.37041000 1 #> 1868 -1.11920000 1 #> 1869 -0.41833000 1 #> 1870 0.96920000 1 #> 1871 -0.80795000 1 #> 1872 -0.71574000 1 #> 1873 -1.09110000 1 #> 1874 -0.63953000 1 #> 1875 1.69560000 1 #> 1876 1.83570000 1 #> 1877 0.65418000 1 #> 1878 -0.40285000 1 #> 1879 -0.27071000 1 #> 1880 5.66150000 1 #> 1881 0.00000000 1 #> 1882 -1.17830000 1 #> 1883 -0.28520000 1 #> 1884 0.03559000 1 #> 1885 -0.28115000 1 #> 1886 -1.18730000 1 #> 1887 0.30772000 1 #> 1888 -0.63402000 1 #> 1889 1.54030000 1 #> 1890 1.50910000 1 #> 1891 0.98320000 1 #> 1892 3.90440000 1 #> 1893 -1.15610000 1 #> 1894 3.32890000 1 #> 1895 -0.65407000 1 #> 1896 -0.32568000 1 #> 1897 0.19953000 1 #> 1898 0.94366000 1 #> 1899 -0.09480100 1 #> 1900 -0.66609000 1 #> 1901 0.00000000 1 #> 1902 0.69003000 1 #> 1903 -0.58593000 1 #> 1904 -1.33680000 1 #> 1905 1.56450000 1 #> 1906 0.33049000 1 #> 1907 0.05811200 1 #> 1908 1.19990000 1 #> 1909 -0.26291000 1 #> 1910 -1.28950000 1 #> 1911 0.07223300 1 #> 1912 0.11512000 1 #> 1913 1.74690000 1 #> 1914 -1.04710000 1 #> 1915 -0.99314000 1 #> 1916 -0.30215000 1 #> 1917 0.93612000 1 #> 1918 1.19830000 1 #> 1919 -0.48071000 1 #> 1920 -0.83998000 1 #> 1921 0.00000000 1 #> 1922 0.51895000 1 #> 1923 1.01820000 1 #> 1924 1.11790000 1 #> 1925 0.95321000 1 #> 1926 -0.84462000 1 #> 1927 4.88110000 1 #> 1928 -0.11418000 1 #> 1929 1.81030000 1 #> 1930 -0.97703000 1 #> 1931 -0.91438000 1 #> 1932 -0.47381000 1 #> 1933 -0.94621000 1 #> 1934 0.12266000 1 #> 1935 -1.21700000 1 #> 1936 0.45238000 1 #> 1937 -0.43824000 1 #> 1938 0.59654000 1 #> 1939 0.38257000 1 #> 1940 1.38430000 1 #> 1941 0.00000000 1 #> 1942 -0.22927000 1 #> 1943 0.54144000 1 #> 1944 3.78110000 1 #> 1945 -1.06470000 1 #> 1946 1.12270000 1 #> 1947 2.74000000 1 #> 1948 -0.85917000 1 #> 1949 -0.72434000 1 #> 1950 -1.31000000 1 #> 1951 0.44631000 1 #> 1952 -1.32290000 1 #> 1953 -1.78980000 1 #> 1954 -0.12184000 1 #> 1955 1.83180000 1 #> 1956 -0.60053000 1 #> 1957 0.75503000 1 #> 1958 1.31590000 1 #> 1959 0.21401000 1 #> 1960 0.04682900 1 #> 1961 0.00000000 1 #> 1962 1.04290000 1 #> 1963 -0.95739000 1 #> 1964 0.90153000 1 #> 1965 0.79637000 1 #> 1966 -0.90773000 1 #> 1967 1.29050000 1 #> 1968 0.65458000 1 #> 1969 -1.71790000 1 #> 1970 -1.81940000 1 #> 1971 0.31274000 1 #> 1972 -0.62930000 1 #> 1973 -1.38340000 1 #> 1974 -0.38535000 1 #> 1975 -1.06730000 1 #> 1976 2.15260000 1 #> 1977 -0.63517000 1 #> 1978 -0.40335000 1 #> 1979 0.22474000 1 #> 1980 0.02029400 1 #> 1981 0.00000000 1 #> 1982 -1.29910000 1 #> 1983 2.02390000 1 #> 1984 -0.13632000 1 #> 1985 -0.61498000 1 #> 1986 1.41890000 1 #> 1987 -1.68940000 1 #> 1988 1.26140000 1 #> 1989 0.41189000 1 #> 1990 1.04200000 1 #> 1991 -1.41110000 1 #> 1992 -0.30901000 1 #> 1993 -0.58766000 1 #> 1994 1.42330000 1 #> 1995 0.26701000 1 #> 1996 -0.33814000 1 #> 1997 0.13949000 1 #> 1998 -0.55394000 1 #> 1999 -1.09970000 1 #> 2000 -0.35938000 1 #> 2001 0.00000000 1 #> 2002 1.73310000 1 #> 2003 0.60972000 1 #> 2004 -1.14480000 1 #> 2005 -0.90126000 1 #> 2006 -0.75999000 1 #> 2007 -0.57168000 1 #> 2008 1.86080000 1 #> 2009 -0.81329000 1 #> 2010 -0.79258000 1 #> 2011 0.17017000 1 #> 2012 -0.42167000 1 #> 2013 -1.52590000 1 #> 2014 -0.06993200 1 #> 2015 -0.64038000 1 #> 2016 -0.25481000 1 #> 2017 1.67420000 1 #> 2018 0.25652000 1 #> 2019 -0.26497000 1 #> 2020 0.08947900 1 #> 2021 0.00000000 1 #> 2022 -0.30991000 1 #> 2023 -0.04958000 1 #> 2024 -0.42482000 1 #> 2025 -0.89456000 1 #> 2026 0.13486000 1 #> 2027 -1.33130000 1 #> 2028 -0.38497000 1 #> 2029 0.21119000 1 #> 2030 -0.37559000 1 #> 2031 -1.19460000 1 #> 2032 -0.35222000 1 #> 2033 0.02895400 1 #> 2034 -0.14928000 1 #> 2035 -0.49120000 1 #> 2036 -0.61079000 1 #> 2037 0.51530000 1 #> 2038 -0.60507000 1 #> 2039 0.28090000 1 #> 2040 0.26135000 1 #> 2041 0.00000000 1 #> 2042 -0.48877000 1 #> 2043 -0.20651000 1 #> 2044 1.41510000 1 #> 2045 -0.52488000 1 #> 2046 -0.56082000 1 #> 2047 -1.56910000 1 #> 2048 1.45060000 1 #> 2049 -0.35820000 1 #> 2050 0.58681000 1 #> 2051 -1.25670000 1 #> 2052 -0.13405000 1 #> 2053 -1.11000000 1 #> 2054 0.46310000 1 #> 2055 2.10640000 1 #> 2056 -1.73520000 1 #> 2057 -0.18111000 1 #> 2058 2.43940000 1 #> 2059 0.64168000 1 #> 2060 -1.15120000 1 #> 2061 0.00000000 1 #> 2062 -0.05774300 1 #> 2063 0.30155000 1 #> 2064 0.37975000 1 #> 2065 -0.92650000 1 #> 2066 -0.18228000 1 #> 2067 2.34180000 1 #> 2068 -0.38372000 1 #> 2069 -0.59777000 1 #> 2070 -1.65670000 1 #> 2071 -2.48650000 1 #> 2072 0.19479000 1 #> 2073 2.00630000 1 #> 2074 0.96671000 1 #> 2075 -0.11998000 1 #> 2076 0.13791000 1 #> 2077 -1.15010000 1 #> 2078 -0.21128000 1 #> 2079 0.15280000 1 #> 2080 -0.17720000 1 #> 2081 0.00000000 1 #> 2082 -1.04640000 1 #> 2083 1.17650000 1 #> 2084 0.80003000 1 #> 2085 0.18031000 1 #> 2086 0.07896700 1 #> 2087 -0.77382000 1 #> 2088 -1.49680000 1 #> 2089 0.14081000 1 #> 2090 -0.62149000 1 #> 2091 -0.64984000 1 #> 2092 -1.14210000 1 #> 2093 -1.59040000 1 #> 2094 -0.46894000 1 #> 2095 -0.51549000 1 #> 2096 1.15870000 1 #> 2097 1.36730000 1 #> 2098 2.05270000 1 #> 2099 1.38510000 1 #> 2100 -0.24229000 1 #> 2101 0.00000000 1 #> 2102 -0.70899000 1 #> 2103 -0.09109100 1 #> 2104 0.20534000 1 #> 2105 -1.42750000 1 #> 2106 -0.67439000 1 #> 2107 -0.13034000 1 #> 2108 0.02729500 1 #> 2109 0.38719000 1 #> 2110 1.11130000 1 #> 2111 -1.93410000 1 #> 2112 -1.67630000 1 #> 2113 1.14620000 1 #> 2114 -0.54417000 1 #> 2115 0.30257000 1 #> 2116 0.45746000 1 #> 2117 -1.12890000 1 #> 2118 0.62897000 1 #> 2119 0.69688000 1 #> 2120 1.41010000 1 #> 2121 0.00000000 1 #> 2122 -0.92769000 1 #> 2123 0.72860000 1 #> 2124 0.90319000 1 #> 2125 0.67418000 1 #> 2126 -0.75758000 1 #> 2127 1.45220000 1 #> 2128 -0.19129000 1 #> 2129 -1.26290000 1 #> 2130 1.84280000 1 #> 2131 0.16989000 1 #> 2132 1.64500000 1 #> 2133 1.99720000 1 #> 2134 -0.30655000 1 #> 2135 1.35530000 1 #> 2136 -1.08480000 1 #> 2137 -0.74023000 1 #> 2138 -0.67449000 1 #> 2139 4.04260000 1 #> 2140 -1.11150000 1 #> 2141 0.00000000 1 #> 2142 -0.22901000 1 #> 2143 0.13628000 1 #> 2144 -1.49520000 1 #> 2145 2.58610000 1 #> 2146 -0.34862000 1 #> 2147 1.23240000 1 #> 2148 0.42004000 1 #> 2149 1.60810000 1 #> 2150 0.12009000 1 #> 2151 -1.91260000 1 #> 2152 1.20780000 1 #> 2153 -0.14421000 1 #> 2154 -1.89110000 1 #> 2155 2.39480000 1 #> 2156 3.54990000 1 #> 2157 -0.69327000 1 #> 2158 -0.18661000 1 #> 2159 -0.44040000 1 #> 2160 3.72520000 1 #> 2161 0.00000000 1 #> 2162 -0.62079000 1 #> 2163 -0.38242000 1 #> 2164 -0.39595000 1 #> 2165 -0.50847000 1 #> 2166 0.03965400 1 #> 2167 0.52895000 1 #> 2168 -0.51804000 1 #> 2169 -0.65515000 1 #> 2170 0.44050000 1 #> 2171 -0.38202000 1 #> 2172 1.32100000 1 #> 2173 -0.99292000 1 #> 2174 -0.66337000 1 #> 2175 -0.01215800 1 #> 2176 -0.07547600 1 #> 2177 -0.37781000 1 #> 2178 0.01366300 1 #> 2179 1.42360000 1 #> 2180 0.12745000 1 #> 2181 0.00000000 1 #> 2182 0.28294000 1 #> 2183 2.12030000 1 #> 2184 1.49330000 1 #> 2185 3.22490000 1 #> 2186 1.76220000 1 #> 2187 0.29724000 1 #> 2188 -2.79710000 1 #> 2189 2.46870000 1 #> 2190 2.81580000 1 #> 2191 -1.76300000 1 #> 2192 -0.78981000 1 #> 2193 -0.34403000 1 #> 2194 -1.04790000 1 #> 2195 -0.25965000 1 #> 2196 -0.71783000 1 #> 2197 0.12581000 1 #> 2198 0.07211000 1 #> 2199 1.00640000 1 #> 2200 1.06170000 1 #> 2201 0.00000000 1 #> 2202 0.52736000 1 #> 2203 -0.07279600 1 #> 2204 0.40674000 1 #> 2205 -0.11595000 1 #> 2206 -0.25745000 1 #> 2207 -0.44111000 1 #> 2208 -0.40315000 1 #> 2209 -0.49381000 1 #> 2210 0.01062600 1 #> 2211 1.11830000 1 #> 2212 -0.17015000 1 #> 2213 1.18040000 1 #> 2214 2.45110000 1 #> 2215 0.70780000 1 #> 2216 -0.62116000 1 #> 2217 0.16004000 1 #> 2218 -0.26882000 1 #> 2219 0.61758000 1 #> 2220 2.25310000 1 #> 2221 0.00000000 1 #> 2222 -0.37523000 1 #> 2223 -0.82730000 1 #> 2224 -0.36373000 1 #> 2225 0.03449700 1 #> 2226 0.19937000 1 #> 2227 -1.78410000 1 #> 2228 0.79839000 1 #> 2229 -0.41588000 1 #> 2230 0.80338000 1 #> 2231 -0.49076000 1 #> 2232 0.36259000 1 #> 2233 0.07142400 1 #> 2234 0.89341000 1 #> 2235 -0.16660000 1 #> 2236 -1.29890000 1 #> 2237 1.31730000 1 #> 2238 1.31890000 1 #> 2239 -0.57939000 1 #> 2240 0.31959000 1 #> 2241 0.00000000 1 #> 2242 1.17780000 1 #> 2243 0.73312000 1 #> 2244 2.76660000 1 #> 2245 -1.08020000 1 #> 2246 -0.94309000 1 #> 2247 -0.20001000 1 #> 2248 -1.63150000 1 #> 2249 -0.51711000 1 #> 2250 1.36180000 1 #> 2251 -0.60831000 1 #> 2252 -0.78350000 1 #> 2253 0.04177900 1 #> 2254 3.73510000 1 #> 2255 -0.49379000 1 #> 2256 1.84760000 1 #> 2257 -0.36589000 1 #> 2258 -2.03970000 1 #> 2259 -0.34546000 1 #> 2260 -0.77047000 1 #> 2261 0.00000000 1 #> 2262 0.62793000 1 #> 2263 0.32770000 1 #> 2264 0.38739000 1 #> 2265 1.71990000 1 #> 2266 0.24910000 1 #> 2267 -0.08632400 1 #> 2268 -1.50830000 1 #> 2269 0.20789000 1 #> 2270 0.27795000 1 #> 2271 -0.39984000 1 #> 2272 -0.76058000 1 #> 2273 1.51320000 1 #> 2274 0.00143200 1 #> 2275 -0.74151000 1 #> 2276 -0.48568000 1 #> 2277 -0.26687000 1 #> 2278 -0.55610000 1 #> 2279 -0.15833000 1 #> 2280 0.48303000 1 #> 2281 0.00000000 1 #> 2282 0.45882000 1 #> 2283 -0.38805000 1 #> 2284 -0.85475000 1 #> 2285 -0.97003000 1 #> 2286 0.16245000 1 #> 2287 0.24691000 1 #> 2288 -0.94257000 1 #> 2289 2.17680000 1 #> 2290 -0.61538000 1 #> 2291 -0.14021000 1 #> 2292 -1.30170000 1 #> 2293 0.18960000 1 #> 2294 -0.82591000 1 #> 2295 1.16730000 1 #> 2296 1.90360000 1 #> 2297 -1.38790000 1 #> 2298 0.03221000 1 #> 2299 -0.89626000 1 #> 2300 -0.02401900 1 #> 2301 0.00000000 1 #> 2302 -0.47394000 1 #> 2303 -1.62730000 1 #> 2304 -0.43145000 1 #> 2305 0.63490000 1 #> 2306 -0.38874000 1 #> 2307 -1.05800000 1 #> 2308 2.07090000 1 #> 2309 1.17770000 1 #> 2310 0.42571000 1 #> 2311 -0.52363000 1 #> 2312 -1.39810000 1 #> 2313 0.88672000 1 #> 2314 0.96967000 1 #> 2315 -2.01820000 1 #> 2316 0.19617000 1 #> 2317 0.65973000 1 #> 2318 1.94790000 1 #> 2319 -0.11355000 1 #> 2320 1.40220000 1 #> 2321 0.00000000 1 #> 2322 1.40690000 1 #> 2323 -0.72126000 1 #> 2324 -0.67772000 1 #> 2325 0.46716000 1 #> 2326 1.04650000 1 #> 2327 0.95551000 1 #> 2328 3.70800000 1 #> 2329 -1.50620000 1 #> 2330 -0.69852000 1 #> 2331 0.17436000 1 #> 2332 -0.65498000 1 #> 2333 -0.22288000 1 #> 2334 1.53840000 1 #> 2335 0.52389000 1 #> 2336 -0.65915000 1 #> 2337 1.79890000 1 #> 2338 -1.06510000 1 #> 2339 -0.67428000 1 #> 2340 -0.58653000 1 #> 2341 0.00000000 1 #> 2342 -0.76070000 1 #> 2343 -0.91740000 1 #> 2344 -0.61358000 1 #> 2345 1.08930000 1 #> 2346 -0.36890000 1 #> 2347 -1.32810000 1 #> 2348 0.38336000 1 #> 2349 0.16007000 1 #> 2350 -0.22990000 1 #> 2351 0.71213000 1 #> 2352 1.24320000 1 #> 2353 0.67229000 1 #> 2354 -0.44313000 1 #> 2355 -0.22852000 1 #> 2356 2.14240000 1 #> 2357 -1.21400000 1 #> 2358 -0.83775000 1 #> 2359 -0.12571000 1 #> 2360 0.36231000 1 #> 2361 0.00000000 1 #> 2362 3.48730000 1 #> 2363 0.46462000 1 #> 2364 0.95738000 1 #> 2365 0.01771300 1 #> 2366 -0.45620000 1 #> 2367 0.44170000 1 #> 2368 -2.06900000 1 #> 2369 -2.74450000 1 #> 2370 2.05320000 1 #> 2371 1.85250000 1 #> 2372 0.25692000 1 #> 2373 -0.17014000 1 #> 2374 -1.06850000 1 #> 2375 -1.01030000 1 #> 2376 -0.16319000 1 #> 2377 0.40694000 1 #> 2378 -0.68366000 1 #> 2379 0.02394800 1 #> 2380 1.11630000 1 #> 2381 0.00000000 1 #> 2382 0.06248400 1 #> 2383 0.46072000 1 #> 2384 -0.20035000 1 #> 2385 0.02374200 1 #> 2386 0.32828000 1 #> 2387 0.37072000 1 #> 2388 -0.16855000 1 #> 2389 2.03550000 1 #> 2390 -0.76842000 1 #> 2391 -1.19390000 1 #> 2392 -1.63260000 1 #> 2393 -0.61866000 1 #> 2394 0.30363000 1 #> 2395 -0.85928000 1 #> 2396 -0.82205000 1 #> 2397 -0.52616000 1 #> 2398 -0.44063000 1 #> 2399 0.06764300 1 #> 2400 0.42756000 1"},{"path":"/reference/nmxml.html","id":null,"dir":"Reference","previous_headings":"","what":"Read a nonmem xml and create output similar to the nmlst() — nmxml","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"Read nonmem xml create output similar nmlst()","code":""},{"path":"/reference/nmxml.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"","code":"nmxml(xml)"},{"path":"/reference/nmxml.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"xml xml file","code":""},{"path":"/reference/nmxml.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"list nonmem information","code":""},{"path":"/reference/nmxml.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"Matthew L. Fidler","code":""},{"path":"/reference/nmxml.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"","code":"nmxml(system.file(\"mods/cpt/runODE032.xml\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> $sigma #> NULL #> #> $cov #> theta1 theta2 theta3 theta4 theta5 #> theta1 8.876810e-04 -1.055098e-04 1.844162e-04 -1.202337e-04 5.278300e-08 #> theta2 -1.055098e-04 8.714095e-04 -1.061946e-04 -5.066632e-05 -1.565618e-05 #> theta3 1.844162e-04 -1.061946e-04 2.993363e-03 1.652516e-04 5.993313e-06 #> theta4 -1.202337e-04 -5.066632e-05 1.652516e-04 1.213465e-03 -2.539912e-05 #> theta5 5.278300e-08 -1.565618e-05 5.993313e-06 -2.539912e-05 9.942182e-06 #> eta1 -4.712728e-05 4.696667e-05 -3.642709e-05 2.547962e-05 -8.168847e-06 #> omega.1.2 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta2 -7.371560e-05 2.566338e-05 -8.083493e-05 1.369999e-05 -4.365635e-06 #> omega.2.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.2.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta3 6.633832e-05 -8.190016e-05 5.489848e-04 1.683555e-04 1.591222e-06 #> omega.3.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta4 -9.496613e-06 1.101079e-04 -3.065372e-04 -9.128974e-05 3.187703e-06 #> eps1 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta1 omega.1.2 omega.1.3 omega.1.4 eta2 omega.2.3 #> theta1 -4.712728e-05 0 0 0 -7.371560e-05 0 #> theta2 4.696667e-05 0 0 0 2.566338e-05 0 #> theta3 -3.642709e-05 0 0 0 -8.083493e-05 0 #> theta4 2.547962e-05 0 0 0 1.369999e-05 0 #> theta5 -8.168847e-06 0 0 0 -4.365635e-06 0 #> eta1 1.692964e-04 0 0 0 8.751806e-06 0 #> omega.1.2 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta2 8.751806e-06 0 0 0 1.512503e-04 0 #> omega.2.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta3 3.487139e-05 0 0 0 4.315929e-07 0 #> omega.3.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta4 1.366281e-05 0 0 0 -1.950959e-05 0 #> eps1 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 eta3 omega.3.4 eta4 eps1 #> theta1 0 6.633832e-05 0 -9.496613e-06 0 #> theta2 0 -8.190016e-05 0 1.101079e-04 0 #> theta3 0 5.489848e-04 0 -3.065372e-04 0 #> theta4 0 1.683555e-04 0 -9.128974e-05 0 #> theta5 0 1.591222e-06 0 3.187703e-06 0 #> eta1 0 3.487139e-05 0 1.366281e-05 0 #> omega.1.2 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.4 0 0.000000e+00 0 0.000000e+00 0 #> eta2 0 4.315929e-07 0 -1.950959e-05 0 #> omega.2.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.2.4 0 0.000000e+00 0 0.000000e+00 0 #> eta3 0 9.590290e-04 0 -1.297699e-04 0 #> omega.3.4 0 0.000000e+00 0 0.000000e+00 0 #> eta4 0 -1.297699e-04 0 5.101895e-04 0 #> eps1 0 0.000000e+00 0 0.000000e+00 0 #> #> $objf #> [1] 20167.64 #> #> $nobs #> [1] 2280 #> #> $nsub #> [1] 120 #> #> $nmtran #> [1] \"\\n\\n WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\\n\" #> #> $nonmem #> [1] \"7.4.3\" #> #> $termInfo #> [1] \"\\n0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 320\\n NO. OF SIG. DIGITS IN FINAL EST.: 2.5\\n\" #> #> $time #> [1] 100.95 #> #> $control #> [1] \"\" #> [2] \"$PROB BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> [3] \"$INPUT ID TIME DV LNDV MDV AMT EVID DOSE V1I CLI QI V2I SSX IIX SD CMT\" #> [4] \"$DATA BOLUS_2CPT.csv IGNORE=@ IGNORE (SD.EQ.0)\" #> [5] \"$SUBR ADVAN13 TOL=6\" #> [6] \"$MODEL\" #> [7] \" COMP=(CENTRAL,DEFOBS,DEFDOSE)\" #> [8] \" COMP=(PERI)\" #> [9] \"$PK\" #> [10] \" CL=EXP(THETA(1)+ETA(1))\" #> [11] \" V=EXP(THETA(2)+ETA(2))\" #> [12] \" Q=EXP(THETA(3)+ETA(3))\" #> [13] \" V2=EXP(THETA(4)+ETA(4))\" #> [14] \" V1=V\" #> [15] \" S1=V\" #> [16] \"\\t\\t K21=Q/V2\" #> [17] \"\\t\\t K12=Q/V\" #> [18] \"$DES\" #> [19] \" DADT(1)= K21*A(2)-K12*A(1)-CL*A(1)/V1\" #> [20] \" DADT(2)=-K21*A(2)+K12*A(1) \\t\\t\" #> [21] \"$ERROR\" #> [22] \" IPRED = F\" #> [23] \" RESCV = THETA(5)\" #> [24] \" W = IPRED*RESCV\" #> [25] \" IRES = DV-IPRED\" #> [26] \" IWRES = IRES/W\" #> [27] \" Y = IPRED+W*EPS(1)\" #> [28] \"$THETA 1.6 ;log Cl\" #> [29] \"$THETA 4.5 ;log Vc\" #> [30] \"$THETA 1.6 ;log Q\" #> [31] \"$THETA 4 ;log Vp\" #> [32] \"$THETA (0,0.3,1) ;RSV\" #> [33] \"$OMEGA 0.15 0.15 0.15 0.15\" #> [34] \"$SIGMA 1 FIX\" #> [35] \"$EST NSIG=2 SIGL=6 PRINT=5 MAX=9999 NOABORT POSTHOC METHOD=COND INTER NOOBT\" #> [36] \"$COV\" #> [37] \"$TABLE ID TIME LNDV MDV AMT EVID DOSE V1I CLI QI V2I CL V Q V2 ETA1 ETA2 ETA3 ETA4\" #> [38] \" IPRED IRES IWRES CWRESI\" #> [39] \" ONEHEADER NOPRINT FILE=runODE032.csv\" #>"},{"path":"/reference/nmxmlCov.html","id":null,"dir":"Reference","previous_headings":"","what":"Get the xml for debugging (without including data etc) — nmxmlCov","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"Get xml debugging (without including data etc)","code":""},{"path":"/reference/nmxmlCov.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"","code":"nmxmlCov(xml, xmlout, tag = \"//nm:covariance\") nmxmlOmega(xml, xmlout, tag = \"//nm:omega\") nmxmlSigma(xml, xmlout, tag = \"//nm:sigma\") nmxmlTheta(xml, xmlout, tag = \"//nm:theta\")"},{"path":"/reference/nmxmlCov.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"xml Original xml file xmlout xml output (includes xml)","code":""},{"path":"/reference/nmxmlCov.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"nothing, called side effects","code":""},{"path":"/reference/nmxmlCov.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"Matthew L. Fidler","code":""},{"path":"/reference/nonmem2rx.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"Convert NONMEM source file rxode model (nlmixr2-syle)","code":""},{"path":"/reference/nonmem2rx.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"","code":"nonmem2rx( file, inputData = NULL, nonmemOutputDir = NULL, rename = NULL, tolowerLhs = TRUE, thetaNames = TRUE, etaNames = TRUE, cmtNames = TRUE, updateFinal = TRUE, determineError = TRUE, validate = getOption(\"nonmem2rx.validate\", TRUE), nonmemData = FALSE, strictLst = FALSE, unintFixed = FALSE, extended = getOption(\"nonmem2rx.extended\", FALSE), nLinesPro = 20L, delta = 1e-04, usePhi = TRUE, useExt = TRUE, useCov = TRUE, useXml = TRUE, useLst = TRUE, mod = \".mod\", cov = \".cov\", phi = \".phi\", lst = getOption(\"nonmem2rx.lst\", \".lst\"), xml = \".xml\", ext = \".ext\", scanLines = getOption(\"nonmem2rx.scanLines\", 50L), save = getOption(\"nonmem2rx.save\", NA), saveTime = getOption(\"nonmem2rx.saveTime\", 15), overwrite = getOption(\"nonmem2rx.overwrite\", TRUE), load = getOption(\"nonmem2rx.load\", TRUE), compress = getOption(\"nonmem2rx.compress\", TRUE), keep = getOption(\"nonmem2rx.keep\", c(\"dfSub\", \"dfObs\", \"thetaMat\", \"sigma\")) )"},{"path":"/reference/nonmem2rx.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"file NONMEM run file, like .xml .lst file even control stream inputData path input dataset (NULL determine dataset). Often input dataset may different place points control stream directories can created run NONMEM script. , specified input data assumed instead. nonmemOutputDir path nonmem output directory. NULL assume diretory output files located instead control stream currently exists. rename NULL named character vector contains parameters renamed. example, model uses variable YTYPE CMT compatible rxode2/nlmixr2. can change input dataset model create new model still reproduces NONMEM output specifying rename=c(dvid=\"YTYPE\") tolowerLhs Boolean change lhs lower case (default: TRUE) thetaNames boolean indicating theta names changed comment-labeled names (default: TRUE). also character vector theta names (order) replaced. etaNames boolean indicating eta names changed comment-labeled names (default: TRUE). also character vector theta names (order) replaced. cmtNames boolean indicating compartment names changed named compartments $MODEL COMP = (name) (default: TRUE). also character vector compartment names (order) replaced. updateFinal Update parsed model model estimates .lst output file. determineError Boolean try determine nlmixr2-style residual error model (like ipred ~ add(add.sd)), otherwise endpoints defined rxode2/nlmixr2 model (default: TRUE) validate Boolean tool attempt \"validate\" model solving derived model pred conditions (etas zero eps values zero) nonmemData Boolean tells nonmem2rx read nonmem data (possible) even model validated (like simulation run missing final parameter estimates). default FALSE, nonmem data integrated nonmem2rx ui. strictLst list parsing needs correct successful load (default FALSE). unintFixed Treat uninteresting values fixed parameters (default FALSE) extended Translate extended control streams tools like wings NONMEM nLinesPro number lines check $PROBLEM statement. delta offset NONMEM times tied usePhi present, use NONMEM phi file extract etas (default TRUE), otherwise defaults etas tables (present) useExt present, use NONMEM ext file extract parameter estimates (default TRUE), otherwise defaults parameter estimates extracted NONMEM output useCov present, use NONMEM cov file import covariance, otherwise import covariance list file useXml present, use NONMEM xml file import much NONMEM information useLst present, use NONMEM lst file extract NONMEM information mod NONMEM output extension, defaults .mod cov NONMEM covariance file extension, defaults .cov phi NONMEM eta/phi file extension, defaults .phi lst NONMEM output extension, defaults .lst xml NONMEM xml file extension , defaults .xml ext NONMEM ext file extension, defaults .ext scanLines number lines scan comment chars IGNORE=@, default 50 save can : NULL (meaning save), logical (default FALSE, save) TRUE use base name control stream, append .qs save file using qs::qsave() path file write Note file saved qs::qsave() can loaded qs::qread() NA value means save whole process (including validation) takes much time saveTime time translation/validation needs (secs) save avoid rerun model (default 15 15 seconds) overwrite boolean allow overwriting save file (see load information). load boolean says load save file (exists) instead re-running translation validation. Note overwrite=TRUE load=TRUE overwrite based time stamp files. save file newer input file, load file, otherwise regenerate overwrite. works best point output file, like .xml listing file instead control stream compress boolean indicating UI compressed UI. using simulation old versions rxode2, compressed ui supported, FALSE. Otherwise use TRUE using newer rxode2. keep character vector imported model items kept model ; defaults \"sigma\" keeps sigma matrix model . can add rxode2 solving options imported NONMEM keep model.","code":""},{"path":"/reference/nonmem2rx.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"rxode2 function","code":""},{"path":"/reference/nonmem2rx.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"Since options may want set per project, following options queried: nonmem2rx.validate - boolean validate model (default: TRUE) nonmem2rx.lst - default extension output (default: .lst) nonmem2rx.save - nonmem2rx save model output? nonmem2rx.overwrite - nonmem2rx save output overwritten (default TRUE) nonmem2rx.load - nonmem2rx load saved model instead translating validating ? (default TRUE) nonmem2rx.extended - nonmem2rx support extended control streams? (default FALSE) nonmem2rx.compress - ui compressed uncompressed (default: TRUE)","code":""},{"path":"/reference/nonmem2rx.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"","code":"# You can run a translation without validating the input. This is # a faster way to import a dataset (and allows the CRAN machines to # run a quick example) mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), lst=\".res\", save=FALSE, validate=FALSE, compress=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done # \\donttest{ # Though by default you likely wish to validate the input mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> theta1 ~ c(theta1 = 0.000887681) #> theta2 ~ c(theta1 = -0.00010551, theta2 = 0.000871409) #> theta3 ~ c(theta1 = 0.000184416, theta2 = -0.000106195, #> theta3 = 0.00299336) #> theta4 ~ c(theta1 = -0.000120234, theta2 = -5.06663e-05, #> theta3 = 0.000165252, theta4 = 0.00121347) #> RSV ~ c(theta1 = 5.2783e-08, theta2 = -1.56562e-05, theta3 = 5.99331e-06, #> theta4 = -2.53991e-05, RSV = 9.94218e-06) #> eps1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0) #> eta1 ~ c(theta1 = -4.71273e-05, theta2 = 4.69667e-05, #> theta3 = -3.64271e-05, theta4 = 2.54796e-05, RSV = -8.16885e-06, #> eps1 = 0, eta1 = 0.000169296) #> omega.2.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0) #> eta2 ~ c(theta1 = -7.37156e-05, theta2 = 2.56634e-05, #> theta3 = -8.08349e-05, theta4 = 1.37e-05, RSV = -4.36564e-06, #> eps1 = 0, eta1 = 8.75181e-06, omega.2.1 = 0, eta2 = 0.00015125) #> omega.3.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta3 ~ c(theta1 = 6.63383e-05, theta2 = -8.19002e-05, #> theta3 = 0.000548985, theta4 = 0.000168356, RSV = 1.59122e-06, #> eps1 = 0, eta1 = 3.48714e-05, omega.2.1 = 0, eta2 = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0.000959029) #> omega.4.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0) #> omega.4.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta4 ~ c(theta1 = -9.49661e-06, theta2 = 0.000110108, #> theta3 = -0.000306537, theta4 = -9.12897e-05, RSV = 3.1877e-06, #> eps1 = 0, eta1 = 1.36628e-05, omega.2.1 = 0, eta2 = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta4 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> ipred ~ prop(RSV) #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • there are duplicate eta names, not renaming duplicate parameters #> • there are duplicate theta names, not renaming duplicate parameters #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol # you can plot to compare the pred/ipred differences plot(mod) # if you want to see the individual differences # you can by plotting by page of plots plot(mod, nrow=2, ncol=2, page=1, log=\"y\") # or select which pages you want to print plot(mod, nrow=2, ncol=2, page=c(1,3), log=\"y\") #' or even all the individuals with # plot(page=TRUE) plot(mod, nrow=5, ncol=5, page=TRUE, log=\"y\") # you can also convert to a nlmixr2 object, but need babelmixr2 for # that conversion # }"},{"path":"/reference/nonmem2rxRec.html","id":null,"dir":"Reference","previous_headings":"","what":"Record handling for nonmem records — nonmem2rxRec.abb","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Record handling nonmem records","code":""},{"path":"/reference/nonmem2rxRec.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"","code":"# S3 method for class 'abb' nonmem2rxRec(x) # S3 method for class 'pk' nonmem2rxRec(x) # S3 method for class 'pre' nonmem2rxRec(x) # S3 method for class 'des' nonmem2rxRec(x) # S3 method for class 'mix' nonmem2rxRec(x) # S3 method for class 'err' nonmem2rxRec(x) # S3 method for class 'dat' nonmem2rxRec(x) # S3 method for class 'inp' nonmem2rxRec(x) # S3 method for class 'mod' nonmem2rxRec(x) # S3 method for class 'ome' nonmem2rxRec(x) # S3 method for class 'sig' nonmem2rxRec(x) # S3 method for class 'pro' nonmem2rxRec(x) # S3 method for class 'aaa' nonmem2rxRec(x) nonmem2rxRec(x) # Default S3 method nonmem2rxRec(x) # S3 method for class 'sub' nonmem2rxRec(x) # S3 method for class 'tab' nonmem2rxRec(x) # S3 method for class 'the' nonmem2rxRec(x)"},{"path":"/reference/nonmem2rxRec.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"x Nonmem record data item, class c(stdRec, \"nonmem2rx\") stdRec standardized record (pro $PROBLEM, etc)","code":""},{"path":"/reference/nonmem2rxRec.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Nothing, called side effects","code":""},{"path":"/reference/nonmem2rxRec.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Can add record parsing handling creating S3 method type standardized method","code":""},{"path":"/reference/nonmem2rxRec.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Matthew L. Fidler","code":""},{"path":"/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. ggplot2 autoplot lotri lotri magrittr %>% rxode2 expit, ini, logit, model, model<-, rxode, RxODE, rxode2, rxRename, rxSolve, rxUiGet","code":""},{"path":"/news/index.html","id":"nonmem2rx-015","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.5","title":"nonmem2rx 0.1.5","text":"forgiving validation remove IDs without observations solving IPRED problem. Binary linkage dparser changed structure , meaning nonmem2rx may updated dparser updated.","code":""},{"path":"/news/index.html","id":"nonmem2rx-014","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.4","title":"nonmem2rx 0.1.4","text":"CRAN release: 2024-05-29 reading NONMEM results xml try nm: prefixed tags non-nm: prefixed tags. Omega Sigma prior estimates currently ignored (theta priors already ignored) Improve reading theta values xml Read NONMEM files using latin1 encoding allow single byte parser work lines NONMEM input dataset start # now ignored. IDs zero, NONMEM assumes restarting time gives different IDs; now reflected NONMEM translation IDs. linCmt() parsing, expand scope conflicting parameters renamed import. Added better parsing ELSE another next line. Prefixed conflicting VP rxm. linCmt() models accommodating importing linear compartment models.","code":""},{"path":"/news/index.html","id":"nonmem2rx-013","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.3","title":"nonmem2rx 0.1.3","text":"CRAN release: 2023-12-12 Added explicit requirement rxode2 2.0.13 Added support DADT(#) statements right side equation, .e. DADT(3) = DADT(1) + DADT(2) (#164) Added support ADVAN#, TRANS# (#161) Added NONMEM-specific solving options Fixed security related format issues requested CRAN #167 Now omega, thetaMat, dfObs dfSub incorporated model function (default). can change nonmem2rx keep argument Using rxode2 2.0.13 makes sure solves models endpoint determined typical nlmixr2 style validate often (due bug solving rxode2).","code":""},{"path":"/news/index.html","id":"nonmem2rx-012","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.2","title":"nonmem2rx 0.1.2","text":"CRAN release: 2023-07-03 Added support ADVAN5 ADVAN7 models Add parsing accept/ignore characters example IGNORE=(C='C') (See Issue #140) Add robust reading NONMEM information (add source) nminfo() (See issue #142) Since NONMEM protect divide zeros default, default solveZero changed solveZero = TRUE nonmem2rx objects. Fixed bug renaming eta theta renamed ui$iniDf match theta# eta# (Issue #153) Turned testing .nonmem2rx example since took much time (according CRAN)","code":""},{"path":"/news/index.html","id":"nonmem2rx-011","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.1","title":"nonmem2rx 0.1.1","text":"CRAN release: 2023-06-01 Fix internal memory issue (LTO, valgrind etc)","code":""},{"path":"/news/index.html","id":"nonmem2rx-010","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.0","title":"nonmem2rx 0.1.0","text":"CRAN release: 2023-05-26 Added NEWS.md file track changes package.","code":""}] +[{"path":"/articles/convert-nlmixr2.html","id":"creating-a-nlmixr2-compatible-model","dir":"Articles","previous_headings":"","what":"Creating a nlmixr2 compatible model","title":"Converting a NONMEM fit to a nlmixr2 object","text":"Depending model, residual specifications translated nlmixr2 style residuals. means model immediately used either nlmixr2() estimation creating nlmixr2 fit object (though can simulate without certainty without modifications) example something like: model can nlmixr2 estimation instead simply simulation residual needs changed something like: Since model import translation done already, can easily tweak model form. example residual errors automatically translated nlmixr2 parameter style (case option determineError=FALSE)","code":"y <- ipred*(1+eps1) cp ~ prop(prop.sd)"},{"path":"/articles/convert-nlmixr2.html","id":"example-no-error-determined","dir":"Articles","previous_headings":"","what":"Example – no error determined","title":"Converting a NONMEM fit to a nlmixr2 object","text":"One approach get nlmixr2 compatible model copy printed model modify needed. case, name parameters something bit meaningful keeping estimates : .nonmem2rx() function compare already imported rxode2 model function model made manual tweaks : case new model qualifies now information imported nonmem2rx model. means can estimate new model knowing model specified NONMEM. Since iwres affected specify residuals, pay special attention validation. validate, may forgot translate NONMEM variance estimate standard deviation estimate required many estimation methods.","code":"library(nonmem2rx) library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(mod) #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> theta1 ~ c(theta1 = 0.000887681) #> theta2 ~ c(theta1 = -0.00010551, theta2 = 0.000871409) #> theta3 ~ c(theta1 = 0.000184416, theta2 = -0.000106195, #> theta3 = 0.00299336) #> theta4 ~ c(theta1 = -0.000120234, theta2 = -5.06663e-05, #> theta3 = 0.000165252, theta4 = 0.00121347) #> RSV ~ c(theta1 = 5.2783e-08, theta2 = -1.56562e-05, theta3 = 5.99331e-06, #> theta4 = -2.53991e-05, RSV = 9.94218e-06) #> eps1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0) #> eta1 ~ c(theta1 = -4.71273e-05, theta2 = 4.69667e-05, #> theta3 = -3.64271e-05, theta4 = 2.54796e-05, RSV = -8.16885e-06, #> eps1 = 0, eta1 = 0.000169296) #> omega.2.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0) #> eta2 ~ c(theta1 = -7.37156e-05, theta2 = 2.56634e-05, #> theta3 = -8.08349e-05, theta4 = 1.37e-05, RSV = -4.36564e-06, #> eps1 = 0, eta1 = 8.75181e-06, omega.2.1 = 0, eta2 = 0.00015125) #> omega.3.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta3 ~ c(theta1 = 6.63383e-05, theta2 = -8.19002e-05, #> theta3 = 0.000548985, theta4 = 0.000168356, RSV = 1.59122e-06, #> eps1 = 0, eta1 = 3.48714e-05, omega.2.1 = 0, eta2 = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0.000959029) #> omega.4.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0) #> omega.4.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta4 ~ c(theta1 = -9.49661e-06, theta2 = 0.000110108, #> theta3 = -0.000306537, theta4 = -9.12897e-05, RSV = 3.1877e-06, #> eps1 = 0, eta1 = 1.36628e-05, omega.2.1 = 0, eta2 = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta4 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> w <- ipred * rescv #> ires <- DV - ipred #> iwres <- ires/w #> y <- ipred + w * eps1 #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • there are duplicate eta names, not renaming duplicate parameters #> • there are duplicate theta names, not renaming duplicate parameters #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol mod2 <-function() { ini({ lcl <- 1.37034036528946 lvc <- 4.19814911033061 lq <- 1.38003493562413 lvp <- 3.87657341967489 RSV <- c(0, 0.196446108190896, 1) eta.cl ~ 0.101251418415006 eta.v ~ 0.0993872449483344 eta.q ~ 0.101302674763154 eta.v2 ~ 0.0730497519364148 }) model({ cmt(CENTRAL) cmt(PERI) cl <- exp(lcl + eta.cl) v <- exp(lvc + eta.v) q <- exp(lq + eta.q) v2 <- exp(lvp + eta.v2) v1 <- v scale1 <- v k21 <- q/v2 k12 <- q/v d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL f <- CENTRAL/scale1 f ~ prop(RSV) }) } new <- as.nonmem2rx(mod2, mod) #> ℹ parameter labels from comments are typically ignored in non-interactive mode #> ℹ Need to run with the source intact to parse comments #> ℹ copy 'dfSub' to nonmem2rx model #> ℹ copy 'thetaMat' to nonmem2rx model #> ℹ copy 'dfObs' to nonmem2rx model #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(new) #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> lcl lvc lq lvp RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta.cl eta.v eta.q eta.v2 #> eta.cl 0.1012514 0.00000000 0.0000000 0.00000000 #> eta.v 0.0000000 0.09938724 0.0000000 0.00000000 #> eta.q 0.0000000 0.00000000 0.1013027 0.00000000 #> eta.v2 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 lcl eta.cl id #> 2 lvc eta.v id #> 3 lq eta.q id #> 4 lvp eta.v2 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> thetaMat <- lotri({ #> lcl ~ c(lcl = 0.000887681) #> lvc ~ c(lcl = -0.00010551, lvc = 0.000871409) #> lq ~ c(lcl = 0.000184416, lvc = -0.000106195, lq = 0.00299336) #> lvp ~ c(lcl = -0.000120234, lvc = -5.06663e-05, lq = 0.000165252, #> lvp = 0.00121347) #> RSV ~ c(lcl = 5.2783e-08, lvc = -1.56562e-05, lq = 5.99331e-06, #> lvp = -2.53991e-05, RSV = 9.94218e-06) #> eta.cl ~ c(lcl = -4.71273e-05, lvc = 4.69667e-05, lq = -3.64271e-05, #> lvp = 2.54796e-05, RSV = -8.16885e-06, eta.cl = 0.000169296) #> eta.v ~ c(lcl = -7.37156e-05, lvc = 2.56634e-05, lq = -8.08349e-05, #> lvp = 1.37e-05, RSV = -4.36564e-06, eta.cl = 8.75181e-06, #> eta.v = 0.00015125) #> eta.q ~ c(lcl = 6.63383e-05, lvc = -8.19002e-05, lq = 0.000548985, #> lvp = 0.000168356, RSV = 1.59122e-06, eta.cl = 3.48714e-05, #> eta.v = 4.31593e-07, eta.q = 0.000959029) #> eta.v2 ~ c(lcl = -9.49661e-06, lvc = 0.000110108, lq = -0.000306537, #> lvp = -9.12897e-05, RSV = 3.1877e-06, eta.cl = 1.36628e-05, #> eta.v = -1.95096e-05, eta.q = -0.00012977, eta.v2 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> lcl <- 1.37034036528946 #> lvc <- 4.19814911033061 #> lq <- 1.38003493562413 #> lvp <- 3.87657341967489 #> RSV <- c(0, 0.196446108190896, 1) #> eta.cl ~ 0.101251418415006 #> eta.v ~ 0.0993872449483344 #> eta.q ~ 0.101302674763154 #> eta.v2 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(lcl + eta.cl) #> v <- exp(lvc + eta.v) #> q <- exp(lq + eta.q) #> v2 <- exp(lvp + eta.v2) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> f ~ prop(RSV) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/convert-nlmixr2.html","id":"converting-the-model-to-a-nlmixr2-fit","dir":"Articles","previous_headings":"Example – no error determined","what":"Converting the model to a nlmixr2 fit","title":"Converting a NONMEM fit to a nlmixr2 object","text":"rxode2() model : Qualifies NONMEM model, nlmixr2 compatible residuals can convert nlmixr2 fit object babelmixr2:","code":"library(babelmixr2) fit <- as.nlmixr2(new) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2176 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) #> nonmem2rx 15977.28 20185.64 20237.23 -10083.82 335.4129 #> Condition#(Cor) #> nonmem2rx 2.096559 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.043223 0.117 0.014 100.95 2.856 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Est. SE %RSE Back-transformed(95%CI) BSV(CV%) Shrink(SD)% #> lcl 1.37 0.0298 2.17 3.94 (3.71, 4.17) 32.6 1.94% #> lvc 4.2 0.0295 0.703 66.6 (62.8, 70.5) 32.3 2.46% #> lq 1.38 0.0547 3.96 3.98 (3.57, 4.42) 32.7 40.5% #> lvp 3.88 0.0348 0.899 48.3 (45.1, 51.7) 27.5 28.4% #> RSV 0.196 0.196 #> #> Covariance Type (fit$covMethod): nonmem2rx #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION SUCCESSFUL #> NO. OF FUNCTION EVALUATIONS USED: 320 #> NO. OF SIG. DIGITS IN FINAL EST.: 2.5 #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.25e-05, 0.0418); atol=0.00167 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382); atol=6.41e-06 #> nonmem2rx model file: '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 2,280 × 25 #> ID TIME DV PRED RES IPRED IRES IWRES eta.cl eta.v eta.q eta.v2 #> #> 1 1 0.25 1041. 1750. -710. 1215. -175. -0.732 -0.144 0.375 0.0650 0.241 #> 2 1 0.5 1629 1700. -70.8 1192. 437. 1.87 -0.144 0.375 0.0650 0.241 #> 3 1 0.75 878. 1651. -774. 1169. -291. -1.27 -0.144 0.375 0.0650 0.241 #> # ℹ 2,277 more rows #> # ℹ 13 more variables: f , CENTRAL , PERI , cl , v , #> # q , v2 , v1 , scale1 , k21 , k12 , tad , #> # dosenum "},{"path":"/articles/create-augPred.html","id":"step-1-convert-the-nonmem-model-to-rxode2","dir":"Articles","previous_headings":"","what":"Step 1: Convert the NONMEM model to rxode2:","title":"Created Augmented pred/ipred plots with `augPred()`","text":"","code":"library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/create-augPred.html","id":"step-2-convert-the-rxode2-model-to-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: convert the rxode2 model to nlmixr2","title":"Created Augmented pred/ipred plots with `augPred()`","text":"step, convert model nlmixr2 .nlmixr2(mod); may need little manual work get residual specification match nlmixr2 NONMEM. residual specification compatible nlmixr2 object, can convert model, mod, nlmixr2 fit object:","code":"fit <- as.nlmixr2(mod) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2184 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) #> nonmem2rx 15977.28 20185.64 20237.23 -10083.82 335.4129 #> Condition#(Cor) #> nonmem2rx 2.096559 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.041519 0.122 0.013 100.95 2.864 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%) #> theta1 log Cl 1.37 0.0298 2.17 3.94 (3.71, 4.17) 32.6 #> theta2 log Vc 4.2 0.0295 0.703 66.6 (62.8, 70.5) 32.3 #> theta3 log Q 1.38 0.0547 3.96 3.98 (3.57, 4.42) 32.7 #> theta4 log Vp 3.88 0.0348 0.899 48.3 (45.1, 51.7) 27.5 #> RSV RSV 0.196 0.196 #> Shrink(SD)% #> theta1 1.94% #> theta2 2.46% #> theta3 40.5% #> theta4 28.4% #> RSV #> #> Covariance Type (fit$covMethod): nonmem2rx #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION SUCCESSFUL #> NO. OF FUNCTION EVALUATIONS USED: 320 #> NO. OF SIG. DIGITS IN FINAL EST.: 2.5 #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.25e-05, 0.0418); atol=0.00167 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382); atol=6.41e-06 #> nonmem2rx model file: '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 2,280 × 27 #> ID TIME DV PRED RES IPRED IRES IWRES eta1 eta2 eta3 eta4 #> #> 1 1 0.25 1041. 1750. -710. 1215. -175. -0.732 -0.144 0.375 0.0650 0.241 #> 2 1 0.5 1629 1700. -70.8 1192. 437. 1.87 -0.144 0.375 0.0650 0.241 #> 3 1 0.75 878. 1651. -774. 1169. -291. -1.27 -0.144 0.375 0.0650 0.241 #> # ℹ 2,277 more rows #> # ℹ 15 more variables: ipred , CENTRAL , PERI , cl , #> # v , q , v2 , v1 , scale1 , k21 , k12 , #> # f , rescv , tad , dosenum "},{"path":"/articles/create-augPred.html","id":"step-3-create-and-plot-an-augmented-prediction","dir":"Articles","previous_headings":"","what":"Step 3: Create and plot an augmented prediction","title":"Created Augmented pred/ipred plots with `augPred()`","text":"","code":"ap <- augPred(fit) #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ head(ap) #> values ind id time Endpoint #> 1 1239.488 Individual 1 0.0000 CENTRAL #> 2 1215.358 Individual 1 0.2500 CENTRAL #> 3 1191.924 Individual 1 0.5000 CENTRAL #> 4 1169.164 Individual 1 0.7500 CENTRAL #> 5 1147.057 Individual 1 1.0000 CENTRAL #> 6 1109.689 Individual 1 1.4398 CENTRAL plot(ap)"},{"path":"/articles/create-office.html","id":"step-1-import-the-model-into-nonmem2rx","dir":"Articles","previous_headings":"","what":"Step 1: import the model into nonmem2rx","title":"Create PowerPoint and Word documents using nonmem2rx","text":"","code":"library(nonmem2rx) library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data library(nlmixr2rpt) library(onbrand) library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/create-office.html","id":"step-2-convert-the-rxode2-model-to-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: convert the rxode2 model to nlmixr2","title":"Create PowerPoint and Word documents using nonmem2rx","text":"step, convert model nlmixr2 .nlmixr2(mod); may need little manual work get residual specification match nlmixr2 NONMEM. residual specification compatible nlmixr2 object, can convert model, mod, nlmixr2 fit object: cmt(CENTRAL)cmt(PERI)cl=exp(theta1+eta1)v=exp(theta2+eta2)q=exp(theta3+eta3)v2=exp(theta4+eta4)v1=vscale1=vk21=qv2k12=qvdCENTRALdt=k21×PERI−k12×CENTRAL−cl×CENTRALv1dPERIdt=−k21×PERI+k12×CENTRALf=CENTRALscale1ipred=frescv=RSVipred∼prop(RSV)\\begin{align*} cmt({CENTRAL}) \\\\ cmt({PERI}) \\\\ {cl} & = \\exp\\left({theta1}+{eta1}\\right) \\\\ {v} & = \\exp\\left({theta2}+{eta2}\\right) \\\\ {q} & = \\exp\\left({theta3}+{eta3}\\right) \\\\ {v2} & = \\exp\\left({theta4}+{eta4}\\right) \\\\ {v1} & = {v} \\\\ {scale1} & = {v} \\\\ {k21} & = \\frac{{q}}{{v2}} \\\\ {k12} & = \\frac{{q}}{{v}} \\\\ \\frac{d \\: CENTRAL}{dt} & = {k21} {\\times} {PERI}-{k12} {\\times} {CENTRAL}-\\frac{{cl} {\\times} {CENTRAL}}{{v1}} \\\\ \\frac{d \\: PERI}{dt} & = -{k21} {\\times} {PERI}+{k12} {\\times} {CENTRAL} \\\\ {f} & = \\frac{{CENTRAL}}{{scale1}} \\\\ {ipred} & = {f} \\\\ {rescv} & = {RSV} \\\\ {ipred} & \\sim prop({RSV}) \\end{align*}","code":"fit <- as.nlmixr2(mod) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2184 fit"},{"path":"/articles/create-office.html","id":"step-3-create-a-powerpoint-file","dir":"Articles","previous_headings":"","what":"Step 3: Create a PowerPoint file","title":"Create PowerPoint and Word documents using nonmem2rx","text":"PowerPoint can created custom powerpoint templates, example use ones come nlmixr2rpt directly: gives powerpoint ","code":"obnd_pptx = read_template( template = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.pptx\"), mapping = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.yaml\")) obnd_pptx = report_fit( fit = fit, obnd = obnd_pptx) #> #> Attaching package: 'xpose' #> The following object is masked from 'package:stats': #> #> filter #> Registered S3 method overwritten by 'GGally': #> method from #> +.gg ggplot2 #> #> Attaching package: 'ggPMX' #> The following object is masked from 'package:xpose': #> #> get_data #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → calculate jacobian #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate sensitivities #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(f)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(R²)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling inner model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → finding duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → compiling events FD model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → Calculating residuals/tables #> ✔ done #> Warning in xpose.nlmixr2::xpose_data_nlmixr(fit): Added CWRES to fit (using #> nlmixr2::addCwres)... #> Skipping table: skip_table (NA found, not generated) #> Skipping figure: res_vs_pred_idv (NA found, not generated) #> Skipping figure: eta_cont (NA found, not generated) #> Skipping figure: eta_cat (NA found, not generated) #> Skipping figure: skip_figure (NA found, not generated) save_report(obnd_pptx, \"mod-PowerPoint.pptx\") #> $isgood #> [1] TRUE #> #> $msgs #> NULL"},{"path":"/articles/create-office.html","id":"step-4-create-a-word-file","dir":"Articles","previous_headings":"","what":"Step 4: Create a Word file","title":"Create PowerPoint and Word documents using nonmem2rx","text":"Just like PowerPoint, can customizeown custom word templates, example use ones come nlmixr2rpt directly: gives word document ","code":"obnd_docx = read_template( template = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.docx\"), mapping = system.file(package=\"nlmixr2rpt\", \"templates\",\"nlmixr_obnd_template.yaml\")) obnd_docx = report_fit( fit = fit, obnd = obnd_docx) #> → Calculating residuals/tables #> ✔ done #> Warning in xpose.nlmixr2::xpose_data_nlmixr(fit): Added CWRES to fit (using #> nlmixr2::addCwres)... #> Skipping figure: res_vs_pred_idv (NA found, not generated) #> Skipping figure: skip_figure (NA found, not generated) #> Skipping figure: eta_cont (NA found, not generated) #> Skipping figure: eta_cat (NA found, not generated) save_report(obnd_docx, \"mod-Word.docx\") #> $isgood #> [1] TRUE #> #> $msgs #> NULL"},{"path":"/articles/create-vpc.html","id":"step-1-convert-the-nonmem-model-to-rxode2","dir":"Articles","previous_headings":"","what":"Step 1: Convert the NONMEM model to rxode2:","title":"Easily Create a VPC using nonmem2rx","text":"","code":"library(babelmixr2) #> Loading required package: nlmixr2 #> Loading required package: nlmixr2data library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/create-vpc.html","id":"step-2-convert-the-rxode2-model-to-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: convert the rxode2 model to nlmixr2","title":"Easily Create a VPC using nonmem2rx","text":"step, convert model nlmixr2 .nlmixr2(mod); may need little manual work get residual specification match nlmixr2 NONMEM. residual specification compatible nlmixr2 object, can convert model, mod, nlmixr2 fit object:","code":"fit <- as.nlmixr2(mod) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 204016 #> → compress parHistData in nlmixr2 object, save 2184 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) #> nonmem2rx 15977.28 20185.64 20237.23 -10083.82 335.4129 #> Condition#(Cor) #> nonmem2rx 2.096559 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.042266 0.094 0.012 100.95 2.467 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%) #> theta1 log Cl 1.37 0.0298 2.17 3.94 (3.71, 4.17) 32.6 #> theta2 log Vc 4.2 0.0295 0.703 66.6 (62.8, 70.5) 32.3 #> theta3 log Q 1.38 0.0547 3.96 3.98 (3.57, 4.42) 32.7 #> theta4 log Vp 3.88 0.0348 0.899 48.3 (45.1, 51.7) 27.5 #> RSV RSV 0.196 0.196 #> Shrink(SD)% #> theta1 1.94% #> theta2 2.46% #> theta3 40.5% #> theta4 28.4% #> RSV #> #> Covariance Type (fit$covMethod): nonmem2rx #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION SUCCESSFUL #> NO. OF FUNCTION EVALUATIONS USED: 320 #> NO. OF SIG. DIGITS IN FINAL EST.: 2.5 #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.25e-05, 0.0418); atol=0.00167 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382); atol=6.41e-06 #> nonmem2rx model file: '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 2,280 × 27 #> ID TIME DV PRED RES IPRED IRES IWRES eta1 eta2 eta3 eta4 #> #> 1 1 0.25 1041. 1750. -710. 1215. -175. -0.732 -0.144 0.375 0.0650 0.241 #> 2 1 0.5 1629 1700. -70.8 1192. 437. 1.87 -0.144 0.375 0.0650 0.241 #> 3 1 0.75 878. 1651. -774. 1169. -291. -1.27 -0.144 0.375 0.0650 0.241 #> # ℹ 2,277 more rows #> # ℹ 15 more variables: ipred , CENTRAL , PERI , cl , #> # v , q , v2 , v1 , scale1 , k21 , k12 , #> # f , rescv , tad , dosenum "},{"path":"/articles/create-vpc.html","id":"step-3-perform-the-vpc","dir":"Articles","previous_headings":"","what":"Step 3: Perform the VPC","title":"Easily Create a VPC using nonmem2rx","text":"simply use vpcPlot() conjunction vpc package get regular prediction-corrected VPCs arrange single plot:","code":"library(ggplot2) p1 <- vpcPlot(fit, show=list(obs_dv=TRUE)) #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 p1 <- p1 + ylab(\"Concentrations\") + rxode2::rxTheme() + xlab(\"Time (hr)\") + xgxr::xgx_scale_x_time_units(\"hour\", \"hour\") p1a <- p1 + xgxr::xgx_scale_y_log10() ## A prediction-corrected VPC p2 <- vpcPlot(fit, pred_corr = TRUE, show=list(obs_dv=TRUE)) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 p2 <- p2 + ylab(\"Prediction-Corrected Concentrations\") + rxode2::rxTheme() + xlab(\"Time (hr)\") + xgxr::xgx_scale_x_time_units(\"hour\", \"hour\") p2a <- p2 + xgxr::xgx_scale_y_log10() library(patchwork) (p1 * p1a) / (p2 * p2a)"},{"path":"/articles/import-nonmem.html","id":"setting-up-nonmem2rx-for-your-model","dir":"Articles","previous_headings":"","what":"Setting up nonmem2rx for your model","title":"Importing NONMEM into rxode2","text":"common options may want change importing NONMEM control stream : default NONMEM output extension; default .lst. can set something else, like .res, using following option: options(nonmem2rx.lst=\".res\"). Turn extended control stream support. can turn options(nonmem2rx.extended=TRUE) probably also want change name parameters compartments. easiest way name parameters whatever want pre-specify names. example: checks parameter names make sure length input names, , model skip parameter renaming keep default translation names theta# eta#. note, sigma parameters currently renamed; following model (grabs parameter automatically labels generate variables), sigma simply eps#. can still rename however wish, though, using model piping (rxRename() dplyr::rename() work): model specify residuals way makes sense nlmixr2. want, can still convert rxode2 model nlmixr2 fit.","code":"mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), lst=\".res\", save=FALSE, thetaNames=c(\"lcl\", \"lvc\", \"lq\", \"lvp\", \"prop.sd\"), etaNames=c(\"eta.cl\", \"eta.vc\", \"eta.q\",\"eta.vp\"), cmtNames = c(\"central\", \"perip\")) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> lcl lvc lq lvp prop.sd #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta.cl eta.vc eta.q eta.vp #> eta.cl 0.1012514 0.00000000 0.0000000 0.00000000 #> eta.vc 0.0000000 0.09938724 0.0000000 0.00000000 #> eta.q 0.0000000 0.00000000 0.1013027 0.00000000 #> eta.vp 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 central #> 2 2 perip #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 lcl eta.cl id #> 2 lvc eta.vc id #> 3 lq eta.q id #> 4 lvp eta.vp id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> lcl ~ c(lcl = 0.000887681) #> lvc ~ c(lcl = -0.00010551, lvc = 0.000871409) #> lq ~ c(lcl = 0.000184416, lvc = -0.000106195, lq = 0.00299336) #> lvp ~ c(lcl = -0.000120234, lvc = -5.06663e-05, lq = 0.000165252, #> lvp = 0.00121347) #> prop.sd ~ c(lcl = 5.2783e-08, lvc = -1.56562e-05, lq = 5.99331e-06, #> lvp = -2.53991e-05, prop.sd = 9.94218e-06) #> eps1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0) #> eta.cl ~ c(lcl = -4.71273e-05, lvc = 4.69667e-05, lq = -3.64271e-05, #> lvp = 2.54796e-05, prop.sd = -8.16885e-06, eps1 = 0, #> eta.cl = 0.000169296) #> omega.2.1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0) #> eta.vc ~ c(lcl = -7.37156e-05, lvc = 2.56634e-05, lq = -8.08349e-05, #> lvp = 1.37e-05, prop.sd = -4.36564e-06, eps1 = 0, #> eta.cl = 8.75181e-06, omega.2.1 = 0, eta.vc = 0.00015125) #> omega.3.1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta.q ~ c(lcl = 6.63383e-05, lvc = -8.19002e-05, lq = 0.000548985, #> lvp = 0.000168356, prop.sd = 1.59122e-06, eps1 = 0, #> eta.cl = 3.48714e-05, omega.2.1 = 0, eta.vc = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0.000959029) #> omega.4.1 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0, omega.4.1 = 0) #> omega.4.2 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(lcl = 0, lvc = 0, lq = 0, lvp = 0, prop.sd = 0, #> eps1 = 0, eta.cl = 0, omega.2.1 = 0, eta.vc = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta.vp ~ c(lcl = -9.49661e-06, lvc = 0.000110108, lq = -0.000306537, #> lvp = -9.12897e-05, prop.sd = 3.1877e-06, eps1 = 0, #> eta.cl = 1.36628e-05, omega.2.1 = 0, eta.vc = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta.q = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta.vp = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> lcl <- 1.37034036528946 #> label(\"log Cl\") #> lvc <- 4.19814911033061 #> label(\"log Vc\") #> lq <- 1.38003493562413 #> label(\"log Q\") #> lvp <- 3.87657341967489 #> label(\"log Vp\") #> prop.sd <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta.cl ~ 0.101251418415006 #> eta.vc ~ 0.0993872449483344 #> eta.q ~ 0.101302674763154 #> eta.vp ~ 0.0730497519364148 #> }) #> model({ #> cmt(central) #> cmt(perip) #> cl <- exp(lcl + eta.cl) #> v <- exp(lvc + eta.vc) #> q <- exp(lq + eta.q) #> v2 <- exp(lvp + eta.vp) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(central) <- k21 * perip - k12 * central - cl * central/v1 #> d/dt(perip) <- -k21 * perip + k12 * central #> f <- central/scale1 #> ipred <- f #> rescv <- prop.sd #> ipred ~ prop(prop.sd) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol mod <- nonmem2rx(system.file(\"Theopd.ctl\", package=\"nonmem2rx\"), save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/Theopd.ctl' #> ℹ reading in lst file #> ℹ seeing if file argument is actually lst file #> ℹ not list file, control stream #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $PRED #> ℹ Processing record $TABLE #> ℹ final parameters not updated, will skip validation #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done mod #> ── rxode2-based Pred model ───────────────────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> POP_E0 POP_EMAX POP_C50 #> 150 200 10 #> #> Omega ($omega): #> PPV_E0 PPV_EMAX PPV_C50 #> PPV_E0 0.5 0.0 0.0 #> PPV_EMAX 0.0 0.5 0.0 #> PPV_C50 0.0 0.0 0.5 #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"theophylline pharmacodynamics standard control stream\" #> sigma <- lotri({ #> eps1 ~ 100 #> }) #> validation <- \"final parameters not updated, validation skipped\" #> ini({ #> POP_E0 <- c(0, 150) #> label(\"POP_E0 1\") #> POP_EMAX <- c(0, 200) #> label(\"POP_EMAX 2\") #> POP_C50 <- c(0.001, 10) #> label(\"POP_C50 3\") #> PPV_E0 ~ 0.5 #> PPV_EMAX ~ 0.5 #> PPV_C50 ~ 0.5 #> }) #> model({ #> e0 <- POP_E0 * exp(PPV_E0) #> emax <- POP_EMAX * exp(PPV_EMAX) #> ec50 <- POP_C50 * exp(PPV_C50) #> y <- e0 + emax * THEO/(THEO + ec50) + eps1 #> }) #> } #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 100 #> #> other properties include: $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol mod <- mod %>% rxRename(add.var=eps1) mod #> ── rxode2-based Pred model ───────────────────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> POP_E0 POP_EMAX POP_C50 #> 150 200 10 #> #> Omega ($omega): #> PPV_E0 PPV_EMAX PPV_C50 #> PPV_E0 0.5 0.0 0.0 #> PPV_EMAX 0.0 0.5 0.0 #> PPV_C50 0.0 0.0 0.5 #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"theophylline pharmacodynamics standard control stream\" #> sigma <- lotri({ #> add.var ~ 100 #> }) #> validation <- \"final parameters not updated, validation skipped\" #> ini({ #> POP_E0 <- c(0, 150) #> label(\"POP_E0 1\") #> POP_EMAX <- c(0, 200) #> label(\"POP_EMAX 2\") #> POP_C50 <- c(0.001, 10) #> label(\"POP_C50 3\") #> PPV_E0 ~ 0.5 #> PPV_EMAX ~ 0.5 #> PPV_C50 ~ 0.5 #> }) #> model({ #> e0 <- POP_E0 * exp(PPV_E0) #> emax <- POP_EMAX * exp(PPV_EMAX) #> ec50 <- POP_C50 * exp(PPV_C50) #> y <- e0 + emax * THEO/(THEO + ec50) + add.var #> }) #> } #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> add.var #> add.var 100 #> #> other properties include: $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/import-nonmem.html","id":"technical-details-about-reading-nonmem-to-rxode2","dir":"Articles","previous_headings":"","what":"Technical details about reading NONMEM to rxode2","title":"Importing NONMEM into rxode2","text":"key files import NONMEM control stream (related file) NONMEM output (often .lst .res extension). import process steps : Read nonmem control stream convert model rxode2 ui function. Try determine endpoint/residual specification model (possible), convert fully qualified ui model can used nlmixr2 rxode2. determined automatically, can manually fix still convert nlmixr2 object (data/estimates available course). available, nonmem2rx read final parameter estimates update model. converter read nonmem input dataset, search output files IPRED, PRED ETA values. translated rxode2 model run population parameters individual parameters. compare results NONMEM rxode2 make sure translation makes sense. works nonmem2rx access input data output IWRES, IPRED, PRED ETA values. Converts upper case NONMEM variables lower case (can turned nonmem2rx(..., toLowerLhs=FALSE))) Replaces NONMEM theta / eta names label-based names like extended control stream (can turned nonmem2rx(thetaNames=FALSE, etaNames=FALSE)) Replaces compartment names defined compartment names control stream (ie COMP=(compartmenName))","code":""},{"path":"/articles/read-rounding.html","id":"step-1-have-a-nonmem-model-with-rounding-errors-and--phi-or-other-information-about-the-etas","dir":"Articles","previous_headings":"","what":"Step 1: Have a NONMEM model with rounding errors (and .phi or other information about the etas)","title":"Reading rounding from NONMEM","text":"first step load model rounding errors using nonmem2rx():","code":"# Unzip example with rounding error # included, but can be accessed with nlmixr2 # # unzip(system.file(\"tests/testthat/pk.turnover.emax3-nonmem.zip\", package=\"babelmixr2\")) # Load the model with `nonmem2rx`: mod <- nonmem2rx(\"pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl\") #> ℹ getting information from 'pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `6.24053043162953e-07` #> ℹ change initial estimate of `theta2` to `-3.00642760553675e-06` #> ℹ change initial estimate of `theta3` to `-2.00405074386117` #> ℹ change initial estimate of `theta4` to `2.05188410700476` #> ℹ change initial estimate of `theta5` to `0.0985804613565218` #> ℹ change initial estimate of `theta6` to `0.511625249037084` #> ℹ change initial estimate of `theta7` to `6.4184983102259` #> ℹ change initial estimate of `theta8` to `0.140763261319656` #> ℹ change initial estimate of `theta9` to `-2.9534704318737` #> ℹ change initial estimate of `theta10` to `4.57045413136592` #> ℹ change initial estimate of `theta11` to `3.71714384851537` #> ℹ change initial estimate of `eta1` to `0.558129815059436` #> ℹ change initial estimate of `eta2` to `0.558402321309217` #> ℹ change initial estimate of `eta3` to `0.0785849119252598` #> ℹ change initial estimate of `eta4` to `0.0508226905750953` #> ℹ change initial estimate of `eta5` to `5e-05` #> ℹ change initial estimate of `eta6` to `0.18426809257979` #> ℹ change initial estimate of `eta7` to `0.0083631531443303` #> ℹ change initial estimate of `eta8` to `0.00274561514766752` #> ℹ read in nonmem input data (for model validation): /home/runner/work/nonmem2rx/nonmem2rx/vignettes/articles/pk.turnover.emax3-nonmem/pk.turnover.emax3.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ renaming 'dvid' to 'nmdvid' #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/nonmem2rx/nonmem2rx/vignettes/articles/pk.turnover.emax3-nonmem/pk.turnover.emax3.pred #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 4-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> tktr tka tcl tv prop.err #> 6.240530e-07 -3.006428e-06 -2.004051e+00 2.051884e+00 9.858046e-02 #> pkadd.err temax tec50 tkout te0 #> 5.116252e-01 6.418498e+00 1.407633e-01 -2.953470e+00 4.570454e+00 #> pdadd.err #> 3.717144e+00 #> #> Omega ($omega): #> eta.ktr eta.ka eta.cl eta.v eta.emax eta.ec50 #> eta.ktr 0.5581298 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.ka 0.0000000 0.5584023 0.00000000 0.00000000 0e+00 0.0000000 #> eta.cl 0.0000000 0.0000000 0.07858491 0.00000000 0e+00 0.0000000 #> eta.v 0.0000000 0.0000000 0.00000000 0.05082269 0e+00 0.0000000 #> eta.emax 0.0000000 0.0000000 0.00000000 0.00000000 5e-05 0.0000000 #> eta.ec50 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.1842681 #> eta.kout 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.e0 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.kout eta.e0 #> eta.ktr 0.000000000 0.000000000 #> eta.ka 0.000000000 0.000000000 #> eta.cl 0.000000000 0.000000000 #> eta.v 0.000000000 0.000000000 #> eta.emax 0.000000000 0.000000000 #> eta.ec50 0.000000000 0.000000000 #> eta.kout 0.008363153 0.000000000 #> eta.e0 0.000000000 0.002745615 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 DEPOT #> 2 2 GUT #> 3 3 CENTER #> 4 4 EFFECT #> ── Model (Normalized Syntax): ── #> function() { #> description <- c(\"translated from babelmixr2\", \"; comments show mu referenced model in ui$getSplitMuModel\") #> dfObs <- 483 #> dfSub <- 32 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.13e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (3.12e-06, 0.000497); atol=6.17e-05\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.18e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (3.79e-07,0.00313) atol=6.18e-06\") #> ini({ #> tktr <- 6.24053043162953e-07 #> label(\"1 - tktr\") #> tka <- -3.00642760553675e-06 #> label(\"2 - tka\") #> tcl <- -2.00405074386117 #> label(\"3 - tcl\") #> tv <- 2.05188410700476 #> label(\"4 - tv\") #> prop.err <- c(0, 0.0985804613565218) #> label(\"5 - prop.err\") #> pkadd.err <- c(0, 0.511625249037084) #> label(\"6 - pkadd.err\") #> temax <- 6.4184983102259 #> label(\"7 - temax\") #> tec50 <- 0.140763261319656 #> label(\"8 - tec50\") #> tkout <- -2.9534704318737 #> label(\"9 - tkout\") #> te0 <- 4.57045413136592 #> label(\"10 - te0\") #> pdadd.err <- c(0, 3.71714384851537) #> label(\"11 - pdadd.err\") #> eta.ktr ~ 0.558129815059436 #> eta.ka ~ 0.558402321309217 #> eta.cl ~ 0.0785849119252598 #> eta.v ~ 0.0508226905750953 #> eta.emax ~ 5e-05 #> eta.ec50 ~ 0.18426809257979 #> eta.kout ~ 0.0083631531443303 #> eta.e0 ~ 0.00274561514766752 #> }) #> model({ #> cmt(DEPOT) #> cmt(GUT) #> cmt(CENTER) #> cmt(EFFECT) #> mu_1 <- tktr #> mu_2 <- tka #> mu_3 <- tcl #> mu_4 <- tv #> mu_5 <- temax #> mu_6 <- tec50 #> mu_7 <- tkout #> mu_8 <- te0 #> ktr <- exp(mu_1 + eta.ktr) #> ka <- exp(mu_2 + eta.ka) #> cl <- exp(mu_3 + eta.cl) #> v <- exp(mu_4 + eta.v) #> emax <- ((1) - (0)) * (1/(1 + exp(-(mu_5 + eta.emax)))) + #> (0) #> ec50 <- exp(mu_6 + eta.ec50) #> kout <- exp(mu_7 + eta.kout) #> e0 <- exp(mu_8 + eta.e0) #> rxini.rxddta4. <- e0 #> EFFECT(0) <- rxini.rxddta4. #> dcp <- CENTER/v #> rxdz001 <- (ec50 + dcp) #> if (rxdz001 >= 0 && rxdz001 <= 1e-06) { #> rxdz001 <- 1e-06 #> } #> if (rxdz001 >= -1e-06 && rxdz001 < 0) { #> rxdz001 <- -1e-06 #> } #> pd <- 1 - emax * dcp/rxdz001 #> kin <- e0 * kout #> d/dt(DEPOT) <- -ktr * DEPOT #> d/dt(GUT) <- ktr * DEPOT - ka * GUT #> d/dt(CENTER) <- ka * GUT - cl/v * CENTER #> d/dt(EFFECT) <- kin * pd - kout * EFFECT #> cp <- CENTER/v #> f <- DEPOT #> rxe_dcp <- CENTER/v #> rxdze001 <- (ec50 + rxe_dcp) #> if (rxdze001 >= 0 && rxdze001 <= 1e-06) { #> rxdze001 <- 1e-06 #> } #> if (rxdze001 >= -1e-06 && rxdze001 < 0) { #> rxdze001 <- -1e-06 #> } #> rxe_pd <- 1 - emax * rxe_dcp/rxdze001 #> rxe_kin <- e0 * kout #> rxe_cp <- CENTER/v #> rx_pf1 <- rxe_cp #> rx_pf2 <- EFFECT #> rx_ip1 <- rx_pf1 #> rx_p1 <- rx_ip1 #> w1 <- sqrt((pkadd.err)^2 + (rx_pf1)^2 * (prop.err)^2) #> if (w1 == 0) #> w1 <- 1 #> rx_ip2 <- rx_pf2 #> rx_p2 <- rx_ip2 #> w2 <- sqrt((pdadd.err)^2) #> if (w2 == 0) #> w2 <- 1 #> ipred <- rx_ip1 #> w <- w1 #> if (nmdvid == 2) { #> ipred <- rx_ip2 #> w <- w2 #> } #> y <- ipred + w * eps1 #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • some etas defaulted to non-mu referenced, possible parsing error: eta.emax as a work-around try putting the mu-referenced expression on a simple line #> • some etas defaulted to non-mu referenced, possible parsing error: eta5 as a work-around try putting the mu-referenced expression on a simple line #> • some NONMEM input has tied times; they are offset by a small offset #> • is.na() applied to non-(list or vector) of type 'language' #> • 'dvid' variable has special meaning in rxode2, renamed to 'nmdvid', rename/copy in your data too #> • $MODEL NCOMPARTMENTS/NEQUILIBRIUM/NPARAMETERS statement(s) ignored #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/read-rounding.html","id":"step-2-convert-rxode2-model-to-model-with-endpointsresiduals-specified-like-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 2: Convert rxode2 model to model with endpoints/residuals specified like nlmixr2","title":"Reading rounding from NONMEM","text":"example rounding errors isn’t fully qualified nlmixr2 model (even though generated nlmixr2). can use model create equivalent model .nonmem2rx() model , following modifications made: code protecting rounding errors removed Endpoints/residual specifications added Duplicate code NONMEM’s $ERROR block removed imported model rx nlmixr prefixed items removed model. possible removing variables can causenlmixr2 conversion fail. best practice remove completely. Also, good practice make sure model parses correctly trying validate/convert model. find model doesn’t parse correctly definitely won’t validate (error may easy track-). first step validate translation correct. done :","code":"mod2 <- function() { ini({ tktr <- 6.24053043162953e-07 label(\"1 - tktr\") tka <- -3.00642760553675e-06 label(\"2 - tka\") tcl <- -2.00405074386117 label(\"3 - tcl\") tv <- 2.05188410700476 label(\"4 - tv\") prop.err <- c(0, 0.0985804613565218) label(\"5 - prop.err\") pkadd.err <- c(0, 0.511625249037084) label(\"6 - pkadd.err\") temax <- 6.4184983102259 label(\"7 - temax\") tec50 <- 0.140763261319656 label(\"8 - tec50\") tkout <- -2.9534704318737 label(\"9 - tkout\") te0 <- 4.57045413136592 label(\"10 - te0\") pdadd.err <- c(0, 3.71714384851537) label(\"11 - pdadd.err\") eta.ktr ~ 0.558129815059436 eta.ka ~ 0.558402321309217 eta.cl ~ 0.0785849119252598 eta.v ~ 0.0508226905750953 eta.emax ~ 5e-05 eta.ec50 ~ 0.18426809257979 eta.kout ~ 0.0083631531443303 eta.e0 ~ 0.00274561514766752 }) model({ cmt(DEPOT) cmt(GUT) cmt(CENTER) cmt(EFFECT) ktr <- exp(tktr + eta.ktr) ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) emax <- expit(temax + eta.emax) ec50 <- exp(tec50 + eta.ec50) kout <- exp(tkout + eta.kout) e0 <- exp(te0 + eta.e0) EFFECT(0) <- e0 dcp <- CENTER/v pd <- 1 - emax * dcp/(ec50 + dcp) kin <- e0 * kout d/dt(DEPOT) <- -ktr * DEPOT d/dt(GUT) <- ktr * DEPOT - ka * GUT d/dt(CENTER) <- ka * GUT - cl/v * CENTER d/dt(EFFECT) <- kin * pd - kout * EFFECT eff <- EFFECT dcp ~ add(pkadd.err)+prop(prop.err) eff ~ add(pdadd.err) }) } new <- as.nonmem2rx(mod, mod2) #> ℹ parameter labels from comments are typically ignored in non-interactive mode #> ℹ Need to run with the source intact to parse comments #> ℹ copy 'dfSub' to nonmem2rx model #> ℹ copy 'dfObs' to nonmem2rx model #> ℹ merging 'dvid' with nlmixr2 'cmt' definition #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(new) #> ── rxode2-based free-form 4-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> tktr tka tcl tv prop.err #> 6.240530e-07 -3.006428e-06 -2.004051e+00 2.051884e+00 9.858046e-02 #> pkadd.err temax tec50 tkout te0 #> 5.116252e-01 6.418498e+00 1.407633e-01 -2.953470e+00 4.570454e+00 #> pdadd.err #> 3.717144e+00 #> #> Omega ($omega): #> eta.ktr eta.ka eta.cl eta.v eta.emax eta.ec50 #> eta.ktr 0.5581298 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.ka 0.0000000 0.5584023 0.00000000 0.00000000 0e+00 0.0000000 #> eta.cl 0.0000000 0.0000000 0.07858491 0.00000000 0e+00 0.0000000 #> eta.v 0.0000000 0.0000000 0.00000000 0.05082269 0e+00 0.0000000 #> eta.emax 0.0000000 0.0000000 0.00000000 0.00000000 5e-05 0.0000000 #> eta.ec50 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.1842681 #> eta.kout 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.e0 0.0000000 0.0000000 0.00000000 0.00000000 0e+00 0.0000000 #> eta.kout eta.e0 #> eta.ktr 0.000000000 0.000000000 #> eta.ka 0.000000000 0.000000000 #> eta.cl 0.000000000 0.000000000 #> eta.v 0.000000000 0.000000000 #> eta.emax 0.000000000 0.000000000 #> eta.ec50 0.000000000 0.000000000 #> eta.kout 0.008363153 0.000000000 #> eta.e0 0.000000000 0.002745615 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 DEPOT #> 2 2 GUT #> 3 3 CENTER #> 4 4 EFFECT #> ── Multiple Endpoint Model ($multipleEndpoint): ── #> variable cmt dvid* #> 1 dcp ~ … cmt='dcp' or cmt=5 dvid='dcp' or dvid=1 #> 2 eff ~ … cmt='eff' or cmt=6 dvid='eff' or dvid=2 #> * If dvids are outside this range, all dvids are re-numered sequentially, ie 1,7, 10 becomes 1,2,3 etc #> #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 tktr eta.ktr id #> 2 tka eta.ka id #> 3 tcl eta.cl id #> 4 tv eta.v id #> 5 temax eta.emax id #> 6 tec50 eta.ec50 id #> 7 tkout eta.kout id #> 8 te0 eta.e0 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- c(\"translated from babelmixr2\", \"; comments show mu referenced model in ui$getSplitMuModel\") #> dfObs <- 483 #> dfSub <- 32 #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.13e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (3.12e-06, 0.000497); atol=6.17e-05\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.18e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (3.79e-07,0.00313) atol=6.18e-06\") #> ini({ #> tktr <- 6.24053043162953e-07 #> label(\"1 - tktr\") #> tka <- -3.00642760553675e-06 #> label(\"2 - tka\") #> tcl <- -2.00405074386117 #> label(\"3 - tcl\") #> tv <- 2.05188410700476 #> label(\"4 - tv\") #> prop.err <- c(0, 0.0985804613565218) #> label(\"5 - prop.err\") #> pkadd.err <- c(0, 0.511625249037084) #> label(\"6 - pkadd.err\") #> temax <- 6.4184983102259 #> label(\"7 - temax\") #> tec50 <- 0.140763261319656 #> label(\"8 - tec50\") #> tkout <- -2.9534704318737 #> label(\"9 - tkout\") #> te0 <- 4.57045413136592 #> label(\"10 - te0\") #> pdadd.err <- c(0, 3.71714384851537) #> label(\"11 - pdadd.err\") #> eta.ktr ~ 0.558129815059436 #> eta.ka ~ 0.558402321309217 #> eta.cl ~ 0.0785849119252598 #> eta.v ~ 0.0508226905750953 #> eta.emax ~ 5e-05 #> eta.ec50 ~ 0.18426809257979 #> eta.kout ~ 0.0083631531443303 #> eta.e0 ~ 0.00274561514766752 #> }) #> model({ #> cmt(DEPOT) #> cmt(GUT) #> cmt(CENTER) #> cmt(EFFECT) #> ktr <- exp(tktr + eta.ktr) #> ka <- exp(tka + eta.ka) #> cl <- exp(tcl + eta.cl) #> v <- exp(tv + eta.v) #> emax <- expit(temax + eta.emax) #> ec50 <- exp(tec50 + eta.ec50) #> kout <- exp(tkout + eta.kout) #> e0 <- exp(te0 + eta.e0) #> EFFECT(0) <- e0 #> dcp <- CENTER/v #> pd <- 1 - emax * dcp/(ec50 + dcp) #> kin <- e0 * kout #> d/dt(DEPOT) <- -ktr * DEPOT #> d/dt(GUT) <- ktr * DEPOT - ka * GUT #> d/dt(CENTER) <- ka * GUT - cl/v * CENTER #> d/dt(EFFECT) <- kin * pd - kout * EFFECT #> eff <- EFFECT #> dcp ~ add(pkadd.err) + prop(prop.err) #> eff ~ add(pdadd.err) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData, $thetaMat #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/read-rounding.html","id":"step-3-convert-new-model-to-nlmixr2-fit-with-as-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 3: Convert new model to nlmixr2 fit with as.nlmixr2()","title":"Reading rounding from NONMEM","text":"translation complete, validated, can convert fit full nlmixr2 fit object. Note object rerun estimation, rather imports everything knows fit rerun nlmixr2 table steps calculate things need.","code":"fit <- as.nlmixr2(new) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> rxode2 3.0.0 using 2 threads (see ?getRxThreads) #> no cache: create with `rxCreateCache()` #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 21592 #> → compress parHistData in nlmixr2 object, save 5536 # Once it is loaded remove the directory (we don't need the files any # more for this example) # # In this example, we don't remove, but note where it can be removed # # unlink(\"pk.turnover.emax3-nonmem\", recursive = TRUE)"},{"path":"/articles/read-rounding.html","id":"step-4-explore-the-datafit-as-if-it-came-from-nlmixr2","dir":"Articles","previous_headings":"","what":"Step 4: Explore the data/fit as if it came from nlmixr2","title":"Reading rounding from NONMEM","text":"information can see properties model: model can see: High shrinkage temax, ktr, ka moderate shrinkage kout removing parameters, possibly get successful NONMEM run. want, can use model piping remove parameters follows: Since babelmixr2 use babelmixr2 run model NONMEM (setup run NONMEM), even run model nlmixr2 . example choose use nlmixr2 (since babelmixr2 example runs NONMEM shows reduction shrinkage) modifications shrinkage also reduced (just like NONMEM case)","code":"print(fit) #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood #> nonmem2rx 439.2156 1364.91 1444.331 -663.4551 #> #> ── Time (sec $time): ── #> #> setup table compress NONMEM as.nlmixr2 #> elapsed 0.032207 0.077 0.01 320.27 3.613 #> #> ── Population Parameters ($parFixed or $parFixedDf): ── #> #> Parameter Est. Back-transformed BSV(CV% or SD) Shrink(SD)% #> tktr 1 - tktr 6.24e-07 1 86.5 59.8% #> tka 2 - tka -3.01e-06 1 86.5 59.8% #> tcl 3 - tcl -2 0.135 28.6 1.34% #> tv 4 - tv 2.05 7.78 22.8 6.44% #> prop.err 5 - prop.err 0.0986 0.0986 #> pkadd.err 6 - pkadd.err 0.512 0.512 #> temax 7 - temax 6.42 0.998 0.00707 100.% #> tec50 8 - tec50 0.141 1.15 45.0 6.06% #> tkout 9 - tkout -2.95 0.0522 9.16 32.4% #> te0 10 - te0 4.57 96.6 5.24 18.1% #> pdadd.err 11 - pdadd.err 3.72 3.72 #> #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance ($omega) or correlation ($omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in $shrink #> Censoring ($censInformation): No censoring #> Minimization message ($message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION TERMINATED #> DUE TO ROUNDING ERRORS (ERROR=134) #> NO. OF FUNCTION EVALUATIONS USED: 1088 #> NO. OF SIG. DIGITS UNREPORTABLE #> 0PARAMETER ESTIMATE IS NEAR ITS BOUNDARY #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=5.09e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=5.29e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.2e-06, 0.000454); atol=3.03e-05 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (4.72e-07,0.00361); atol=5.29e-06 #> there are solving errors during optimization (see '$prderr') #> nonmem2rx model file: 'pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl' #> #> ── Fit Data (object is a modified tibble): ── #> # A tibble: 483 × 35 #> ID TIME CMT DV PRED RES IPRED IRES IWRES eta.ktr eta.ka eta.cl #> #> 1 1 0.5 dcp 0 1.16 -1.16 0.444 -0.444 -0.864 -0.506 -0.506 0.699 #> 2 1 1 dcp 1.9 3.37 -1.47 1.45 0.446 0.840 -0.506 -0.506 0.699 #> 3 1 2 dcp 3.3 7.51 -4.21 3.96 -0.660 -1.03 -0.506 -0.506 0.699 #> # ℹ 480 more rows #> # ℹ 23 more variables: eta.v , eta.emax , eta.ec50 , #> # eta.kout , eta.e0 , dcp , eff , DEPOT , GUT , #> # CENTER , EFFECT , ktr , ka , cl , v , #> # emax , ec50 , kout , e0 , pd , kin , #> # tad , dosenum mod3 <- fit %>% model(ktr <- exp(tktr)) %>% model(ka <- exp(tka)) %>% model(emax <- expit(temax)) %>% model(kout <- exp(tkout)) #> ! remove between subject variability `eta.ktr` #> ! remove between subject variability `eta.ka` #> ! remove between subject variability `eta.emax` #> ! remove between subject variability `eta.kout` mod3 #> ── rxode2-based free-form 4-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> tktr tka tcl tv prop.err #> 6.240530e-07 -3.006428e-06 -2.004051e+00 2.051884e+00 9.858046e-02 #> pkadd.err temax tec50 tkout te0 #> 5.116252e-01 6.418498e+00 1.407633e-01 -2.953470e+00 4.570454e+00 #> pdadd.err #> 3.717144e+00 #> #> Omega ($omega): #> eta.cl eta.v eta.ec50 eta.e0 #> eta.cl 0.07858491 0.00000000 0.0000000 0.000000000 #> eta.v 0.00000000 0.05082269 0.0000000 0.000000000 #> eta.ec50 0.00000000 0.00000000 0.1842681 0.000000000 #> eta.e0 0.00000000 0.00000000 0.0000000 0.002745615 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 DEPOT #> 2 2 GUT #> 3 3 CENTER #> 4 4 EFFECT #> ── Multiple Endpoint Model ($multipleEndpoint): ── #> variable cmt dvid* #> 1 dcp ~ … cmt='dcp' or cmt=5 dvid='dcp' or dvid=1 #> 2 eff ~ … cmt='eff' or cmt=6 dvid='eff' or dvid=2 #> * If dvids are outside this range, all dvids are re-numered sequentially, ie 1,7, 10 becomes 1,2,3 etc #> #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 tcl eta.cl id #> 2 tv eta.v id #> 3 tec50 eta.ec50 id #> 4 te0 eta.e0 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- c(\"translated from babelmixr2\", \"; comments show mu referenced model in ui$getSplitMuModel\") #> dfObs <- 483 #> dfSub <- 32 #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.13e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (3.12e-06, 0.000497); atol=6.17e-05\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.18e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (3.79e-07,0.00313) atol=6.18e-06\") #> ini({ #> tktr <- 6.24053043162953e-07 #> label(\"1 - tktr\") #> tka <- -3.00642760553675e-06 #> label(\"2 - tka\") #> tcl <- -2.00405074386117 #> label(\"3 - tcl\") #> tv <- 2.05188410700476 #> label(\"4 - tv\") #> prop.err <- c(0, 0.0985804613565218) #> label(\"5 - prop.err\") #> pkadd.err <- c(0, 0.511625249037084) #> label(\"6 - pkadd.err\") #> temax <- 6.4184983102259 #> label(\"7 - temax\") #> tec50 <- 0.140763261319656 #> label(\"8 - tec50\") #> tkout <- -2.9534704318737 #> label(\"9 - tkout\") #> te0 <- 4.57045413136592 #> label(\"10 - te0\") #> pdadd.err <- c(0, 3.71714384851537) #> label(\"11 - pdadd.err\") #> eta.cl ~ 0.0785849119252598 #> eta.v ~ 0.0508226905750953 #> eta.ec50 ~ 0.18426809257979 #> eta.e0 ~ 0.00274561514766752 #> }) #> model({ #> cmt(DEPOT) #> cmt(GUT) #> cmt(CENTER) #> cmt(EFFECT) #> ktr <- exp(tktr) #> ka <- exp(tka) #> cl <- exp(tcl + eta.cl) #> v <- exp(tv + eta.v) #> emax <- expit(temax) #> ec50 <- exp(tec50 + eta.ec50) #> kout <- exp(tkout) #> e0 <- exp(te0 + eta.e0) #> EFFECT(0) <- e0 #> dcp <- CENTER/v #> pd <- 1 - emax * dcp/(ec50 + dcp) #> kin <- e0 * kout #> d/dt(DEPOT) <- -ktr * DEPOT #> d/dt(GUT) <- ktr * DEPOT - ka * GUT #> d/dt(CENTER) <- ka * GUT - cl/v * CENTER #> d/dt(EFFECT) <- kin * pd - kout * EFFECT #> eff <- EFFECT #> dcp ~ add(pkadd.err) + prop(prop.err) #> eff ~ add(pdadd.err) #> }) #> } fit2 <- nlmixr(mod3, new$nonmemData, \"focei\", foceiControl(print=0)) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → calculate jacobian #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate sensitivities #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(f)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(R²)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling inner model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → finding duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → compiling events FD model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> calculating covariance matrix #> [====|====|====|====|====|====|====|====|====|====] 0:00:35 #> done #> → Calculating residuals/tables #> ✔ done #> → compress origData in nlmixr2 object, save 21592 #> → compress parHistData in nlmixr2 object, save 14920 fit2 #> ── nlmixr² FOCEi (outer: nlminb) ── #> #> OBJF AIC BIC Log-likelihood Condition#(Cov) Condition#(Cor) #> FOCEi 1425.005 2342.699 2405.399 -1156.35 896101.4 262.0511 #> #> ── Time (sec fit2$time): ── #> #> setup optimize covariance table compress other #> elapsed 0.003792 35.85824 35.85824 0.104 0.014 91.85373 #> #> ── Population Parameters (fit2$parFixed or fit2$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%) #> tktr 1 - tktr 0.0978 0.147 150 1.1 (0.827, 1.47) #> tka 2 - tka 0.0229 0.0978 427 1.02 (0.845, 1.24) #> tcl 3 - tcl -2.01 0.05 2.49 0.134 (0.122, 0.148) 27.8 #> tv 4 - tv 2.05 0.0425 2.07 7.79 (7.17, 8.47) 22.7 #> prop.err 5 - prop.err 0.144 0.144 #> pkadd.err 6 - pkadd.err 0.616 0.616 #> temax 7 - temax 188 5.75 3.06 1 (1, 1) #> tec50 8 - tec50 0.143 0.0875 61.1 1.15 (0.972, 1.37) 43.0 #> tkout 9 - tkout -2.96 0.028 0.945 0.0516 (0.0488, 0.0545) #> te0 10 - te0 4.57 0.0105 0.23 96.8 (94.8, 98.8) 5.24 #> pdadd.err 11 - pdadd.err 3.86 3.86 #> Shrink(SD)% #> tktr #> tka #> tcl 1.95% #> tv 6.61% #> prop.err #> pkadd.err #> temax #> tec50 7.90% #> tkout #> te0 19.4% #> pdadd.err #> #> Covariance Type (fit2$covMethod): |r|,|s| #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit2$omega) or correlation (fit2$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit2$shrink #> Information about run found (fit2$runInfo): #> • gradient problems with initial estimate and covariance; see $scaleInfo #> • since sandwich matrix is corrected, you may compare to $covR or $covS if you wish #> • S matrix non-positive definite but corrected by S = sqrtm(S%*%S) #> • R matrix non-positive definite but corrected by R = sqrtm(R%*%R) #> • last objective function was not at minimum, possible problems in optimization #> • ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.)) #> • initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=)) #> Censoring (fit2$censInformation): No censoring #> Minimization message (fit2$message): #> false convergence (8) #> In an ODE system, false convergence may mean \"useless\" evaluations were performed. #> See https://tinyurl.com/yyrrwkce #> It could also mean the convergence is poor, check results before accepting fit #> You may also try a good derivative free optimization: #> nlmixr2(...,control=list(outerOpt=\"bobyqa\")) #> #> ── Fit Data (object fit2 is a modified tibble): ── #> # A tibble: 483 × 33 #> ID TIME CMT DV PRED RES WRES IPRED IRES IWRES CPRED CRES CWRES #> #> 1 1 0.5 dcp 0 1.28 -1.28 -1.82 1.01 -1.01 -1.60 1.25 -1.25 -1.86 #> 2 1 1 dcp 1.9 3.66 -1.76 -1.53 2.89 -0.991 -1.33 3.58 -1.68 -1.71 #> 3 1 2 dcp 3.3 7.91 -4.61 -2.12 6.22 -2.92 -2.68 7.73 -4.43 -2.55 #> # ℹ 480 more rows #> # ℹ 20 more variables: eta.cl , eta.v , eta.ec50 , eta.e0 , #> # DEPOT , GUT , CENTER , EFFECT , ktr , ka , #> # cl , v , emax , ec50 , kout , e0 , pd , #> # kin , tad , dosenum "},{"path":"/articles/read-rounding.html","id":"step-5-get-the-covariance-of-the-model","dir":"Articles","previous_headings":"","what":"Step 5: Get the covariance of the model","title":"Reading rounding from NONMEM","text":"Another thing can helpful fit imported nlmixr2 fit get variance/covariance matrix. can especially helpful diagnose things help simplify model Note covariance step 100% successful since r, s. However, can give insights parameters estimated well. case can see emax parameter poorly estimated parameters, means fixing parameter reducing parameters may help estimate progress NONMEM.","code":"getVarCov(fit) #> → loading into symengine environment... #> → pruning branches (`if`/`else`) of full model... #> ✔ done #> → calculate jacobian #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate sensitivities #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → calculate ∂(f)/∂(η) #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in inner model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → finding duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in EBE model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling inner model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → finding duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → optimizing duplicate expressions in FD model... #> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #> → compiling EBE model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> → compiling events FD model... #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ✔ done #> calculating covariance matrix #> [====|====|====|====|====|====|====|====|====|====] 0:00:05 #> Warning in foceiFitCpp_(.ret): using R matrix to calculate covariance, can #> check sandwich or S matrix with $covRS and $covS #> Warning in foceiFitCpp_(.ret): gradient problems with covariance; see #> $scaleInfo #> → compress origData in nlmixr2 object, save 21592 #> Updated original fit object fit #> tktr tka tcl tv temax #> tktr 1.830060e-02 -1.523057e-02 -2.404755e-05 3.183949e-04 0.0011992673 #> tka -1.523057e-02 1.828061e-02 -2.125855e-05 3.195745e-04 0.0014273042 #> tcl -2.404755e-05 -2.125855e-05 2.479870e-04 1.184906e-05 -0.0008486078 #> tv 3.183949e-04 3.195745e-04 1.184906e-05 3.183331e-04 0.0011376028 #> temax 1.199267e-03 1.427304e-03 -8.486078e-04 1.137603e-03 7.5951592101 #> tec50 1.333848e-04 1.362464e-04 -3.585788e-04 1.232516e-04 0.0485635015 #> tkout 9.641362e-05 1.069037e-04 -9.755546e-05 1.189674e-04 -0.0189321828 #> te0 1.365383e-05 1.343098e-05 -9.855499e-06 1.252947e-05 -0.0004450840 #> tec50 tkout te0 #> tktr 0.0001333848 9.641362e-05 1.365383e-05 #> tka 0.0001362464 1.069037e-04 1.343098e-05 #> tcl -0.0003585788 -9.755546e-05 -9.855499e-06 #> tv 0.0001232516 1.189674e-04 1.252947e-05 #> temax 0.0485635015 -1.893218e-02 -4.450840e-04 #> tec50 0.0018384895 1.539214e-04 -1.360918e-04 #> tkout 0.0001539214 6.316775e-04 5.255583e-05 #> te0 -0.0001360918 5.255583e-05 8.870276e-05 fit #> ── nlmixr² nonmem2rx reading NONMEM ver 7.4.3 ── #> #> OBJF AIC BIC Log-likelihood #> nonmem2rx 439.2156 1364.91 1444.331 -663.4551 #> #> ── Time (sec fit$time): ── #> #> setup table compress NONMEM as.nlmixr2 covariance #> elapsed 0.032207 0.077 0.01 320.27 3.613 13.727 #> #> ── Population Parameters (fit$parFixed or fit$parFixedDf): ── #> #> Parameter Est. SE %RSE Back-transformed(95%CI) #> tktr 1 - tktr 6.24e-07 0.135 2.17e+07 1 (0.767, 1.3) #> tka 2 - tka -3.01e-06 0.135 4.5e+06 1 (0.767, 1.3) #> tcl 3 - tcl -2 0.0157 0.786 0.135 (0.131, 0.139) #> tv 4 - tv 2.05 0.0178 0.87 7.78 (7.52, 8.06) #> prop.err 5 - prop.err 0.0986 0.0986 #> pkadd.err 6 - pkadd.err 0.512 0.512 #> temax 7 - temax 6.42 2.76 42.9 0.998 (0.734, 1) #> tec50 8 - tec50 0.141 0.0429 30.5 1.15 (1.06, 1.25) #> tkout 9 - tkout -2.95 0.0251 0.851 0.0522 (0.0497, 0.0548) #> te0 10 - te0 4.57 0.00942 0.206 96.6 (94.8, 98.4) #> pdadd.err 11 - pdadd.err 3.72 3.72 #> BSV(CV% or SD) Shrink(SD)% #> tktr 86.5 59.8% #> tka 86.5 59.8% #> tcl 28.6 1.34% #> tv 22.8 6.44% #> prop.err #> pkadd.err #> temax 0.00707 100.% #> tec50 45.0 6.06% #> tkout 9.16 32.4% #> te0 5.24 18.1% #> pdadd.err #> #> Covariance Type (fit$covMethod): r #> No correlations in between subject variability (BSV) matrix #> Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs) #> Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink #> Censoring (fit$censInformation): No censoring #> Minimization message (fit$message): #> #> #> WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1 #> #> (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION. #> #> #> 0MINIMIZATION TERMINATED #> DUE TO ROUNDING ERRORS (ERROR=134) #> NO. OF FUNCTION EVALUATIONS USED: 1088 #> NO. OF SIG. DIGITS UNREPORTABLE #> 0PARAMETER ESTIMATE IS NEAR ITS BOUNDARY #> #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=5.09e-06 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=5.29e-06 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.2e-06, 0.000454); atol=3.03e-05 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (4.72e-07,0.00361); atol=5.29e-06 #> there are solving errors during optimization (see '$prderr') #> nonmem2rx model file: 'pk.turnover.emax3-nonmem/pk.turnover.emax3.nmctl' #> #> ── Fit Data (object fit is a modified tibble): ── #> # A tibble: 483 × 35 #> ID TIME CMT DV PRED RES IPRED IRES IWRES eta.ktr eta.ka eta.cl #> #> 1 1 0.5 dcp 0 1.16 -1.16 0.444 -0.444 -0.864 -0.506 -0.506 0.699 #> 2 1 1 dcp 1.9 3.37 -1.47 1.45 0.446 0.840 -0.506 -0.506 0.699 #> 3 1 2 dcp 3.3 7.51 -4.21 3.96 -0.660 -1.03 -0.506 -0.506 0.699 #> # ℹ 480 more rows #> # ℹ 23 more variables: eta.v , eta.emax , eta.ec50 , #> # eta.kout , eta.e0 , dcp , eff , DEPOT , GUT , #> # CENTER , EFFECT , ktr , ka , cl , v , #> # emax , ec50 , kout , e0 , pd , kin , #> # tad , dosenum "},{"path":"/articles/rxode2-validate.html","id":"comparing-differences-between-nonmem-and-rxode2","dir":"Articles","previous_headings":"","what":"Comparing differences between NONMEM and rxode2","title":"Qualify rxode2 model against NONMEM","text":"may wish see differences predictions NONMEM rxode2. rxode2 generated outputs compared NONMEM generated outputs following items: Population Predictions: shows model translation adequate simulate general trends; validate structural model’s population parameters coupled model structure. Individual Predictions: shows model translation able replicate values subjects within modeling data-set. validates model can reproduce subject variability observed study. Individual Weighted Residuals: one step individual parameter validation, couples individual predictions, observations residual specification generate individual weighted residuals. Since can modify residual specification create nlmixr2-compatible model, step important make sure residual specification . Note: part validated three metrics subject covariance matrix, omega. assume correct long read correctly.","code":""},{"path":"/articles/rxode2-validate.html","id":"comparing-numerically","dir":"Articles","previous_headings":"","what":"Comparing numerically","title":"Qualify rxode2 model against NONMEM","text":"want numerical differences, can also get modified returned ui object. rtol, atol follows : can see exactly match close (say validate). However can explore difference wish looking ipredCompare predCompare datasets: cases can see NONMEM seems round values output (rounding rules based FORMAT option), rxode2 seems keep entire number. Note observation data compared. Dosing predictions excluded comparisons. can also explore NONMEM input dataset used make validation predictions (dosing observations) $nonmemData item:","code":"mod$iwresAtol #> 50% #> 3.64871e-06 mod$iwresRtol #> 50% #> 8.987887e-06 mod$ipredAtol #> 50% #> 0.00166826 mod$ipredRtol #> 50% #> 6.430677e-06 mod$predAtol #> 50% #> 6.406839e-06 mod$predAtol #> 50% #> 6.406839e-06 head(mod$iwresCompare) #> ID TIME nonmemIWRES IWRES #> 1 1 0.25 -0.73154 -0.7315464 #> 2 1 0.50 1.86670 1.8666563 #> 3 1 0.75 -1.26860 -1.2685789 #> 4 1 1.00 0.44442 0.4444172 #> 5 1 1.50 0.55470 0.5546978 #> 6 1 2.00 0.35351 0.3535035 head(mod$ipredCompare) #> ID TIME nonmemIPRED IPRED #> 1 1 0.25 1215.4 1215.358 #> 2 1 0.50 1191.9 1191.924 #> 3 1 0.75 1169.2 1169.164 #> 4 1 1.00 1147.1 1147.057 #> 5 1 1.50 1104.7 1104.721 #> 6 1 2.00 1064.8 1064.759 head(mod$predCompare) #> ID TIME nonmemPRED PRED #> 1 1 0.25 1750.3 1750.290 #> 2 1 0.50 1699.8 1699.834 #> 3 1 0.75 1651.3 1651.349 #> 4 1 1.00 1604.8 1604.752 #> 5 1 1.50 1516.9 1516.913 #> 6 1 2.00 1435.7 1435.723 head(mod$nonmemData) # with nlme loaded you can also use getData(mod) #> ID TIME DV LNDV MDV AMT EVID DOSE V1I CLI QI V2I SSX IIX SD #> 1 1 0.00 0.0 0.0000 1 120000 1 120000 101.5 3.57 6.99 59.19 99 0 1 #> 2 1 0.25 1040.7 6.9476 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 3 1 0.50 1629.0 7.3957 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 4 1 0.75 877.8 6.7774 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 5 1 1.00 1247.2 7.1286 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> 6 1 1.50 1225.1 7.1107 0 0 0 120000 101.5 3.57 6.99 59.19 99 0 1 #> CMT #> 1 1 #> 2 1 #> 3 1 #> 4 1 #> 5 1 #> 6 1"},{"path":"/articles/rxode2-validate.html","id":"comparing-visually","dir":"Articles","previous_headings":"","what":"Comparing visually","title":"Qualify rxode2 model against NONMEM","text":"easiest way visually compare differences plot method:","code":"plot(mod) # for general plot # you can also see individual comparisons plot(mod, log=\"y\", ncol=2, nrow=2, xlab=\"Time (hr)\", ylab=\"Concentrations\", page=1) # If you want all pages you could use: # plot(mod, log=\"y\", ncol=2, nrow=2, xlab=\"Time (hr)\", ylab=\"Concentrations\", page=TRUE)"},{"path":"/articles/rxode2-validate.html","id":"notes-on-validation","dir":"Articles","previous_headings":"","what":"Notes on validation","title":"Qualify rxode2 model against NONMEM","text":"validation model uses best data available NONMEM estimates. : theta population parameters eta individual parameters omega sigma matrices captured. nlmixr2 model fully qualified, IWRES validation ensures residual errors specified correctly. Otherwise omega sigma values contribute validation. Also overall covariance captured, used validation.","code":""},{"path":"/articles/simulate-extra-items.html","id":"step-1-import-the-model","dir":"Articles","previous_headings":"","what":"Step 1: Import the model","title":"Simulate Derived Variables from imported NONMEM model","text":"","code":"library(nonmem2rx) library(rxode2) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/simulate-extra-items.html","id":"step-2-add-auc-calculation","dir":"Articles","previous_headings":"","what":"Step 2: Add AUC calculation","title":"Simulate Derived Variables from imported NONMEM model","text":"concentration case f model, trick get AUC additional ODE d/dt(AUC) <- f use reset get per dosing period. However, additional parameter part original model. calculation AUC depend number observations model, sparse data wouldn’t terribly accurate. One thing can use model piping append d/dt(AUC) <- f imported model: can also use append=NA pre-pend append=f put ODE right f line model.","code":"modAuc <- mod %>% model(d/dt(AUC) <- f, append=TRUE) #> → significant model change detected #> → kept in model: '$atol', '$nonmemData', '$rtol', '$ssAtol', '$ssRtol' #> → removed from model: '$digest', '$etaData', '$file', '$ipredAtol', '$ipredCompare', '$ipredData', '$ipredRtol', '$iwresAtol', '$iwresCompare', '$iwresRtol', '$notes', '$outputExtension', '$predAtol', '$predCompare', '$predData', '$predRtol', '$sigmaNames' modAuc #> ── rxode2-based free-form 3-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> 3 3 AUC #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> theta1 ~ c(theta1 = 0.000887681) #> theta2 ~ c(theta1 = -0.00010551, theta2 = 0.000871409) #> theta3 ~ c(theta1 = 0.000184416, theta2 = -0.000106195, #> theta3 = 0.00299336) #> theta4 ~ c(theta1 = -0.000120234, theta2 = -5.06663e-05, #> theta3 = 0.000165252, theta4 = 0.00121347) #> RSV ~ c(theta1 = 5.2783e-08, theta2 = -1.56562e-05, theta3 = 5.99331e-06, #> theta4 = -2.53991e-05, RSV = 9.94218e-06) #> eps1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0) #> eta1 ~ c(theta1 = -4.71273e-05, theta2 = 4.69667e-05, #> theta3 = -3.64271e-05, theta4 = 2.54796e-05, RSV = -8.16885e-06, #> eps1 = 0, eta1 = 0.000169296) #> omega.2.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0) #> eta2 ~ c(theta1 = -7.37156e-05, theta2 = 2.56634e-05, #> theta3 = -8.08349e-05, theta4 = 1.37e-05, RSV = -4.36564e-06, #> eps1 = 0, eta1 = 8.75181e-06, omega.2.1 = 0, eta2 = 0.00015125) #> omega.3.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta3 ~ c(theta1 = 6.63383e-05, theta2 = -8.19002e-05, #> theta3 = 0.000548985, theta4 = 0.000168356, RSV = 1.59122e-06, #> eps1 = 0, eta1 = 3.48714e-05, omega.2.1 = 0, eta2 = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0.000959029) #> omega.4.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0) #> omega.4.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta4 ~ c(theta1 = -9.49661e-06, theta2 = 0.000110108, #> theta3 = -0.000306537, theta4 = -9.12897e-05, RSV = 3.1877e-06, #> eps1 = 0, eta1 = 1.36628e-05, omega.2.1 = 0, eta2 = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta4 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> w <- ipred * rescv #> ires <- DV - ipred #> iwres <- ires/w #> y <- ipred + w * eps1 #> d/dt(AUC) <- f #> }) #> } #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData #> captured NONMEM table outputs: #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/articles/simulate-extra-items.html","id":"step-3-setup-event-table-to-calculate-the-auc-for-a-different-dosing-paradigm","dir":"Articles","previous_headings":"","what":"Step 3: Setup event table to calculate the AUC for a different dosing paradigm:","title":"Simulate Derived Variables from imported NONMEM model","text":"Lets say case instead single dose, want see concentration profile single day BID dosing. case done creating quick event table. case since also wanting AUC per dosing period, can add reset dose AUC compartment every time dose given (track AUC current dose):","code":"ev <- et(amt=120000, ii=12, until=24) %>% et(amt=0, ii=12, until=24, cmt=\"AUC\", evid=5) %>% # replace AUC with zero at dosing et(c(0, 4, 8, 11.999, 12, 12.01, 14, 20, 23.999, 24, 24.001, 28, 32, 36)) %>% et(id=1:10)"},{"path":"/articles/simulate-extra-items.html","id":"step-4-solve-using-rxode2","dir":"Articles","previous_headings":"","what":"Step 4: Solve using rxode2","title":"Simulate Derived Variables from imported NONMEM model","text":"step, solve model new event table 10 subjects: Note since derived nonmem2rx model, default solving match tolerances methods specified NONMEM model.","code":"s <- rxSolve(modAuc, ev) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’"},{"path":"/articles/simulate-extra-items.html","id":"step-5-exploring-the-simulation-by-plotting-and-summarizing-dplyr","dir":"Articles","previous_headings":"","what":"Step 5: Exploring the simulation (by plotting), and summarizing (dplyr)","title":"Simulate Derived Variables from imported NONMEM model","text":"solved object acts rxode2 solved object, can use plot() function see individual running AUC profiles simulated: can also select points near dosing get AUC interval:","code":"library(ggplot2) plot(s, AUC) + ylab(\"Running AUC\") library(dplyr) #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:data.table': #> #> between, first, last #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union s %>% filter(time %in% c(11.999, 23.999)) %>% mutate(time=round(time)) %>% select(id, time, AUC) #> id time AUC #> 1 1 12 14933.285 #> 2 1 24 20692.082 #> 3 2 12 11099.596 #> 4 2 24 16694.837 #> 5 3 12 10303.763 #> 6 3 24 14196.023 #> 7 4 12 13015.708 #> 8 4 24 21400.784 #> 9 5 12 11612.369 #> 10 5 24 17944.491 #> 11 6 12 10137.247 #> 12 6 24 15223.973 #> 13 7 12 16532.019 #> 14 7 24 22787.019 #> 15 8 12 10612.266 #> 16 8 24 16781.396 #> 17 9 12 11593.421 #> 18 9 24 17713.529 #> 19 10 12 7972.637 #> 20 10 24 13225.795"},{"path":"/articles/simulate-new-dosing.html","id":"step-1-import-the-model","dir":"Articles","previous_headings":"","what":"Step 1: Import the model","title":"Simulate New dosing from NONMEM model","text":"","code":"library(nonmem2rx) library(rxode2) library(nonmem2rx) # First we need the location of the nonmem control stream Since we are running an example, we will use one of the built-in examples in `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/simulate-new-dosing.html","id":"step-2-look-at-a-different-dosing-paradigm","dir":"Articles","previous_headings":"","what":"Step 2: Look at a different dosing paradigm","title":"Simulate New dosing from NONMEM model","text":"Lets say case instead single dose, want see concentration profile single day BID dosing. case done creating quick event table:","code":"ev <- et(amt=120000, ii=12, until=24) %>% et(list(c(0, 2), # add observations in windows c(4, 6), c(8, 12), c(14, 18), c(20, 26), c(28, 32), c(32, 36), c(36, 44))) %>% et(id=1:10)"},{"path":"/articles/simulate-new-dosing.html","id":"step-3-solve-using-rxode2","dir":"Articles","previous_headings":"","what":"Step 3: solve using rxode2","title":"Simulate New dosing from NONMEM model","text":"step, solve model new event table 10 subjects: Note since nonmem2rx model, default solving match tolerances methods specified NONMEM model.","code":"s <- rxSolve(mod, ev) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12"},{"path":"/articles/simulate-new-dosing.html","id":"step-4-exploring-the-simulation-by-plotting","dir":"Articles","previous_headings":"","what":"Step 4: exploring the simulation (by plotting)","title":"Simulate New dosing from NONMEM model","text":"solved object acts rxode2 solved object, can use plot() function see individual profiles simulated:","code":"library(ggplot2) plot(s, ipred) + ylab(\"Concentrations\")"},{"path":"/articles/simulate-uncertainty.html","id":"step-1-import-the-model","dir":"Articles","previous_headings":"","what":"Step 1: Import the model","title":"Simulate using Parameter Uncertainty","text":"","code":"library(nonmem2rx) library(rxode2) # its best practice to set the seed for the simulations set.seed(42) rxSetSeed(42) # First we need the location of the nonmem control stream Since we are # running an example, we will use one of the built-in examples in # `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE, determineError=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done"},{"path":"/articles/simulate-uncertainty.html","id":"step-2-look-at-a-different-dosing-paradigm","dir":"Articles","previous_headings":"","what":"Step 2: Look at a different dosing paradigm","title":"Simulate using Parameter Uncertainty","text":"Lets say case instead single dose, want see concentration profile single day BID dosing. case done creating quick event table.","code":"ev <- et(amt=120000, ii=12, until=24) %>% et(c(1:6, seq(8, 24, by=2))) %>% et(id=1:100)"},{"path":"/articles/simulate-uncertainty.html","id":"step-3-solve-using-the-uncertainty-in-the-nonmem-model","dir":"Articles","previous_headings":"","what":"Step 3: Solve using the uncertainty in the NONMEM model","title":"Simulate using Parameter Uncertainty","text":"use uncertainty model, simple matter telling many times rxode2() sample nStud=X. case use 100.","code":"s <- rxSolve(mod, ev, nStud=100) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=120 from NONMEM #> ℹ using dfObs=2280 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2', 'omega.4.1', 'omega.4.2', 'omega.4.3' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> [====|====|====|====|====|====|====|====|====|====] 0:00:01 s #> ── Solved rxode2 object ── #> ── Parameters (x$params): ── #> # A tibble: 10,000 × 11 #> sim.id id theta1 theta2 theta3 theta4 RSV eta1 eta2 eta3 #> #> 1 1 1 1.34 4.14 1.34 3.88 0.197 -0.177 -0.0490 0.354 #> 2 1 2 1.34 4.14 1.34 3.88 0.197 0.300 -0.175 -0.000835 #> 3 1 3 1.34 4.14 1.34 3.88 0.197 0.512 0.543 0.0679 #> 4 1 4 1.34 4.14 1.34 3.88 0.197 -0.0557 -0.225 0.464 #> 5 1 5 1.34 4.14 1.34 3.88 0.197 0.0727 0.717 -0.0169 #> 6 1 6 1.34 4.14 1.34 3.88 0.197 -0.0835 -0.221 0.510 #> 7 1 7 1.34 4.14 1.34 3.88 0.197 0.721 -0.147 0.306 #> 8 1 8 1.34 4.14 1.34 3.88 0.197 0.336 0.00156 0.287 #> 9 1 9 1.34 4.14 1.34 3.88 0.197 0.240 -0.00161 -0.246 #> 10 1 10 1.34 4.14 1.34 3.88 0.197 0.368 -0.178 0.171 #> # ℹ 9,990 more rows #> # ℹ 1 more variable: eta4 #> ── Initial Conditions (x$inits): ── #> CENTRAL PERI #> 0 0 #> #> Simulation with uncertainty in: #> • parameters (x$thetaMat for changes) #> • omega matrix (x$omegaList) #> • sigma matrix (x$sigmaList) #> #> ── First part of data (object): ── #> # A tibble: 150,000 × 21 #> sim.id id time cl v q v2 v1 scale1 k21 k12 f #> #> 1 1 1 1 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1749. #> 2 1 1 2 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1549. #> 3 1 1 3 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1391. #> 4 1 1 4 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1265. #> 5 1 1 5 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1164. #> 6 1 1 6 3.21 59.9 5.41 31.1 59.9 59.9 0.174 0.0904 1081. #> # ℹ 149,994 more rows #> # ℹ 9 more variables: ipred , rescv , w , ires , #> # iwres , y , CENTRAL , PERI , DV "},{"path":"/articles/simulate-uncertainty.html","id":"step-4-summarize-and-plot","dir":"Articles","previous_headings":"","what":"Step 4: Summarize and plot","title":"Simulate using Parameter Uncertainty","text":"Since bunch data, confidence band simulation uncertainty helpful. One way select interesting components, create confidence interval plot confidence bands:","code":"sci <- confint(s, parm=c(\"CENTRAL\", \"PERI\", \"sim\")) #> summarizing data...done sci #> # A tibble: 90 × 7 #> p1 time trt p2.5 p50 p97.5 Percentile #> #> 1 0.0250 1 CENTRAL 89088. 93122. 97785. 2.5% #> 2 0.5 1 CENTRAL 104763. 106382. 107850. 50% #> 3 0.975 1 CENTRAL 111628. 113213. 114778. 97.5% #> 4 0.0250 2 CENTRAL 67932. 73356. 80896. 2.5% #> 5 0.5 2 CENTRAL 91994. 94928. 97428. 50% #> 6 0.975 2 CENTRAL 104126. 107042. 109995. 97.5% #> 7 0.0250 3 CENTRAL 52547. 59414. 67509. 2.5% #> 8 0.5 3 CENTRAL 81661. 85156. 88600. 50% #> 9 0.975 3 CENTRAL 97288. 101479. 105605. 97.5% #> 10 0.0250 4 CENTRAL 41353. 48409. 57328. 2.5% #> # ℹ 80 more rows plot(sci) plot(sci, log=\"y\")"},{"path":"/articles/simulate-with-covs.html","id":"simulation-with-covariates-or-input-parameters","dir":"Articles","previous_headings":"","what":"Simulation with covariates or input parameters","title":"Simulate New dosing with covariates","text":"Sometimes NONMEM model can covariates may wish simulate ; simulation exercise shows methods simulate covariates NONMEM.","code":"library(nonmem2rx) library(rxode2)"},{"path":"/articles/simulate-with-covs.html","id":"step-0-input-the-model","dir":"Articles","previous_headings":"","what":"Step 0: input the model","title":"Simulate New dosing with covariates","text":"case, use Friberg myelosuppresion model originally contributed example Yuan Xiong. simulated data nlmixr2, babelmixr2, manual edits simplify model run NONMEM 7.4.3. Note case PK parameters model require special handling simulate uncertainty even different dosing scenarios. simulation scenario, need import NONMEM model:","code":"# Since this is an included example, we import the model from the # `nonmem2rx` package. This is done by the `system.file()` command: wbcModel <- system.file(\"wbc/wbc.lst\", package=\"nonmem2rx\") wbc <- nonmem2rx(wbcModel) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.lst' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.83169895537931` #> ℹ change initial estimate of `theta2` to `8.37329670479077` #> ℹ change initial estimate of `theta3` to `6.37739634773425` #> ℹ change initial estimate of `theta4` to `-11.558011558` #> ℹ change initial estimate of `theta5` to `0.464650000001741` #> ℹ change initial estimate of `eta1` to `0.0979049999946534` #> ℹ change initial estimate of `eta2` to `2.99999999999372e-06` #> ℹ change initial estimate of `eta3` to `1.99999999999944e-05` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.pred #> ℹ done #> ℹ read in nonmem ETA data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/wbc/wbc.eta #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done print(wbc) #> ── rxode2-based free-form 7-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> log_CIRC0 log_MTT log_SLOPU log_GAMMA prop.err #> 1.831699 8.373297 6.377396 -11.558012 0.464650 #> #> Omega ($omega): #> eta.CIRC0 eta.MTT eta.SLOPU #> eta.CIRC0 0.097905 0e+00 0e+00 #> eta.MTT 0.000000 3e-06 0e+00 #> eta.SLOPU 0.000000 0e+00 2e-05 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTR #> 2 2 PERIPH #> 3 3 PROL #> 4 4 TR1 #> 5 5 TR2 #> 6 6 TR3 #> 7 7 c.CIRC #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"wbc\" #> dfObs <- 176 #> dfSub <- 45 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> log_CIRC0 ~ c(log_CIRC0 = 0.00339803) #> log_MTT ~ c(log_CIRC0 = -0.00171728, log_MTT = 0.00224653) #> log_SLOPU ~ c(log_CIRC0 = -0.00142939, log_MTT = 0.00545118, #> log_SLOPU = 0.0311551) #> log_GAMMA ~ c(log_CIRC0 = 0.0107932, log_MTT = -0.0333153, #> log_SLOPU = -0.18915, log_GAMMA = 3.18077) #> prop.err ~ c(log_CIRC0 = 8.44599e-05, log_MTT = -0.000185993, #> log_SLOPU = -0.00110008, log_GAMMA = 0.0241601, prop.err = 0.000189655) #> eps1 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, log_GAMMA = 0, #> prop.err = 0, eps1 = 0) #> eta.CIRC0 ~ c(log_CIRC0 = -0.00103234, log_MTT = 0.00125366, #> log_SLOPU = 0.00108067, log_GAMMA = 0.000599458, #> prop.err = 3.39316e-05, eps1 = 0, eta.CIRC0 = 0.000977024) #> omega.2.1 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, #> log_GAMMA = 0, prop.err = 0, eps1 = 0, eta.CIRC0 = 0, #> omega.2.1 = 0) #> eta.MTT ~ c(log_CIRC0 = 5.9718e-08, log_MTT = -5.65051e-08, #> log_SLOPU = 6.21392e-09, log_GAMMA = 8.42426e-07, #> prop.err = 6.68526e-09, eps1 = 0, eta.CIRC0 = -5.00488e-08, #> omega.2.1 = 0, eta.MTT = 7.54658e-12) #> omega.3.1 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, #> log_GAMMA = 0, prop.err = 0, eps1 = 0, eta.CIRC0 = 0, #> omega.2.1 = 0, eta.MTT = 0, omega.3.1 = 0) #> omega.3.2 ~ c(log_CIRC0 = 0, log_MTT = 0, log_SLOPU = 0, #> log_GAMMA = 0, prop.err = 0, eps1 = 0, eta.CIRC0 = 0, #> omega.2.1 = 0, eta.MTT = 0, omega.3.1 = 0, omega.3.2 = 0) #> eta.SLOPU ~ c(log_CIRC0 = 3.70943e-07, log_MTT = -1.8945e-07, #> log_SLOPU = 1.25175e-06, log_GAMMA = -1.7346e-06, #> prop.err = 1.59707e-09, eps1 = 0, eta.CIRC0 = -3.13414e-07, #> omega.2.1 = 0, eta.MTT = 5.308e-11, omega.3.1 = 0, #> omega.3.2 = 0, eta.SLOPU = 4.20267e-10) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=7.82e-11\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (4.96e-11, 1.28e-06); atol=5.24e-10\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.72e-11\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.4e-11,4.89e-05) atol=6.72e-11\") #> ini({ #> log_CIRC0 <- 1.83169895537931 #> label(\"1 - log_CIRC0\") #> log_MTT <- 8.37329670479077 #> label(\"2 - log_MTT\") #> log_SLOPU <- 6.37739634773425 #> label(\"3 - log_SLOPU\") #> log_GAMMA <- -11.558011558 #> label(\"4 - log_GAMMA\") #> prop.err <- c(0, 0.464650000001741) #> label(\"5 - prop.err\") #> eta.CIRC0 ~ 0.0979049999946534 #> eta.MTT ~ 2.99999999999372e-06 #> eta.SLOPU ~ 1.99999999999944e-05 #> }) #> model({ #> cmt(CENTR) #> cmt(PERIPH) #> cmt(PROL) #> cmt(TR1) #> cmt(TR2) #> cmt(TR3) #> cmt(c.CIRC) #> mu_1 <- log_CIRC0 #> mu_2 <- log_MTT #> mu_3 <- log_SLOPU #> circ0 <- exp(mu_1 + eta.CIRC0) #> mtt <- exp(mu_2 + eta.MTT) #> slopu <- exp(mu_3 + eta.SLOPU) #> gamma <- exp(log_GAMMA) #> rxini.rxddta3. <- circ0 #> PROL(0) <- rxini.rxddta3. #> rxini.rxddta4. <- circ0 #> TR1(0) <- rxini.rxddta4. #> rxini.rxddta5. <- circ0 #> TR2(0) <- rxini.rxddta5. #> rxini.rxddta6. <- circ0 #> TR3(0) <- rxini.rxddta6. #> rxini.rxddta7. <- circ0 #> c.CIRC(0) <- rxini.rxddta7. #> cl <- CLI #> v1 <- V1I #> v2 <- V2I #> RXR1 <- 204 #> conc <- CENTR/v1 #> NN <- 3 #> ktr <- (NN + 1)/mtt #> edrug <- 1 - slopu * conc #> fdbk <- (circ0/c.CIRC)^gamma #> circ <- c.CIRC #> d/dt(CENTR) <- PERIPH * RXR1/v2 - CENTR * (cl/v1 + RXR1/v1) #> d/dt(PERIPH) <- CENTR * RXR1/v1 - PERIPH * RXR1/v2 #> d/dt(PROL) <- ktr * PROL * edrug * fdbk - ktr * PROL #> d/dt(TR1) <- ktr * PROL - ktr * TR1 #> d/dt(TR2) <- ktr * TR1 - ktr * TR2 #> d/dt(TR3) <- ktr * TR2 - ktr * TR3 #> d/dt(c.CIRC) <- ktr * TR3 - ktr * c.CIRC #> f <- CENTR #> ipred <- c.CIRC #> w <- sqrt((ipred * prop.err)^2) #> if (w == 0) #> w <- 1 #> y <- ipred + w * eps1 #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • some NONMEM input has tied times; they are offset by a small offset #> • $MODEL NCOMPARTMENTS/NEQUILIBRIUM/NPARAMETERS statement(s) ignored #> ── nonmem2rx extra properties: ── #> #> Sigma ($sigma): #> eps1 #> eps1 1 #> #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol # note the NONMEM vs rxode2 models validate well. You can see this in # the validation code: message(paste(wbc$meta$validation, collapse=\"\\n\")) #> IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=7.82e-11 #> IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (4.96e-11, 1.28e-06); atol=5.24e-10 #> PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.72e-11 #> PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.4e-11,4.89e-05) atol=6.72e-11"},{"path":"/articles/simulate-with-covs.html","id":"option-1-simulate-with-the-same-conditions-as-the-input-model","dir":"Articles","previous_headings":"","what":"Option #1: simulate with the same conditions as the input model","title":"Simulate New dosing with covariates","text":"easiest way simulate uncertainty use original NONMEM input dataset. want simulate covariates , simply add resample=TRUE: case every individual re-samples original dataset’s covariates. particular case, dosing changes per individual may wish share team may way see model performing relative data. Binning may necessary, typical VPC","code":"sim <- rxSolve(wbc, resample=TRUE, nStud=500) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=45 from NONMEM #> ℹ using dfObs=176 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM's data for solving #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> [====|====|====|====|====|====|====|====|====|====] 0:00:05 #> Warning: corrected 'thetaMat' to be a symmetric, positive definite matrix"},{"path":"/articles/simulate-with-covs.html","id":"option-2-simulate-with-a-different-condition-with-resampled-pk-parameterscovariates","dir":"Articles","previous_headings":"","what":"Option 2: simulate with a different condition (with resampled PK parameters/covariates)","title":"Simulate New dosing with covariates","text":"case, may wish simulate study similar covariates NONMEM model general (also resampling) First lets simulate 410 every 20 days. can easily add creating event table input PK parameters NONMEM dataset. may closer constant theoretical dosing regimen may wish explore.","code":"# first create the base event table with the nubmer of individuals # matching the NONMEM dataset: ev <- et(amt=410, ii=20*24, until=365*24) %>% # Add dosing 20 days apart for a year et(seq(0, 365*24, by=7*24)) %>% # Assume weekly observations et(id=seq_along(unique(wbc$nonmemData$ID))) %>% # Match the number of subjects modeled as.data.frame # convert to data.frame # Now create the PK covariates library(dplyr) #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:data.table': #> #> between, first, last #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union pkCov <- wbc$nonmemData %>% filter(!duplicated(ID)) %>% # only get one observation per id select(CLI, V1I, V2I) # select the covariates pkCov$id <- seq_along(pkCov$CLI) # add the covariates per id # Then merge the PK covariates to the original event table ev <- merge(pkCov, ev) # Last simulate with replacement with the new data frame sim <- rxSolve(wbc, ev, resample=TRUE, nStud=100) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=45 from NONMEM #> ℹ using dfObs=176 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> Warning: corrected 'thetaMat' to be a symmetric, positive definite matrix ci <- confint(sim, \"y\") #> summarizing data... #> done plot(ci)"},{"path":"/articles/simulate-with-covs.html","id":"option-3-simulate-a-larger-study-with-a-different-condition-resampled-pk-parameterscovariates","dir":"Articles","previous_headings":"","what":"Option 3: simulate a larger study with a different condition (resampled PK parameters/covariates)","title":"Simulate New dosing with covariates","text":"Another option create larger dataset (multiple original dataset). case, assume new study 225 patients, 5 fold increase subjects compared NONMEM input.","code":"# first create the base event table with the nubmer of individuals # matching the NONMEM dataset: ev <- et(amt=410, ii=20*24, until=365*24) %>% # Add dosing 20 days apart for a year et(seq(0, 365*24, by=7*24)) %>% # Assume weekly observations et(id=seq(1, max(wbc$nonmemData$ID)*5)) %>% # Match the number of subjects modeled as.data.frame # convert to data.frame # Now create the PK covariates library(dplyr) pkCov <- wbc$nonmemData %>% filter(!duplicated(ID)) %>% # only get one observation per id select(CLI, V1I, V2I) # select the covariates # expand the covariates by 5 pkCov <- do.call(\"rbind\", lapply(1:5, function(i) { pkCov })) pkCov$id <- seq_along(pkCov$CLI) # add the covariates per id # Then merge the PK covariates to the original event table ev <- merge(pkCov, ev) # Last simulate with replacement with the new data frame sim <- rxSolve(wbc, ev, resample=TRUE, nStud=100) #> ℹ using nocb interpolation like NONMEM, specify directly to change #> ℹ using addlKeepsCov=TRUE like NONMEM, specify directly to change #> ℹ using addlDropSs=TRUE like NONMEM, specify directly to change #> ℹ using ssAtDoseTime=TRUE like NONMEM, specify directly to change #> ℹ using safeZero=FALSE since NONMEM does not use protection by default #> ℹ using safePow=FALSE since NONMEM does not use protection by default #> ℹ using safeLog=FALSE since NONMEM does not use protection by default #> ℹ using ss2cancelAllPending=FALSE since NONMEM does not cancel pending doses with SS=2 #> ℹ using dfSub=45 from NONMEM #> ℹ using dfObs=176 from NONMEM #> ℹ using thetaMat from NONMEM #> ℹ using sigma from NONMEM #> ℹ using NONMEM specified atol=1e-12 #> ℹ using NONMEM specified rtol=1e-06 #> ℹ using NONMEM specified ssAtol=1e-12 #> ℹ thetaMat has too many items, ignored: 'omega.2.1', 'omega.3.1', 'omega.3.2' #> ℹ thetaMat has zero diagonal items, ignored: 'eps1' #> [====|====|====|====|====|====|====|====|====|====] 0:01:39 #> Warning: corrected 'thetaMat' to be a symmetric, positive definite matrix ci <- confint(sim, \"y\") #> summarizing data... #> done plot(ci)"},{"path":"/articles/simulate-with-covs.html","id":"other-options","dir":"Articles","previous_headings":"","what":"Other options","title":"Simulate New dosing with covariates","text":"can also simulation without uncertainty use covariates resampling hand (even simulating new covariates manually). believe reampling keeps hidden correlations covariates, used whenever possible. time writing, resampling can occur new event table multiple input dataest. Eventually feature may added resample input dataset directly. Note resampling also work time-varying covariates. time-varying covariates imputed based input times per subject.","code":""},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Matthew Fidler. Author, maintainer. Philip Delff. Contributor. Gabriel Staples. Contributor. string insensitive compare","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Fidler M (2024). nonmem2rx: Converts 'NONMEM' Models 'rxode2'. R package version 0.1.5, https://github.com/nlmixr2/nonmem2rx/, https://nlmixr2.github.io/nonmem2rx/.","code":"@Manual{, title = {nonmem2rx: Converts 'NONMEM' Models to 'rxode2'}, author = {Matthew Fidler}, year = {2024}, note = {R package version 0.1.5, https://github.com/nlmixr2/nonmem2rx/}, url = {https://nlmixr2.github.io/nonmem2rx/}, }"},{"path":"/index.html","id":"nonmem2rx","dir":"","previous_headings":"","what":"Converts NONMEM Models to rxode2","title":"Converts NONMEM Models to rxode2","text":"goal nonmem2rx convert NONMEM control stream rxode2 (even nlmixr2 fit) easy clinical trial simulation R.","code":""},{"path":"/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Converts NONMEM Models to rxode2","text":"can install development version nonmem2rx GitHub r-universe: CRAN, can also get CRAN version :","code":"install.packages('nonmem2rx', repos = c('https://nlmixr2.r-universe.dev', 'https://cloud.r-project.org')) install.packages('nonmem2rx')"},{"path":"/index.html","id":"what-you-can-do-with-nonmem2rxbabelmixr2","dir":"","previous_headings":"","what":"What you can do with nonmem2rx/babelmixr2","title":"Converts NONMEM Models to rxode2","text":"can many useful tasks directly converting nlmixr2 NONMEM models; can: Convert NONMEM model rxode2 model development nlmixr2 run NONMEM nlmixr2 model reviewers want know NONMEM results. conversions, automatically make sure model translated correctly (babelmixr2) nlmixr2 fit models nonmem2rx models coming conversions, can: Perform simulations new dosing NONMEM model even simulate using uncertainty model simulate new scenarios Modify model calculate derived parameters (like AUC). parameters slow NONMEM’s optimization, can help simulation scenario. Simulating Covariates/Input PK parameters. example shows approaches resample input dataset covariate selection. nonmem2rx babelmixr2, convert imported rxode2 model nlmixr2 object, allowing: Generation Word PowerPoint plots nlmixr2rpt Easy VPC creation (vpcPlot()) Easy Individual plots extra solved points. show curvature individual population fits sparse data-sets (augPred()) can even use conversion help debug NONMEM model (even try nlmixr2 instead) Understand simplify NONMEM model avoid rounding errors Run nlmixr2’s covariance step NONMEMs covariance step failed (linked example, covariance step rounding errors)","code":""},{"path":"/index.html","id":"simple-example","dir":"","previous_headings":"","what":"Simple example","title":"Converts NONMEM Models to rxode2","text":"nonmem2rx loaded, simply type location nonmem control stream parser start. example: can see automatically validates NONMEM rxode2 outputs couple metrics.","code":"library(nonmem2rx) # First we need the location of the nonmem control stream Since we are # running an example, we will use one of the built-in examples in # `nonmem2rx` ctlFile <- system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\") # You can use a control stream or other file. With the development # version of `babelmixr2`, you can simply point to the listing file mod <- nonmem2rx(ctlFile, lst=\".res\", save=FALSE) #> ℹ getting information from '/tmp/RtmphCfr0E/temp_libpathaf275a605b00/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $THETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /tmp/RtmphCfr0E/temp_libpathaf275a605b00/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0’ #> In file included from /usr/share/R/include/R.h:71, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2/include/rxode2.h:9, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_shared.h:3, #> from rx_d16f021bc9a6b4f5e2be95cdc7bf3d57_.c:115: #> /usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions [-Wpedantic] #> 80 | }; #> | ^ #> ℹ read in nonmem IPRED data (for model validation): /tmp/RtmphCfr0E/temp_libpathaf275a605b00/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> using C compiler: ‘gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0’ #> In file included from /usr/share/R/include/R.h:71, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2/include/rxode2.h:9, #> from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_shared.h:3, #> from rx_edd6c2bb8fc0df18bd2c37d123e584da_.c:115: #> /usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions [-Wpedantic] #> 80 | }; #> | ^ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> ipred ~ prop(RSV) #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • there are duplicate eta names, not renaming duplicate parameters #> • there are duplicate theta names, not renaming duplicate parameters #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData, $thetaMat, $dfSub, $dfObs #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol"},{"path":"/index.html","id":"external-projects-that-contributed-to-the-tools-validation","dir":"","previous_headings":"","what":"External projects that contributed to the tool’s validation","title":"Converts NONMEM Models to rxode2","text":"nonmem2rx tool validated : PsN library test suite NONMEM listings (https://github.com/UUPharmacometrics/PsN/tree/master/test) ddmore model scrapings (https://github.com/dpastoor/ddmore_scraping). Models NONMEM design tutorial Bauer 2021 https://doi.org/10.1002/psp4.12713 Models NONMEM tutorial 1 (Bauer 2019) https://doi.org/10.1002/psp4.12404 Models NONMEM tutorial 2 (Bauer 2019) https://doi.org/10.1002/psp4.12422 Due sheer size zipped models nonmem control stream sources, excluded keep binary 3 mgs (CRAN requirement). However, like acknowledge helped projects. projects NONMEM conversion rxode2 made much robust. Still, tests /CRAN binaries, can test : Downloading repository Running tests devtools::test()","code":""},{"path":"/reference/as.nonmem2rx.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert a model to a nonmem2rx model — as.nonmem2rx","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"Convert model nonmem2rx model","code":""},{"path":"/reference/as.nonmem2rx.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"","code":"as.nonmem2rx(model1, model2, compress = TRUE)"},{"path":"/reference/as.nonmem2rx.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"model1 Input model 1 model2 Input model 2 compress boolean compress ui end","code":""},{"path":"/reference/as.nonmem2rx.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"nonmem2rx model","code":""},{"path":"/reference/as.nonmem2rx.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"Matthew L. Fidler","code":""},{"path":"/reference/as.nonmem2rx.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert a model to a nonmem2rx model — as.nonmem2rx","text":"","code":"# \\donttest{ mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), determineError=FALSE, lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod2 <-function() { ini({ lcl <- 1.37034036528946 lvc <- 4.19814911033061 lq <- 1.38003493562413 lvp <- 3.87657341967489 RSV <- c(0, 0.196446108190896, 1) eta.cl ~ 0.101251418415006 eta.v ~ 0.0993872449483344 eta.q ~ 0.101302674763154 eta.v2 ~ 0.0730497519364148 }) model({ cmt(CENTRAL) cmt(PERI) cl <- exp(lcl + eta.cl) v <- exp(lvc + eta.v) q <- exp(lq + eta.q) v2 <- exp(lvp + eta.v2) v1 <- v scale1 <- v k21 <- q/v2 k12 <- q/v d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL f <- CENTRAL/scale1 f ~ prop(RSV) }) } new <- try(as.nonmem2rx(mod2, mod)) #> #> #> ℹ parameter labels from comments are typically ignored in non-interactive mode #> ℹ Need to run with the source intact to parse comments #> ℹ copy 'dfSub' to nonmem2rx model #> ℹ copy 'thetaMat' to nonmem2rx model #> ℹ copy 'dfObs' to nonmem2rx model #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done if (!inherits(new, \"try-error\")) print(new, page=1) #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> lcl lvc lq lvp RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta.cl eta.v eta.q eta.v2 #> eta.cl 0.1012514 0.00000000 0.0000000 0.00000000 #> eta.v 0.0000000 0.09938724 0.0000000 0.00000000 #> eta.q 0.0000000 0.00000000 0.1013027 0.00000000 #> eta.v2 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 lcl eta.cl id #> 2 lvc eta.v id #> 3 lq eta.q id #> 4 lvp eta.v2 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> thetaMat <- lotri({ #> lcl ~ c(lcl = 0.000887681) #> lvc ~ c(lcl = -0.00010551, lvc = 0.000871409) #> lq ~ c(lcl = 0.000184416, lvc = -0.000106195, lq = 0.00299336) #> lvp ~ c(lcl = -0.000120234, lvc = -5.06663e-05, lq = 0.000165252, #> lvp = 0.00121347) #> RSV ~ c(lcl = 5.2783e-08, lvc = -1.56562e-05, lq = 5.99331e-06, #> lvp = -2.53991e-05, RSV = 9.94218e-06) #> eta.cl ~ c(lcl = -4.71273e-05, lvc = 4.69667e-05, lq = -3.64271e-05, #> lvp = 2.54796e-05, RSV = -8.16885e-06, eta.cl = 0.000169296) #> eta.v ~ c(lcl = -7.37156e-05, lvc = 2.56634e-05, lq = -8.08349e-05, #> lvp = 1.37e-05, RSV = -4.36564e-06, eta.cl = 8.75181e-06, #> eta.v = 0.00015125) #> eta.q ~ c(lcl = 6.63383e-05, lvc = -8.19002e-05, lq = 0.000548985, #> lvp = 0.000168356, RSV = 1.59122e-06, eta.cl = 3.48714e-05, #> eta.v = 4.31593e-07, eta.q = 0.000959029) #> eta.v2 ~ c(lcl = -9.49661e-06, lvc = 0.000110108, lq = -0.000306537, #> lvp = -9.12897e-05, RSV = 3.1877e-06, eta.cl = 1.36628e-05, #> eta.v = -1.95096e-05, eta.q = -0.00012977, eta.v2 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> lcl <- 1.37034036528946 #> lvc <- 4.19814911033061 #> lq <- 1.38003493562413 #> lvp <- 3.87657341967489 #> RSV <- c(0, 0.196446108190896, 1) #> eta.cl ~ 0.101251418415006 #> eta.v ~ 0.0993872449483344 #> eta.q ~ 0.101302674763154 #> eta.v2 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(lcl + eta.cl) #> v <- exp(lvc + eta.v) #> q <- exp(lq + eta.q) #> v2 <- exp(lvp + eta.v2) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> f ~ prop(RSV) #> }) #> } #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol # }"},{"path":"/reference/autoplot.nonmem2rx.html","id":null,"dir":"Reference","previous_headings":"","what":"Autoplot nonmem2rx object — autoplot.nonmem2rx","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"Autoplot nonmem2rx object","code":""},{"path":"/reference/autoplot.nonmem2rx.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"","code":"# S3 method for class 'nonmem2rx' autoplot( object, ..., ncol = 3, nrow = 3, log = \"\", xlab = \"Time\", ylab = \"Predictions\", page = FALSE )"},{"path":"/reference/autoplot.nonmem2rx.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"object object, whose class determine behaviour autoplot ... ignored parameters nonmem2rx objects nrow, ncol Number rows columns log \"\" (neither x y), \"x\", \"y\", \"xy\" (\"yx\") log-scale? xlab, ylab x y axis labels page number page(s) individual plots, default (FALSE) pages print; can use TRUE pages print, list pages want print","code":""},{"path":"/reference/autoplot.nonmem2rx.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Autoplot nonmem2rx object — autoplot.nonmem2rx","text":"ggplot2 object","code":""},{"path":"/reference/nmcov.html","id":null,"dir":"Reference","previous_headings":"","what":"Read in data file — nmcov","title":"Read in data file — nmcov","text":"Read data file","code":""},{"path":"/reference/nmcov.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read in data file — nmcov","text":"","code":"nmcov(file, ...)"},{"path":"/reference/nmcov.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read in data file — nmcov","text":"file file name read results ... parameters passed data.table::fread","code":""},{"path":"/reference/nmcov.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read in data file — nmcov","text":"matrix covariance step NONMEM","code":""},{"path":"/reference/nmcov.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Read in data file — nmcov","text":"Philip Delff Matthew L. Fidler","code":""},{"path":"/reference/nmcov.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read in data file — nmcov","text":"","code":"nmcov(system.file(\"mods/cpt/runODE032.cov\", package=\"nonmem2rx\")) #> THETA1 THETA2 THETA3 THETA4 THETA5 #> THETA1 8.87681e-04 -1.05510e-04 1.84416e-04 -1.20234e-04 5.27830e-08 #> THETA2 -1.05510e-04 8.71409e-04 -1.06195e-04 -5.06663e-05 -1.56562e-05 #> THETA3 1.84416e-04 -1.06195e-04 2.99336e-03 1.65252e-04 5.99331e-06 #> THETA4 -1.20234e-04 -5.06663e-05 1.65252e-04 1.21347e-03 -2.53991e-05 #> THETA5 5.27830e-08 -1.56562e-05 5.99331e-06 -2.53991e-05 9.94218e-06 #> SIGMA(1,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(1,1) -4.71273e-05 4.69667e-05 -3.64271e-05 2.54796e-05 -8.16885e-06 #> OMEGA(2,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(2,2) -7.37156e-05 2.56634e-05 -8.08349e-05 1.37000e-05 -4.36564e-06 #> OMEGA(3,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(3,2) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(3,3) 6.63383e-05 -8.19002e-05 5.48985e-04 1.68356e-04 1.59122e-06 #> OMEGA(4,1) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(4,2) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(4,3) 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #> OMEGA(4,4) -9.49661e-06 1.10108e-04 -3.06537e-04 -9.12897e-05 3.18770e-06 #> SIGMA(1,1) OMEGA(1,1) OMEGA(2,1) OMEGA(2,2) OMEGA(3,1) #> THETA1 0 -4.71273e-05 0 -7.37156e-05 0 #> THETA2 0 4.69667e-05 0 2.56634e-05 0 #> THETA3 0 -3.64271e-05 0 -8.08349e-05 0 #> THETA4 0 2.54796e-05 0 1.37000e-05 0 #> THETA5 0 -8.16885e-06 0 -4.36564e-06 0 #> SIGMA(1,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(1,1) 0 1.69296e-04 0 8.75181e-06 0 #> OMEGA(2,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(2,2) 0 8.75181e-06 0 1.51250e-04 0 #> OMEGA(3,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(3,2) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(3,3) 0 3.48714e-05 0 4.31593e-07 0 #> OMEGA(4,1) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(4,2) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(4,3) 0 0.00000e+00 0 0.00000e+00 0 #> OMEGA(4,4) 0 1.36628e-05 0 -1.95096e-05 0 #> OMEGA(3,2) OMEGA(3,3) OMEGA(4,1) OMEGA(4,2) OMEGA(4,3) #> THETA1 0 6.63383e-05 0 0 0 #> THETA2 0 -8.19002e-05 0 0 0 #> THETA3 0 5.48985e-04 0 0 0 #> THETA4 0 1.68356e-04 0 0 0 #> THETA5 0 1.59122e-06 0 0 0 #> SIGMA(1,1) 0 0.00000e+00 0 0 0 #> OMEGA(1,1) 0 3.48714e-05 0 0 0 #> OMEGA(2,1) 0 0.00000e+00 0 0 0 #> OMEGA(2,2) 0 4.31593e-07 0 0 0 #> OMEGA(3,1) 0 0.00000e+00 0 0 0 #> OMEGA(3,2) 0 0.00000e+00 0 0 0 #> OMEGA(3,3) 0 9.59029e-04 0 0 0 #> OMEGA(4,1) 0 0.00000e+00 0 0 0 #> OMEGA(4,2) 0 0.00000e+00 0 0 0 #> OMEGA(4,3) 0 0.00000e+00 0 0 0 #> OMEGA(4,4) 0 -1.29770e-04 0 0 0 #> OMEGA(4,4) #> THETA1 -9.49661e-06 #> THETA2 1.10108e-04 #> THETA3 -3.06537e-04 #> THETA4 -9.12897e-05 #> THETA5 3.18770e-06 #> SIGMA(1,1) 0.00000e+00 #> OMEGA(1,1) 1.36628e-05 #> OMEGA(2,1) 0.00000e+00 #> OMEGA(2,2) -1.95096e-05 #> OMEGA(3,1) 0.00000e+00 #> OMEGA(3,2) 0.00000e+00 #> OMEGA(3,3) -1.29770e-04 #> OMEGA(4,1) 0.00000e+00 #> OMEGA(4,2) 0.00000e+00 #> OMEGA(4,3) 0.00000e+00 #> OMEGA(4,4) 5.10190e-04"},{"path":"/reference/nmext.html","id":null,"dir":"Reference","previous_headings":"","what":"Reads the NONMEM .ext file for final parameter information — nmext","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"Reads NONMEM .ext file final parameter information","code":""},{"path":"/reference/nmext.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"","code":"nmext(file)"},{"path":"/reference/nmext.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"file File list located","code":""},{"path":"/reference/nmext.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"return list $theta, $eta $eps","code":""},{"path":"/reference/nmext.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"Matthew L. Fidler","code":""},{"path":"/reference/nmext.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reads the NONMEM .ext file for final parameter information — nmext","text":"","code":"nmext(system.file(\"run001.ext\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 theta6 #> 26.29090000 1.34809000 4.20364000 0.20795800 0.20461000 0.01055270 #> theta7 #> 0.00717161 #> #> $omega #> eta1 eta2 eta3 #> eta1 0.0729525 0.0000000 0.00000 #> eta2 0.0000000 0.0380192 0.00000 #> eta3 0.0000000 0.0000000 1.90699 #> #> $sigma #> eps1 #> eps1 1 #> #> $objf #> [1] -1403.905 #>"},{"path":"/reference/nminfo.html","id":null,"dir":"Reference","previous_headings":"","what":"Get the most accurate information you can get from NONMEM — nminfo","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"Get accurate information can get NONMEM","code":""},{"path":"/reference/nminfo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"","code":"nminfo( file, mod = \".mod\", xml = \".xml\", ext = \".ext\", cov = \".cov\", phi = \".phi\", lst = \".lst\", useXml = TRUE, useExt = TRUE, useCov = TRUE, usePhi = TRUE, useLst = TRUE, strictLst = FALSE, verbose = FALSE )"},{"path":"/reference/nminfo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"file nonmem file, like control stream, phi. function remove extension try get right information. preferentially selects accurate estimates file. mod NONMEM output extension, defaults .mod xml NONMEM xml file extension , defaults .xml ext NONMEM ext file extension, defaults .ext cov NONMEM covariance file extension, defaults .cov phi NONMEM eta/phi file extension, defaults .phi lst NONMEM output extension, defaults .lst useXml present, use NONMEM xml file import much NONMEM information useExt present, use NONMEM ext file extract parameter estimates (default TRUE), otherwise defaults parameter estimates extracted NONMEM output useCov present, use NONMEM cov file import covariance, otherwise import covariance list file usePhi present, use NONMEM phi file extract etas (default TRUE), otherwise defaults etas tables (present) useLst present, use NONMEM lst file extract NONMEM information strictLst list parsing needs correct successful load (default FALSE). verbose flag verbose reading information , default FALSE","code":""},{"path":"/reference/nminfo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"list NONMEM information","code":""},{"path":"/reference/nminfo.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"Matthew L. Fidler","code":""},{"path":"/reference/nminfo.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get the most accurate information you can get from NONMEM — nminfo","text":"","code":"nminfo(system.file(\"mods/cpt/runODE032.res\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> $cov #> theta1 theta2 theta3 theta4 theta5 #> theta1 8.876810e-04 -1.055098e-04 1.844162e-04 -1.202337e-04 5.278300e-08 #> theta2 -1.055098e-04 8.714095e-04 -1.061946e-04 -5.066632e-05 -1.565618e-05 #> theta3 1.844162e-04 -1.061946e-04 2.993363e-03 1.652516e-04 5.993313e-06 #> theta4 -1.202337e-04 -5.066632e-05 1.652516e-04 1.213465e-03 -2.539912e-05 #> theta5 5.278300e-08 -1.565618e-05 5.993313e-06 -2.539912e-05 9.942182e-06 #> eta1 -4.712728e-05 4.696667e-05 -3.642709e-05 2.547962e-05 -8.168847e-06 #> omega.1.2 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta2 -7.371560e-05 2.566338e-05 -8.083493e-05 1.369999e-05 -4.365635e-06 #> omega.2.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.2.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta3 6.633832e-05 -8.190016e-05 5.489848e-04 1.683555e-04 1.591222e-06 #> omega.3.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta4 -9.496613e-06 1.101079e-04 -3.065372e-04 -9.128974e-05 3.187703e-06 #> eps1 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta1 omega.1.2 omega.1.3 omega.1.4 eta2 omega.2.3 #> theta1 -4.712728e-05 0 0 0 -7.371560e-05 0 #> theta2 4.696667e-05 0 0 0 2.566338e-05 0 #> theta3 -3.642709e-05 0 0 0 -8.083493e-05 0 #> theta4 2.547962e-05 0 0 0 1.369999e-05 0 #> theta5 -8.168847e-06 0 0 0 -4.365635e-06 0 #> eta1 1.692964e-04 0 0 0 8.751806e-06 0 #> omega.1.2 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta2 8.751806e-06 0 0 0 1.512503e-04 0 #> omega.2.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta3 3.487139e-05 0 0 0 4.315929e-07 0 #> omega.3.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta4 1.366281e-05 0 0 0 -1.950959e-05 0 #> eps1 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 eta3 omega.3.4 eta4 eps1 #> theta1 0 6.633832e-05 0 -9.496613e-06 0 #> theta2 0 -8.190016e-05 0 1.101079e-04 0 #> theta3 0 5.489848e-04 0 -3.065372e-04 0 #> theta4 0 1.683555e-04 0 -9.128974e-05 0 #> theta5 0 1.591222e-06 0 3.187703e-06 0 #> eta1 0 3.487139e-05 0 1.366281e-05 0 #> omega.1.2 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.4 0 0.000000e+00 0 0.000000e+00 0 #> eta2 0 4.315929e-07 0 -1.950959e-05 0 #> omega.2.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.2.4 0 0.000000e+00 0 0.000000e+00 0 #> eta3 0 9.590290e-04 0 -1.297699e-04 0 #> omega.3.4 0 0.000000e+00 0 0.000000e+00 0 #> eta4 0 -1.297699e-04 0 5.101895e-04 0 #> eps1 0 0.000000e+00 0 0.000000e+00 0 #> #> $objf #> [1] 20167.64 #> #> $nobs #> [1] 2280 #> #> $nsub #> [1] 120 #> #> $nmtran #> [1] \"\\n\\n WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\\n\" #> #> $termInfo #> [1] \"\\n0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 320\\n NO. OF SIG. DIGITS IN FINAL EST.: 2.5\\n\" #> #> $nonmem #> [1] \"7.4.3\" #> #> $time #> [1] 100.95 #> #> $tere #> [1] \" Elapsed estimation time in seconds: 71.95\\n Elapsed covariance time in seconds: 28.38\\n Elapsed postprocess time in seconds: 0.43\" #> #> $control #> [1] \"\" #> [2] \"$PROB BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> [3] \"$INPUT ID TIME DV LNDV MDV AMT EVID DOSE V1I CLI QI V2I SSX IIX SD CMT\" #> [4] \"$DATA BOLUS_2CPT.csv IGNORE=@ IGNORE (SD.EQ.0)\" #> [5] \"$SUBR ADVAN13 TOL=6\" #> [6] \"$MODEL\" #> [7] \" COMP=(CENTRAL,DEFOBS,DEFDOSE)\" #> [8] \" COMP=(PERI)\" #> [9] \"$PK\" #> [10] \" CL=EXP(THETA(1)+ETA(1))\" #> [11] \" V=EXP(THETA(2)+ETA(2))\" #> [12] \" Q=EXP(THETA(3)+ETA(3))\" #> [13] \" V2=EXP(THETA(4)+ETA(4))\" #> [14] \" V1=V\" #> [15] \" S1=V\" #> [16] \"\\t\\t K21=Q/V2\" #> [17] \"\\t\\t K12=Q/V\" #> [18] \"$DES\" #> [19] \" DADT(1)= K21*A(2)-K12*A(1)-CL*A(1)/V1\" #> [20] \" DADT(2)=-K21*A(2)+K12*A(1) \\t\\t\" #> [21] \"$ERROR\" #> [22] \" IPRED = F\" #> [23] \" RESCV = THETA(5)\" #> [24] \" W = IPRED*RESCV\" #> [25] \" IRES = DV-IPRED\" #> [26] \" IWRES = IRES/W\" #> [27] \" Y = IPRED+W*EPS(1)\" #> [28] \"$THETA 1.6 ;log Cl\" #> [29] \"$THETA 4.5 ;log Vc\" #> [30] \"$THETA 1.6 ;log Q\" #> [31] \"$THETA 4 ;log Vp\" #> [32] \"$THETA (0,0.3,1) ;RSV\" #> [33] \"$OMEGA 0.15 0.15 0.15 0.15\" #> [34] \"$SIGMA 1 FIX\" #> [35] \"$EST NSIG=2 SIGL=6 PRINT=5 MAX=9999 NOABORT POSTHOC METHOD=COND INTER NOOBT\" #> [36] \"$COV\" #> [37] \"$TABLE ID TIME LNDV MDV AMT EVID DOSE V1I CLI QI V2I CL V Q V2 ETA1 ETA2 ETA3 ETA4\" #> [38] \" IPRED IRES IWRES CWRESI\" #> [39] \" ONEHEADER NOPRINT FILE=runODE032.csv\" #> #> $eta #> ID eta1 eta2 eta3 eta4 #> 1 1 -0.14424000 0.37464400 0.06501120 0.240662000 #> 2 2 0.56765200 -0.17515700 0.35129700 0.068655100 #> 3 3 0.47739800 -0.05753220 -0.07838230 -0.029594800 #> 4 4 -0.59588800 0.40511500 0.06595780 -0.104262000 #> 5 5 -0.32363600 0.27545000 0.02914670 0.251918000 #> 6 6 0.23277900 0.16120000 -0.00238193 0.064909600 #> 7 7 0.60699200 0.01759660 0.11880500 -0.028699900 #> 8 8 0.31283200 -0.53217800 -0.06375310 -0.221174000 #> 9 9 0.29495300 0.05832140 0.10949400 0.231407000 #> 10 10 0.14195300 -0.24786400 -0.17256300 -0.254001000 #> 11 11 -0.27053800 -0.23474000 -0.15745700 0.170349000 #> 12 12 -0.42602800 0.42758100 0.07017320 -0.075792800 #> 13 13 0.08017620 0.75176000 -0.00136251 0.045172700 #> 14 14 -0.12636300 -0.10582300 -0.08585340 0.020315600 #> 15 15 0.38692100 0.15867700 -0.00800554 0.108208000 #> 16 16 0.27036200 0.18321400 -0.00419876 0.374298000 #> 17 17 0.23923600 -0.32492200 -0.40412600 0.249456000 #> 18 18 -0.00269962 0.15345600 0.08357370 0.229613000 #> 19 19 0.13841300 -0.54122300 -0.03773240 0.296767000 #> 20 20 -0.46801300 -0.20000400 0.22992100 0.519881000 #> 21 21 0.28046300 0.19223800 -0.24784800 -0.053553600 #> 22 22 -0.00235221 0.10750900 -0.01570640 -0.170039000 #> 23 23 0.43714700 -0.09834960 0.20282200 -0.291774000 #> 24 24 -0.22670500 0.10172000 -0.06534150 0.019352400 #> 25 25 0.33364600 0.05095240 0.12533900 -0.284328000 #> 26 26 -0.15186700 -0.26233000 0.02811900 -0.065962400 #> 27 27 -0.28479700 -0.07478660 -0.02914140 -0.074459200 #> 28 28 0.04748590 0.17603800 0.11330300 0.116149000 #> 29 29 0.11232300 -0.42770200 -0.12393100 0.112370000 #> 30 30 -0.10120700 0.24156700 0.18911800 0.022527100 #> 31 31 0.26038200 -0.31787200 -0.46396000 -0.057012300 #> 32 32 0.02265670 -0.12159100 0.09948040 -0.044713800 #> 33 33 -0.31068700 -0.50537800 0.11857700 -0.072940000 #> 34 34 0.15974200 -0.00581950 -0.14293700 0.026960100 #> 35 35 0.05689450 -0.18707700 0.13855200 -0.038802000 #> 36 36 -0.04149100 0.01467420 0.24871300 0.235971000 #> 37 37 -0.28270600 0.18864700 -0.14675500 0.002239020 #> 38 38 -0.39544100 -0.17566300 0.03086270 0.160316000 #> 39 39 -0.44801000 -0.23339500 -0.05457800 0.034569300 #> 40 40 -0.40352400 0.71639900 0.03388700 -0.050975100 #> 41 41 -0.09660390 0.37159800 -0.14032900 -0.163309000 #> 42 42 0.40655200 -0.19898700 0.09422060 0.014364700 #> 43 43 0.06365490 -0.23971500 0.18403100 0.024279300 #> 44 44 0.73216500 0.15155300 0.08640920 -0.070061900 #> 45 45 0.69482300 -0.33599300 -0.45285800 0.327398000 #> 46 46 -0.15903400 -0.49138700 0.08631480 -0.326643000 #> 47 47 -0.32692500 0.52906500 0.15525900 -0.002167200 #> 48 48 0.34205600 0.43590800 0.10205300 0.117408000 #> 49 49 0.15624900 0.12570800 -0.18659000 0.162904000 #> 50 50 0.20167200 -0.27862400 -0.10363700 -0.611866000 #> 51 51 0.28569900 -0.05298130 -0.31277400 0.482237000 #> 52 52 -0.17925200 0.23186600 0.13349000 0.110341000 #> 53 53 -0.20669600 -0.28473000 0.14233500 0.082932900 #> 54 54 -0.14132400 0.37939300 -0.05261020 0.029393800 #> 55 55 -0.11181300 -0.32678600 0.16299000 -0.070609600 #> 56 56 -0.63672900 0.58485000 0.10498900 0.013498600 #> 57 57 -0.21507100 -0.22916600 -0.28756200 0.178900000 #> 58 58 0.35806700 -0.05416930 0.40838100 -0.276384000 #> 59 59 0.05910530 -0.44828200 -0.12018000 0.218146000 #> 60 60 0.10759500 -0.04209500 0.29418100 -0.106099000 #> 61 61 0.37837000 -0.07172710 -0.08466650 0.199045000 #> 62 62 -0.27696000 -0.14019400 -0.10502100 0.037360700 #> 63 63 -0.72832600 0.33906900 0.15471800 -0.157963000 #> 64 64 0.38560500 -0.12710600 0.12557100 -0.306528000 #> 65 65 0.16094300 -0.16399700 -0.15446100 0.044445100 #> 66 66 0.69667500 0.34464000 0.13533300 -0.455244000 #> 67 67 0.44275200 0.12776100 0.36124600 -0.412007000 #> 68 68 -0.19654600 0.11443100 0.10645000 -0.590975000 #> 69 69 -0.05818240 -0.08413010 -0.05650970 0.263846000 #> 70 70 0.14952100 0.39368100 -0.04981730 0.191504000 #> 71 71 -0.33740700 0.10570800 0.19619900 0.155928000 #> 72 72 -0.69872100 -0.51533700 0.04396320 0.000846648 #> 73 73 0.01076690 0.61540700 0.09002220 0.178556000 #> 74 74 0.20712900 -0.21042600 -0.05817590 0.137012000 #> 75 75 0.36452900 0.00945768 0.01538820 -0.102007000 #> 76 76 -0.06147530 -0.01864860 0.03956850 0.025404600 #> 77 77 0.14755500 -0.33821000 0.08060850 -0.104637000 #> 78 78 0.05043080 -0.14039200 -0.06552990 0.037271100 #> 79 79 -0.13078600 -0.28282800 0.17856900 -0.255775000 #> 80 80 -0.04714240 0.13484500 0.18002800 0.108969000 #> 81 81 0.03155160 -0.21060600 0.14035000 0.089137500 #> 82 82 0.37108300 -0.31208900 -0.23774900 0.026305200 #> 83 83 0.25148300 0.61218800 0.10758100 -0.176849000 #> 84 84 -0.18963100 0.04943880 -0.04214050 0.102070000 #> 85 85 0.33298700 0.27384800 0.16310000 0.033666000 #> 86 86 -0.23812200 -0.16038400 -0.08634300 -0.058731500 #> 87 87 0.38391600 0.04119620 -0.27643800 0.147468000 #> 88 88 -0.10298800 0.19976700 -0.15661500 -0.200062000 #> 89 89 -0.15166600 0.41495400 0.09549760 -0.065032300 #> 90 90 0.01407440 0.29514700 0.19409100 0.135821000 #> 91 91 -0.41928800 -0.60078300 -0.32863400 0.113174000 #> 92 92 -0.06073560 -0.19536500 0.16977300 -0.191269000 #> 93 93 -0.08957630 0.22526300 0.09766250 0.051171900 #> 94 94 -0.59527900 0.44926000 0.09443550 -0.091018700 #> 95 95 -0.52511800 0.04418750 -0.49548800 -0.187676000 #> 96 96 0.00218837 -0.08893150 0.05216140 -0.087904800 #> 97 97 -0.01221490 -0.62926800 -0.21896700 0.167880000 #> 98 98 -0.06611430 -0.48380600 0.25682800 0.089878300 #> 99 99 0.28847000 -0.12401300 0.31547400 -0.042283500 #> 100 100 0.16767600 -0.18271000 0.12634200 -0.288271000 #> 101 101 0.13754700 -0.01918670 0.28368400 0.137620000 #> 102 102 0.27452300 0.47222900 0.07034760 0.106941000 #> 103 103 -0.11568100 0.11760300 0.18951200 -0.043268100 #> 104 104 0.06801260 0.05801770 -0.04669300 -0.144975000 #> 105 105 -0.16200900 0.16523000 0.48384200 0.205917000 #> 106 106 -0.10389900 0.39249200 -0.01162800 0.112158000 #> 107 107 -0.46541000 -0.16248700 -0.22631000 0.026516500 #> 108 108 -0.56156500 -0.20425100 0.08323350 -0.067884700 #> 109 109 -0.02578220 0.29599700 -0.03974570 0.154768000 #> 110 110 0.05554480 -0.76315700 -0.49552200 0.011846900 #> 111 111 -0.50922900 0.07079820 -0.10147900 -0.116094000 #> 112 112 -0.19079300 0.30565000 -0.02401360 -0.072402000 #> 113 113 -0.03288730 -0.26397800 0.41920200 -0.419513000 #> 114 114 0.17266700 -0.21803900 -0.23855700 -0.024368500 #> 115 115 0.07875010 0.12835600 0.11664400 -0.218375000 #> 116 116 -0.32527700 0.16564300 -0.00834690 0.059186700 #> 117 117 -0.05887220 -0.37614800 0.09676570 -0.281402000 #> 118 118 -0.13482900 0.25191100 -0.22708900 -0.139859000 #> 119 119 0.10252400 -0.40742900 -0.28432200 0.146728000 #> 120 120 0.55679800 -0.17809900 -0.18922100 -0.178665000 #> #> $uses #> [1] \"xml\" \"ext\" \"phi\" \"lst\" #> #> $thetaSource #> [1] \"xml\" #> #> $omegaSource #> [1] \"xml\" #> #> $covSource #> [1] \"xml\" #> #> $objfSource #> [1] \"xml\" #> #> $sigma #> eps1 #> eps1 1 #> #> $sigmaSource #> [1] \"ext\" #>"},{"path":"/reference/nmlst.html","id":null,"dir":"Reference","previous_headings":"","what":"Reads the NONMEM .lst file for final parameter information — nmlst","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"Reads NONMEM .lst file final parameter information","code":""},{"path":"/reference/nmlst.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"","code":"nmlst(file, strictLst = FALSE)"},{"path":"/reference/nmlst.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"file File list located strictLst list parsing needs correct successful load (default FALSE).","code":""},{"path":"/reference/nmlst.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"return list $theta, $eta $eps information control stream","code":""},{"path":"/reference/nmlst.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"Matthew L. Fidler","code":""},{"path":"/reference/nmlst.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reads the NONMEM .lst file for final parameter information — nmlst","text":"","code":"nmlst(system.file(\"mods/DDMODEL00000322/HCQ1CMT.lst\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 15.700 861.000 9.300 0.746 1.380 #> #> $omega #> eta1 eta2 #> eta1 0.149 0.000 #> eta2 0.000 0.272 #> #> $sigma #> eps1 #> eps1 0.0286 #> #> $cov #> NULL #> #> $objf #> [1] 865.901 #> #> $nobs #> [1] 76 #> #> $nsub #> [1] 48 #> #> $nmtran #> [1] \"WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n(WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\" #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\nNO. OF FUNCTION EVALUATIONS USED: 120\\nNO. OF SIG. DIGITS IN FINAL EST.: 3.1\" #> #> $nonmem #> [1] \"7.3.0\" #> #> $time #> [1] 68.17 #> #> $tere #> [1] \"Elapsed estimation time in seconds: 26.44\\n0R MATRIX ALGORITHMICALLY SINGULAR\\nAND ALGORITHMICALLY NON-POSITIVE-SEMIDEFINITE\\n0R MATRIX IS OUTPUT\\n0COVARIANCE STEP ABORTED\\nElapsed covariance time in seconds: 41.73\" #> #> $control #> [1] \";; Description:\" #> [2] \";; Author: user\" #> [3] \"$PROBLEM HCQ 1CMT ORAL PK MODEL (BASED ON CARMICHAEL ET AL (2003))\" #> [4] \"; ------------dataset------------\" #> [5] \"$INPUT ID SEX WT AGE TIME AMT ADDL II CMT DV MDV EVID\" #> [6] \"$DATA HCQdata5.csv IGNORE=@\" #> [7] \"\" #> [8] \"; ------------model------------\" #> [9] \"$SUBROUTINE ADVAN2 TRANS2\" #> [10] \"$PK\" #> [11] \"\" #> [12] \"TVCL=THETA(1)*((WT/80)**THETA(5));*((AGE/57)**THETA(5));\" #> [13] \"TVV=THETA(2)\" #> [14] \"TVKA=THETA(3)\" #> [15] \"TVF1=THETA(4)\" #> [16] \"; TVALAG1=THETA(4)\" #> [17] \"\" #> [18] \"\" #> [19] \"CL=TVCL*EXP(ETA(1))\" #> [20] \"V=TVV*EXP(ETA(2))\" #> [21] \"KA=TVKA;*EXP(ETA(3))\" #> [22] \"F1=TVF1;*EXP(ETA(4))\" #> [23] \"; ALAG1=TVALAG1;*EXP(ETA(3))\" #> [24] \"\" #> [25] \"\" #> [26] \"; scaling factor\" #> [27] \"KE=CL/V\" #> [28] \"S2=V/1000 ; dose [mg] and conc. [ng/mL]\" #> [29] \"\" #> [30] \"\" #> [31] \"$ERROR\" #> [32] \"Y=F*(1+EPS(1));+EPS(2)\" #> [33] \"W=F\" #> [34] \"\" #> [35] \"IPRED=F ; prediction individuelle\" #> [36] \"IRES=DV-IPRED ; (individual-specific residual)\" #> [37] \"IWRES=IRES/W ; (individual-specific weighted residual)\" #> [38] \"\" #> [39] \"\" #> [40] \"\" #> [41] \"$THETA (0,14.9207) ; CL\" #> [42] \"$THETA (0,861.385) ; V\" #> [43] \"$THETA (0,9.3023,10) ; KA\" #> [44] \"$THETA (0,0.746) FIX ; F1\" #> [45] \";$THETA (0,0.00445) ; ALAG1\" #> [46] \"$THETA 1.20407 ; WTonCL\" #> [47] \"$OMEGA 0.163126 ; IIVCL\" #> [48] \"0.27101 ; IIVV\" #> [49] \"; 0.94 ; IVVKA\" #> [50] \"; 0.004 FIXED ; IIVF\" #> [51] \"; 0.02 ; IIVALAG\" #> [52] \"$SIGMA 0.0290039 ; epsPROP1\" #> [53] \";0.000365773 ; epsADD1\" #> [54] \"$ESTIMATION METHOD=1 INTER MAXEVAL=9999 PRINT=5 SIG=3 POSTHOC\" #> [55] \"; standard error of estimates :\" #> [56] \"$COVARIANCE\" #> [57] \"$TABLE ID SEX WT AGE TIME DV PRED CPRED IPRED EVID RES WRES IRES\" #> [58] \"IWRES CWRES NPDE ESAMPLE=300 NOPRINT FILE=pred\" #> [59] \"; population and individual predictions and residuals\" #> [60] \"$TABLE ID SEX WT AGE CL V KA ETA(1) ETA(2) NOPRINT NOAPPEND\" #> [61] \"FIRSTONLY FILE=param\" #> [62] \"; individual PK parameters (bayesiens,posthoc)\" #> [63] \"\" #> [64] \"\" #> nmlst(system.file(\"mods/DDMODEL00000302/run1.lst\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> -4.5300 -9.6900 -0.3270 0.0145 0.4340 #> #> $omega #> eta1 #> eta1 0 #> #> $sigma #> NULL #> #> $cov #> theta1 theta2 theta3 theta4 theta5 eta1 #> theta1 0.199000 -0.219000 3.45e-02 -2.73e-04 -2.53e-03 0 #> theta2 -0.219000 0.262000 -3.84e-02 1.42e-04 -1.24e-02 0 #> theta3 0.034500 -0.038400 8.26e-03 -3.99e-05 9.20e-04 0 #> theta4 -0.000273 0.000142 -3.99e-05 1.76e-05 2.31e-05 0 #> theta5 -0.002530 -0.012400 9.20e-04 2.31e-05 2.36e-02 0 #> eta1 0.000000 0.000000 0.00e+00 0.00e+00 0.00e+00 0 #> #> $objf #> [1] 2515.122 #> #> $nobs #> [1] 693 #> #> $nsub #> [1] 693 #> #> $nmtran #> [1] \"WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n(WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\\n\\n(WARNING 3) THERE MAY BE AN ERROR IN THE ABBREVIATED CODE. THE FOLLOWING\\nONE OR MORE RANDOM VARIABLES ARE DEFINED WITH \\\"IF\\\" STATEMENTS THAT DO NOT\\nPROVIDE DEFINITIONS FOR BOTH THE \\\"THEN\\\" AND \\\"ELSE\\\" CASES. IF ALL\\nCONDITIONS FAIL, THE VALUES OF THESE VARIABLES WILL BE ZERO.\\n\\nY\\n\\n\\n(WARNING 90) WITH \\\"NUMERICAL\\\", \\\"SLOW\\\" IS ALSO REQUIRED ON $ESTIM RECORD.\\nNM-TRAN HAS SUPPLIED THIS OPTION.\\n\\n(WARNING 97) A RANDOM QUANTITY IS RAISED TO A POWER. IF THE RESULT AFFECTS\\nTHE VALUE OF THE OBJECTIVE FUNCTION, THE USER SHOULD ENSURE THAT THE\\nRANDOM QUANTITY IS NEVER 0 WHEN THE POWER IS < 1.\\n\\n(WARNING 48) DES-DEFINED ITEMS ARE COMPUTED ONLY WHEN EVENT TIME\\nINCREASES. E.G., DISPLAYED VALUES ASSOCIATED WITH THE FIRST EVENT RECORD\\nOF AN INDIVIDUAL RECORD ARE COMPUTED WITH (THE LAST ADVANCE TO) AN EVENT\\nTIME OF THE PRIOR INDIVIDUAL RECORD.\\n\\n(WARNING 27) THE ABBREVIATED CODE CONTAINS A SIMULATION BLOCK BUT THERE IS\\nNO $SIMULATION RECORD.\" #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\nHOWEVER, PROBLEMS OCCURRED WITH THE MINIMIZATION.\\nREGARD THE RESULTS OF THE ESTIMATION STEP CAREFULLY, AND ACCEPT THEM ONLY\\nAFTER CHECKING THAT THE COVARIANCE STEP PRODUCES REASONABLE OUTPUT.\\nNO. OF FUNCTION EVALUATIONS USED: 74\\nNO. OF SIG. DIGITS IN FINAL EST.: 3.4\" #> #> $nonmem #> [1] \"7.3.0\" #> #> $time #> [1] 4.43 #> #> $tere #> [1] \"Elapsed estimation time in seconds: 3.72\\nElapsed covariance time in seconds: 0.71\" #> #> $control #> [1] \";; 1. Based on: run200\" #> [2] \";; 2. Description: Final model, posthoc PK based on published unified model. Prityfied code\" #> [3] \";; x1. Author: Matts\" #> [4] \"$SIZES NO=3000 LIM6=1000\" #> [5] \"$PROBLEM PN survival model With individual PK\" #> [6] \"; Implemented flip comments using PsN (e.g. sim_start and sim_end to define code to be used for VPC simulations).\" #> [7] \"\" #> [8] \";Sim_start\" #> [9] \"$INPUT MID TIME DUR RATE AMT EVID CMT DV CENS CENSD STUD ADC NDOS\" #> [10] \"NAMT_MAX PL_DOSE AV_DOSE CUMDOSE DFREQ ;18\" #> [11] \"RITUX SEXX AGE BW BHT RACE BMI BSA CTYPE ALB BUN BSLD=DROP\" #> [12] \"PDUR=DROP PCPLAT PCTAX PCVINCA PCPROT ;34\" #> [13] \"PPN DIAB ECOG1 DSBUILD=DROP PK ID ET1 ET2 ET3 ET4 ET5 ET6 ;48\" #> [14] \"$DATA nonmem_gr2_Nov13_2018.csv IGNORE=@ IGNORE(TIME.LT.0)\" #> [15] \"IGNORE(STUD.EQ.29006) IGNORE(ID.EQ.639)\" #> [16] \"; 13 patients\" #> [17] \"; Unrealistic PK\" #> [18] \"\" #> [19] \";$INPUT MID TIME DUR RATE AMT EVID CMT DV CENS CENSD STUD ADC NDOS NAMT_MAX PL_DOSE AV_DOSE CUMDOSE DFREQ\" #> [20] \"\" #> [21] \"; RITUX SEXX AGE BW BHT RACE BMI BSA CTYPE ALB BUN BSLD=DROP PDUR=DROP PCPLAT PCTAX PCVINCA PCPROT\" #> [22] \"\" #> [23] \"; PPN DIAB ECOG1 DSBUILD=DROP ET1 ET2 ET3 ET4 ET5 ET6 PK ID\" #> [24] \"\" #> [25] \";\" #> [26] \"\" #> [27] \"; $DATA ../data/nonmem_gr2_Nov13_2018_sim.csv IGNORE=@\" #> [28] \"\" #> [29] \"; IGNORE(TIME.LT.0)\" #> [30] \"\" #> [31] \"; IGNORE(STUD.EQ.29006) ; 13 patients\" #> [32] \"\" #> [33] \"; IGNORE(ID.EQ.639) ; Unrealistic PK\" #> [34] \"\" #> [35] \";Sim_end\" #> [36] \"$SUBROUTINE ADVAN13 TRANS1 TOL=6\" #> [37] \"$MODEL COMP=(central) COMP=(peri) COMP=(effcpt) COMP=(cumhaz)\" #> [38] \"COMP=(trcpt) COMP(AUC)\" #> [39] \"$PK\" #> [40] \";for simulation\" #> [41] \"RTTE=0\" #> [42] \";end for simulation\" #> [43] \"\" #> [44] \"; Covariate imputations etc\" #> [45] \"ageRef = 65\" #> [46] \"albref=4.0\" #> [47] \"bunref=16\" #> [48] \"bodyWeightRef=85 ; Male\" #> [49] \"\" #> [50] \"IF(SEXX.EQ.1) SEX=1 ; Male\" #> [51] \"IF(SEXX.EQ.2) THEN\" #> [52] \"SEX=0 ; Female\" #> [53] \"bodyWeightRef=68\" #> [54] \"ENDIF\" #> [55] \"\" #> [56] \"BWT=BW\" #> [57] \"IF(BW.EQ.-99) BWT=bodyWeightRef\" #> [58] \"\" #> [59] \"; PK parameters\" #> [60] \"\" #> [61] \"THETA1=0.312;1 CL\" #> [62] \"THETA2=1.21;2 V1\" #> [63] \"THETA3= 0.957;3 V2\" #> [64] \"THETA4= -1.02;4 Q\" #> [65] \"THETA5= 1.48;5 KDES\" #> [66] \"THETA6= 1.02;6 CLT\" #> [67] \"THETA7= 0.476;7 WT to CLinf\" #> [68] \"THETA8= 0.527;8 WT to V1\" #> [69] \"THETA9= 0.484;9 WT to 2\" #> [70] \"THETA10= 0.303;10 WT to Q\" #> [71] \"THETA11= 0.149;11 SEX to V1\" #> [72] \"THETA12= 0.223;12 SEX to V\" #> [73] \"THETA13= -0.212;13 power NDOS to CL\" #> [74] \"\" #> [75] \"LWT75 = LOG(BWT/75)\" #> [76] \"MUX1 = THETA1+THETA7*LWT75 +THETA13*LOG(NDOS/2.4)\" #> [77] \"MUX2 = THETA2+THETA8*LWT75+THETA11*SEX\" #> [78] \"MUX3 = THETA3+THETA9*LWT75+THETA12*SEX\" #> [79] \"MUX4 = THETA4+THETA10*LWT75\" #> [80] \"MUX5 = THETA5\" #> [81] \"MUX6 = THETA6\" #> [82] \"\" #> [83] \"CLINF = EXP(MUX1+ET1)\" #> [84] \"V1 = EXP(MUX2+ET2)\" #> [85] \"V2 = EXP(MUX3+ET3)\" #> [86] \"Q = EXP(MUX4+ET4)\" #> [87] \"KDES = EXP(MUX5+ET5)\" #> [88] \"CLT = EXP(MUX6+ET6)\" #> [89] \"\" #> [90] \"S1 = V1/1000\" #> [91] \"\" #> [92] \";Reparameterization\" #> [93] \"K12 = Q/V1\" #> [94] \"K21 = Q/V2\" #> [95] \"\" #> [96] \"; PD parameters\" #> [97] \"LOGKTR = THETA(1)+ETA(1) ; Eta1 Fixed to zero\" #> [98] \"KTR = EXP(LOGKTR) ; first order transit rate to and from transit and effect compartment\" #> [99] \"ALPHA = EXP(THETA(2)) ; slope of drug effect\" #> [100] \"BETA = EXP(THETA(3)) ; weibul function parameter\" #> [101] \"\" #> [102] \"covar = THETA(4) * (BWT - 75) + THETA(5) * PPN ; covariate effects on Hazard\" #> [103] \"\" #> [104] \"$DES\" #> [105] \"; PK model\" #> [106] \"CL = CLT * EXP(-KDES * T) + CLINF\" #> [107] \"K10 = CL / V1\" #> [108] \"\" #> [109] \"DADT(1) = K21 * A(2) - K12 * A(1) - K10 * A(1)\" #> [110] \"DADT(2) = -K21 * A(2) + K12 * A(1)\" #> [111] \"CPT = A(1) / S1\" #> [112] \"\" #> [113] \"; PD model\" #> [114] \"DADT(5) = KTR * CPT - KTR * A(5) ; Transit compartment\" #> [115] \"DADT(3) = KTR * A(5) - KTR * A(3) ; Effect compartment\" #> [116] \"A5=A(5)\" #> [117] \"A3=A(3)\" #> [118] \"\" #> [119] \"EDRUGT = ALPHA * A(3)\" #> [120] \"HAZT = 0\" #> [121] \"IF(T > 0) HAZT = BETA * (EDRUGT**BETA) * (T**(BETA - 1)) * EXP(covar); WEIBULL (not defined at time zero)\" #> [122] \"DADT(4) = HAZT ; Cumulative Hazard\" #> [123] \"DADT(6) = CPT ; Cumulative AUC\" #> [124] \"AUCT=A(6) ; AUC up to time T\" #> [125] \"CAV=AUCT/T ; Average concentration up to time T\" #> [126] \"\" #> [127] \"$ERROR\" #> [128] \"CP = A(1) / S1\" #> [129] \"EDRUG = ALPHA * A(3) ; Drug effect\" #> [130] \"HAZ = 0 ; redefine Hazard in $Error. Needed to compute pdf\" #> [131] \"IF(TIME > 0) HAZ = BETA * (EDRUG**BETA) * (TIME**(BETA - 1)) * EXP(covar); WEIBULL\" #> [132] \"SURV = EXP(-A(4)) ; Survival probability\" #> [133] \"PDF=SURV*HAZ\" #> [134] \"\" #> [135] \";Estimation (defined by sim start and end)\" #> [136] \";Sim_start\" #> [137] \"IF(DV.EQ.0) THEN\" #> [138] \"Y=SURV\" #> [139] \"CHLAST=A(4)\" #> [140] \"ELSE\" #> [141] \"CHLAST=CHLAST ; Keep nmtran happy\" #> [142] \"ENDIF\" #> [143] \"\" #> [144] \"IF(DV.EQ.1) THEN\" #> [145] \"Y=PDF ;pdf\" #> [146] \"ENDIF\" #> [147] \";Sim_end\" #> [148] \"\" #> [149] \"\" #> [150] \";Simulation\" #> [151] \"IF(ICALL.EQ.4) THEN\" #> [152] \"IF (NEWIND.NE.2) CALL RANDOM (2,R) ; random uniform distribution\" #> [153] \"DV=0 ; NO EVENT OCCURS\" #> [154] \"RTTE=0 ; NO EVENT OCCURS\" #> [155] \"IF(CENS.EQ.1) RTTE=1 ; RTTE set to 1 for censoring and event rows\" #> [156] \"IF(R.GT.SURV) THEN ; Event when R > SURV\" #> [157] \"DV=1 ; DV set to 1 at time of event\" #> [158] \"RTTE=1 ; RTTE set to 1 for censoring and event rows\" #> [159] \"ENDIF\" #> [160] \"Y=DV\" #> [161] \"ENDIF\" #> [162] \"\" #> [163] \"\" #> [164] \"$THETA -4.53 ; 1 LOGKE0\" #> [165] \"-9.69 ; 2 LOGALPHA\" #> [166] \"-0.327 ; 3 LOGBETA\" #> [167] \"0.0145 ; 4 BWT\" #> [168] \"0.434 ; 5 PPN 1/0\" #> [169] \"$OMEGA 0 FIX\" #> [170] \";Sim_start\" #> [171] \";$SIGMA\" #> [172] \";0 FIXED\" #> [173] \"$ESTIMATION MAXEVAL=9999 PRINT=1 LIKE METHOD=1 LAPLACE NUMERICAL\" #> [174] \"NOABORT SIG=3\" #> [175] \";$SIMULATION(123456) (23000 UNIFORM) ONLYSIM ; Uncomment this for VPC generation\" #> [176] \"\" #> [177] \";Sim_end\" #> [178] \"$COVARIANCE MATRIX=S UNCONDITIONAL\" #> [179] \"$TABLE TIME ID MID EVID AV_DOSE CAV AUCT CP A5 A3 HAZ SURV\" #> [180] \"FORMAT=s1PE15.9 ONEHEADER NOPRINT FILE=HZtab202\" #> [181] \"\" #> [182] \"\" #> nmlst(system.file(\"mods/DDMODEL00000301/run3.lst\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 theta6 theta7 theta8 theta9 theta10 #> 7.940 0.722 13.600 0.949 6.730 4.080 8.220 10.100 1.040 249.000 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.126 0.00 0.00 0.000 #> eta2 0.000 0.14 0.00 0.000 #> eta3 0.000 0.00 1.76 0.000 #> eta4 0.000 0.00 0.00 0.187 #> #> $sigma #> eps1 eps2 eps3 #> eps1 0.024 0.000 0.000 #> eps2 0.000 0.208 0.000 #> eps3 0.000 0.000 0.404 #> #> $cov #> NULL #> #> $objf #> [1] 1488.719 #> #> $nobs #> [1] 434 #> #> $nsub #> [1] 60 #> #> $nmtran #> [1] \" WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n \\n (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\" #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 1024\\n NO. OF SIG. DIGITS IN FINAL EST.: 3.6\" #> #> $nonmem #> [1] \"7.3.0\" #> #> $time #> [1] 41.6 #> #> $tere #> [1] \" Elapsed estimation time in seconds: 14.83\\n Elapsed covariance time in seconds: 26.77\" #> #> $control #> [1] \";; 1. based on run1.mod \" #> [2] \";; 2. Description: covariate model + WT on V2 + CPRED in pred3 ($TABLE)\" #> [3] \";; x1. Author: user\" #> [4] \"$PROBLEM MEROPENEM IV INFUSION 3COMP DESCRIPTION PLASMA AND ELF\" #> [5] \"; CONCENTRATIONS FINAL COV MODEL\" #> [6] \"\" #> [7] \"; ------------dataset------------\" #> [8] \"$INPUT ID AGE WT GFRC GFR DV TIME MDV CMT AMT RATE SS II EVID GRP\" #> [9] \"; WT [kg], GFRC [0: poor hepatic function, 1: good hepatic function], \" #> [10] \"; GFR [mL/min], DV [mg/L], TIME [h], CMT [1: plasma conc., 2: ELF conc],\" #> [11] \"; AMT (DOSE) [g], RATE (K) [g/h], II (T) [h], GRP=AMT/RATE (delta) [h]\" #> [12] \"\" #> [13] \"; CL [L/h], V1 V2 V3 [L], Q2 Q3 [L/h], S1 S2 [L]\" #> [14] \"$DATA promessePK1.csv IGNORE=@\" #> [15] \"\" #> [16] \"; ------------model------------\" #> [17] \"$SUBROUTINE ADVAN11 TRANS4\" #> [18] \"$PK \" #> [19] \" ; parmacokinetic parameters\" #> [20] \"\\tTVCL=THETA(1)*((GFR/65)**THETA(2)) ; CENTRAL\" #> [21] \"\\tTVV1=THETA(3)*((WT/75)**THETA(4))\" #> [22] \" TVQ2=THETA(5) ; ELF\" #> [23] \"\\tTVV2=THETA(6)*((WT/75)**THETA(9))\" #> [24] \"\\tTVQ3=THETA(7) ; PERIPHERAL\" #> [25] \"\\tTVV3=THETA(8)\" #> [26] \"\" #> [27] \"\\t; interindividual variance model\" #> [28] \"\\tCL=TVCL*EXP(ETA(1))\" #> [29] \"\\tV1=TVV1*EXP(ETA(2))\" #> [30] \"\\tQ2=TVQ2\" #> [31] \"\\tV2=TVV2*EXP(ETA(3))\" #> [32] \"\\tQ3=TVQ3*EXP(ETA(4))\" #> [33] \"\\tV3=TVV3 \" #> [34] \"\" #> [35] \"\\t; scaling factor\" #> [36] \"\\tS1=V1/1000 ; dose [g] and conc. [mg/L]\" #> [37] \"\\tS2=V2/THETA(10)\" #> [38] \"\" #> [39] \"\" #> [40] \"\" #> [41] \"\" #> [42] \"$ERROR \" #> [43] \"; calcultate de result (i.e. model prediction) \" #> [44] \"\\tH1=0\" #> [45] \"\\tH2=0\" #> [46] \"\\tIF(CMT.EQ.1) H1=1\" #> [47] \"\\tIF(CMT.EQ.2) H2=1\" #> [48] \"\\tY=H1*(F*(1+EPS(1))+EPS(2))+H2*(F*(1+EPS(3))) ; +EPS(4)\" #> [49] \"\\tW=F\" #> [50] \"\\t\" #> [51] \"\\tIPRED=F ; prediction individuelle \" #> [52] \"\\tIRES=DV-IPRED ; (individual-specific residual) \" #> [53] \"\\tIWRES=IRES/W ; (individual-specific weighted residual)\" #> [54] \"\\t\" #> [55] \"\" #> [56] \"\" #> [57] \"; Initial estimates\" #> [58] \"$THETA (0,9.81355436018442) ; CL\" #> [59] \"$THETA 0.653109400662184 ; GFRCL\" #> [60] \"$THETA (0,4.53480721643241) ; V1\" #> [61] \"$THETA 1.12475365584077 ; WTV1\" #> [62] \"$THETA (0,11.7186301905937) ; Q2; ELF\" #> [63] \"$THETA (0,9.69726252224871) ; V2\" #> [64] \"$THETA (0,8.41511798967717) ; Q3; PERIPHERAL\" #> [65] \"$THETA (0,10.8162112974179) ; V3\" #> [66] \"$THETA 0.805863122538834 ; WTV2\" #> [67] \"$THETA 231.229833848399 ; V2/S2\" #> [68] \"$OMEGA BLOCK(4)\" #> [69] \" 0.19808195049767 ; IIVCL\" #> [70] \" 0 0.195893036337555 ; IIVV1\" #> [71] \" 0 0 0.184676645216004 ; IIVV2\" #> [72] \" 0 0 0 0.181094660002612 ; IIVQ3\" #> [73] \"$SIGMA 0.0198701414556805 ; epsPROP1\" #> [74] \" 0.203004721167207 ; epsADD1\" #> [75] \" 0.501989282726501 ; epsPROP2\" #> [76] \"$ESTIMATION METHOD=1 INTER MAXEVAL=9999 SIGDIGITS=3 POSTHOC PRINT=5 ; PRINT=1 ; \" #> [77] \"\" #> [78] \"; precision des estimation? standard error of estimates & matrice de correlation\" #> [79] \"$COVARIANCE PRINT=E \" #> [80] \"\" #> [81] \"\" #> [82] \"$TABLE ID AGE WT GFRC GFR TIME MDV CMT RATE PRED CPRED RES WRES\" #> [83] \" IPRED IRES IWRES CWRES EVID NOPRINT FILE=pred3 ; population and individual predictions and residuals\" #> [84] \"$TABLE ID AGE WT GFRC GFR CL V1 Q2 V2 Q3 V3 ETA(1) ETA(2) ETA(3)\" #> [85] \" ETA(4) TVCL TVV1 TVQ2 TVV2 TVQ3 TVV3 NOPRINT NOAPPEND\" #> [86] \" FIRSTONLY FILE=param3 ; individual PK parameters (bayesiens,posthoc)\" #> [87] \"\" #> [88] \"\" #> nmlst(system.file(\"mods/cpt/runODE032.res\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 1.370 4.200 1.380 3.880 0.196 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.101 0.0000 0.000 0.000 #> eta2 0.000 0.0994 0.000 0.000 #> eta3 0.000 0.0000 0.101 0.000 #> eta4 0.000 0.0000 0.000 0.073 #> #> $sigma #> eps1 #> eps1 1 #> #> $cov #> theta1 theta2 theta3 theta4 theta5 eta1 omega1.2 #> theta1 8.88e-04 -1.06e-04 1.84e-04 -1.20e-04 5.28e-08 -4.71e-05 0 #> theta2 -1.06e-04 8.71e-04 -1.06e-04 -5.07e-05 -1.57e-05 4.70e-05 0 #> theta3 1.84e-04 -1.06e-04 2.99e-03 1.65e-04 5.99e-06 -3.64e-05 0 #> theta4 -1.20e-04 -5.07e-05 1.65e-04 1.21e-03 -2.54e-05 2.55e-05 0 #> theta5 5.28e-08 -1.57e-05 5.99e-06 -2.54e-05 9.94e-06 -8.17e-06 0 #> eta1 -4.71e-05 4.70e-05 -3.64e-05 2.55e-05 -8.17e-06 1.69e-04 0 #> omega1.2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega1.3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega1.4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> eta2 -7.37e-05 2.57e-05 -8.08e-05 1.37e-05 -4.37e-06 8.75e-06 0 #> omega2.3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega2.4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> eta3 6.63e-05 -8.19e-05 5.49e-04 1.68e-04 1.59e-06 3.49e-05 0 #> omega3.4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> eta4 -9.50e-06 1.10e-04 -3.07e-04 -9.13e-05 3.19e-06 1.37e-05 0 #> eps1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 #> omega1.3 omega1.4 eta2 omega2.3 omega2.4 eta3 omega3.4 #> theta1 0 0 -7.37e-05 0 0 6.63e-05 0 #> theta2 0 0 2.57e-05 0 0 -8.19e-05 0 #> theta3 0 0 -8.08e-05 0 0 5.49e-04 0 #> theta4 0 0 1.37e-05 0 0 1.68e-04 0 #> theta5 0 0 -4.37e-06 0 0 1.59e-06 0 #> eta1 0 0 8.75e-06 0 0 3.49e-05 0 #> omega1.2 0 0 0.00e+00 0 0 0.00e+00 0 #> omega1.3 0 0 0.00e+00 0 0 0.00e+00 0 #> omega1.4 0 0 0.00e+00 0 0 0.00e+00 0 #> eta2 0 0 1.51e-04 0 0 4.32e-07 0 #> omega2.3 0 0 0.00e+00 0 0 0.00e+00 0 #> omega2.4 0 0 0.00e+00 0 0 0.00e+00 0 #> eta3 0 0 4.32e-07 0 0 9.59e-04 0 #> omega3.4 0 0 0.00e+00 0 0 0.00e+00 0 #> eta4 0 0 -1.95e-05 0 0 -1.30e-04 0 #> eps1 0 0 0.00e+00 0 0 0.00e+00 0 #> eta4 eps1 #> theta1 -9.50e-06 0 #> theta2 1.10e-04 0 #> theta3 -3.07e-04 0 #> theta4 -9.13e-05 0 #> theta5 3.19e-06 0 #> eta1 1.37e-05 0 #> omega1.2 0.00e+00 0 #> omega1.3 0.00e+00 0 #> omega1.4 0.00e+00 0 #> eta2 -1.95e-05 0 #> omega2.3 0.00e+00 0 #> omega2.4 0.00e+00 0 #> eta3 -1.30e-04 0 #> omega3.4 0.00e+00 0 #> eta4 5.10e-04 0 #> eps1 0.00e+00 0 #> #> $objf #> [1] 20167.64 #> #> $nobs #> [1] 2280 #> #> $nsub #> [1] 120 #> #> $nmtran #> NULL #> #> $termInfo #> [1] \"0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 320\\n NO. OF SIG. DIGITS IN FINAL EST.: 2.5\" #> #> $nonmem #> [1] \"7.4.3\" #> #> $time #> [1] 100.76 #> #> $tere #> [1] \" Elapsed estimation time in seconds: 71.95\\n Elapsed covariance time in seconds: 28.38\\n Elapsed postprocess time in seconds: 0.43\" #> #> $control #> NULL #>"},{"path":"/reference/nmtab.html","id":null,"dir":"Reference","previous_headings":"","what":"Read nonmem table file — nmtab","title":"Read nonmem table file — nmtab","text":"Read nonmem table file","code":""},{"path":"/reference/nmtab.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read nonmem table file — nmtab","text":"","code":"nmtab(file, ...)"},{"path":"/reference/nmtab.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read nonmem table file — nmtab","text":"file file name read results ... parameters passed data.table::fread","code":""},{"path":"/reference/nmtab.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read nonmem table file — nmtab","text":"data frame read table","code":""},{"path":"/reference/nmtab.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Read nonmem table file — nmtab","text":"Philip Delff, Matthew L. Fidler","code":""},{"path":"/reference/nmtab.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read nonmem table file — nmtab","text":"","code":"nmtab(system.file(\"mods/cpt/runODE032.csv\", package=\"nonmem2rx\")) #> ID TIME LNDV MDV AMT EVID DOSE V1I CLI QI V2I CL #> 1 1 0.00 0.0000 1 120000 1 120000 101.50 3.57 6.99 59.19 3.4079 #> 2 1 0.25 6.9476 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 3 1 0.50 7.3957 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 4 1 0.75 6.7774 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 5 1 1.00 7.1286 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 6 1 1.50 7.1107 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 7 1 2.00 7.0376 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 8 1 2.50 6.8380 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 9 1 3.00 6.8474 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 10 1 4.00 6.5433 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 11 1 6.00 6.7541 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 12 1 8.00 6.6344 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 13 1 12.00 6.5386 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 14 1 16.00 6.2858 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 15 1 20.00 5.6579 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 16 1 24.00 5.8842 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 17 1 36.00 5.5941 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 18 1 48.00 5.2090 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 19 1 60.00 5.4190 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 20 1 71.99 5.1407 0 0 0 120000 101.50 3.57 6.99 59.19 3.4079 #> 21 2 0.00 0.0000 1 10000 1 10000 56.71 7.09 3.95 41.15 6.9448 #> 22 2 0.25 4.9934 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 23 2 0.50 5.3968 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 24 2 0.75 5.1326 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 25 2 1.00 4.6972 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 26 2 1.50 4.9281 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 27 2 2.00 4.8820 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 28 2 2.50 4.3337 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 29 2 3.00 4.1356 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 30 2 4.00 4.2869 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 31 2 6.00 4.1910 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 32 2 8.00 3.6676 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 33 2 12.00 3.4010 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 34 2 16.00 3.0565 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 35 2 20.00 2.8793 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 36 2 24.00 2.8001 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 37 2 36.00 2.4265 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 38 2 48.00 1.3469 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 39 2 60.00 0.9837 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 40 2 71.99 0.4864 0 0 0 10000 56.71 7.09 3.95 41.15 6.9448 #> 41 3 0.00 0.0000 1 120000 1 120000 64.14 5.99 1.98 46.45 6.3455 #> 42 3 0.25 7.8638 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 43 3 0.50 7.2579 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 44 3 0.75 7.0859 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 45 3 1.00 7.3051 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 46 3 1.50 7.3756 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 47 3 2.00 6.9851 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 48 3 2.50 7.3667 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 49 3 3.00 6.7243 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 50 3 4.00 7.1200 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 51 3 6.00 6.8140 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 52 3 8.00 6.2594 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 53 3 12.00 6.1897 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 54 3 16.00 5.8763 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 55 3 20.00 5.2523 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 56 3 24.00 5.2604 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 57 3 36.00 4.7663 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 58 3 48.00 3.8227 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 59 3 60.00 4.0046 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 60 3 71.99 3.0860 0 0 0 120000 64.14 5.99 1.98 46.45 6.3455 #> 61 4 0.00 0.0000 1 10000 1 10000 99.43 2.23 4.10 33.50 2.1694 #> 62 4 0.25 4.8497 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 63 4 0.50 4.4635 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 64 4 0.75 4.4608 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 65 4 1.00 4.4340 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 66 4 1.50 4.5846 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 67 4 2.00 4.2166 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 68 4 2.50 4.4541 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 69 4 3.00 4.2333 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 70 4 4.00 4.4218 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 71 4 6.00 4.2820 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 72 4 8.00 4.5829 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 73 4 12.00 3.6253 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 74 4 16.00 3.9968 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 75 4 20.00 3.8980 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 76 4 24.00 3.7141 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 77 4 36.00 3.8196 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 78 4 48.00 3.6313 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 79 4 60.00 3.3010 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 80 4 71.99 3.1479 0 0 0 10000 99.43 2.23 4.10 33.50 2.1694 #> 81 5 0.00 0.0000 1 30000 1 30000 86.80 2.65 4.61 82.10 2.8482 #> 82 5 0.25 5.5756 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 83 5 0.50 6.0193 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 84 5 0.75 5.6722 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 85 5 1.00 5.6860 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 86 5 1.50 5.7456 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 87 5 2.00 5.7279 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 88 5 2.50 5.7803 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 89 5 3.00 5.6303 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 90 5 4.00 5.6763 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 91 5 6.00 5.4383 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 92 5 8.00 5.2471 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 93 5 12.00 5.3085 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 94 5 16.00 4.8061 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 95 5 20.00 4.6669 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 96 5 24.00 4.4059 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 97 5 36.00 4.2791 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 98 5 48.00 4.3194 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 99 5 60.00 4.0334 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 100 5 71.99 4.0593 0 0 0 30000 86.80 2.65 4.61 82.10 2.8482 #> 101 6 0.00 0.0000 1 30000 1 30000 81.70 4.89 6.08 52.69 4.9685 #> 102 6 0.25 6.0141 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 103 6 0.50 5.7236 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 104 6 0.75 5.6736 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 105 6 1.00 5.8283 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 106 6 1.50 5.9462 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 107 6 2.00 5.8651 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 108 6 2.50 5.7491 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 109 6 3.00 5.6202 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 110 6 4.00 5.2078 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 111 6 6.00 5.6047 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 112 6 8.00 5.1806 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 113 6 12.00 4.7172 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 114 6 16.00 4.4701 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 115 6 20.00 4.5169 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 116 6 24.00 4.2736 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 117 6 36.00 3.9950 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 118 6 48.00 3.4056 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 119 6 60.00 3.0746 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 120 6 71.99 2.8175 0 0 0 30000 81.70 4.89 6.08 52.69 4.9685 #> 121 7 0.00 0.0000 1 60000 1 60000 72.09 6.88 3.45 40.29 7.2234 #> 122 7 0.25 6.8267 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 123 7 0.50 6.8342 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 124 7 0.75 6.7381 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 125 7 1.00 6.6243 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 126 7 1.50 6.4994 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 127 7 2.00 6.4780 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 128 7 2.50 6.0738 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 129 7 3.00 6.3963 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 130 7 4.00 5.9866 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 131 7 6.00 5.9275 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 132 7 8.00 5.6788 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 133 7 12.00 5.2015 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 134 7 16.00 4.7602 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 135 7 20.00 4.8800 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 136 7 24.00 4.6287 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 137 7 36.00 3.6986 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 138 7 48.00 3.1705 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 139 7 60.00 2.7309 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 140 7 71.99 2.3731 0 0 0 60000 72.09 6.88 3.45 40.29 7.2234 #> 141 8 0.00 0.0000 1 60000 1 60000 34.09 5.15 3.50 36.16 5.3826 #> 142 8 0.25 7.1024 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 143 8 0.50 7.1420 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 144 8 0.75 7.0289 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 145 8 1.00 7.5199 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 146 8 1.50 7.1340 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 147 8 2.00 6.8216 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 148 8 2.50 6.8317 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 149 8 3.00 6.5187 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 150 8 4.00 6.5826 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 151 8 6.00 6.2806 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 152 8 8.00 5.7072 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 153 8 12.00 5.5437 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 154 8 16.00 5.0414 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 155 8 20.00 5.0771 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 156 8 24.00 4.7295 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 157 8 36.00 3.9660 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 158 8 48.00 3.4001 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 159 8 60.00 2.5570 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 160 8 71.99 2.5974 0 0 0 60000 34.09 5.15 3.50 36.16 5.3826 #> 161 9 0.00 0.0000 1 10000 1 10000 61.59 5.02 7.68 87.44 5.2872 #> 162 9 0.25 5.0367 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 163 9 0.50 4.9310 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 164 9 0.75 5.0682 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 165 9 1.00 4.7352 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 166 9 1.50 4.5571 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 167 9 2.00 4.6917 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 168 9 2.50 4.4261 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 169 9 3.00 4.5436 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 170 9 4.00 4.6741 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 171 9 6.00 4.1345 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 172 9 8.00 3.6328 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 173 9 12.00 3.6460 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 174 9 16.00 3.6512 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 175 9 20.00 2.8978 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 176 9 24.00 2.8758 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 177 9 36.00 2.5922 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 178 9 48.00 2.4291 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 179 9 60.00 1.9376 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 180 9 71.99 1.5378 0 0 0 10000 61.59 5.02 7.68 87.44 5.2872 #> 181 10 0.00 0.0000 1 10000 1 10000 50.63 4.76 4.46 48.25 4.5371 #> 182 10 0.25 5.1004 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 183 10 0.50 5.0821 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 184 10 0.75 5.3185 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 185 10 1.00 4.7058 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 186 10 1.50 5.1565 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 187 10 2.00 5.0514 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 188 10 2.50 5.1421 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 189 10 3.00 4.8673 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 190 10 4.00 4.6682 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 191 10 6.00 4.7381 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 192 10 8.00 4.1684 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 193 10 12.00 3.5258 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 194 10 16.00 3.7202 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 195 10 20.00 3.7076 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 196 10 24.00 3.3004 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 197 10 36.00 2.4725 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 198 10 48.00 1.9024 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 199 10 60.00 1.6270 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 200 10 71.99 1.4732 0 0 0 10000 50.63 4.76 4.46 48.25 4.5371 #> 201 11 0.00 0.0000 1 30000 1 30000 51.15 2.55 3.64 94.20 3.0036 #> 202 11 0.25 6.3033 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 203 11 0.50 6.1572 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 204 11 0.75 6.3166 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 205 11 1.00 6.3299 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 206 11 1.50 5.8540 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 207 11 2.00 6.2730 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 208 11 2.50 6.3132 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 209 11 3.00 6.0281 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 210 11 4.00 5.7868 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 211 11 6.00 5.8980 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 212 11 8.00 5.5829 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 213 11 12.00 5.0346 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 214 11 16.00 4.7807 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 215 11 20.00 5.0527 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 216 11 24.00 4.3704 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 217 11 36.00 4.0733 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 218 11 48.00 4.0862 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 219 11 60.00 3.9761 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 220 11 71.99 3.5709 0 0 0 30000 51.15 2.55 3.64 94.20 3.0036 #> 221 12 0.00 0.0000 1 60000 1 60000 100.20 2.38 3.03 55.47 2.5710 #> 222 12 0.25 6.4785 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 223 12 0.50 6.3384 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 224 12 0.75 6.3908 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 225 12 1.00 6.4089 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 226 12 1.50 5.9862 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 227 12 2.00 6.0811 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 228 12 2.50 6.3060 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 229 12 3.00 6.1292 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 230 12 4.00 6.2549 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 231 12 6.00 5.9550 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 232 12 8.00 6.0164 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 233 12 12.00 5.8570 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 234 12 16.00 5.7665 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 235 12 20.00 5.5503 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 236 12 24.00 5.7534 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 237 12 36.00 5.2744 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 238 12 48.00 5.1692 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 239 12 60.00 4.6501 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 240 12 71.99 4.8855 0 0 0 60000 100.20 2.38 3.03 55.47 2.5710 #> 241 13 0.00 0.0000 1 30000 1 30000 132.40 4.62 5.86 69.77 4.2653 #> 242 13 0.25 5.0773 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 243 13 0.50 5.2947 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 244 13 0.75 5.6118 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 245 13 1.00 5.0436 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 246 13 1.50 5.3625 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 247 13 2.00 5.3036 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 248 13 2.50 5.1362 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 249 13 3.00 5.1550 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 250 13 4.00 4.9180 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 251 13 6.00 4.9776 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 252 13 8.00 5.1387 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 253 13 12.00 4.6667 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 254 13 16.00 4.8138 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 255 13 20.00 4.6362 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 256 13 24.00 4.4797 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 257 13 36.00 4.0563 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 258 13 48.00 3.3639 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 259 13 60.00 3.8376 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 260 13 71.99 3.4348 0 0 0 30000 132.40 4.62 5.86 69.77 4.2653 #> 261 14 0.00 0.0000 1 60000 1 60000 65.09 3.36 3.79 59.62 3.4694 #> 262 14 0.25 7.0566 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 263 14 0.50 6.7805 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 264 14 0.75 6.7784 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 265 14 1.00 6.8961 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 266 14 1.50 6.6444 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 267 14 2.00 6.6453 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 268 14 2.50 6.5601 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 269 14 3.00 6.8081 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 270 14 4.00 6.2636 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 271 14 6.00 6.1898 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 272 14 8.00 6.4488 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 273 14 12.00 5.8810 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 274 14 16.00 5.4317 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 275 14 20.00 5.1686 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 276 14 24.00 5.3704 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 277 14 36.00 5.0655 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 278 14 48.00 4.6464 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 279 14 60.00 4.3269 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 280 14 71.99 4.0154 0 0 0 60000 65.09 3.36 3.79 59.62 3.4694 #> 281 15 0.00 0.0000 1 120000 1 120000 69.23 5.27 6.22 52.79 5.7965 #> 282 15 0.25 7.2710 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 283 15 0.50 7.4747 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 284 15 0.75 7.3487 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 285 15 1.00 7.1496 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 286 15 1.50 6.8545 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 287 15 2.00 7.1130 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 288 15 2.50 7.2018 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 289 15 3.00 6.9304 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 290 15 4.00 6.6878 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 291 15 6.00 6.7175 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 292 15 8.00 6.5973 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 293 15 12.00 5.9599 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 294 15 16.00 5.9590 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 295 15 20.00 5.4704 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 296 15 24.00 5.6291 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 297 15 36.00 4.8745 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 298 15 48.00 4.5856 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 299 15 60.00 4.1763 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 300 15 71.99 3.8798 0 0 0 120000 69.23 5.27 6.22 52.79 5.7965 #> 301 16 0.00 0.0000 1 120000 1 120000 71.12 4.68 4.18 85.28 5.1588 #> 302 16 0.25 7.2521 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 303 16 0.50 7.3373 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 304 16 0.75 7.2248 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 305 16 1.00 7.2384 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 306 16 1.50 7.2828 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 307 16 2.00 6.9505 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 308 16 2.50 6.9466 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 309 16 3.00 7.0987 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 310 16 4.00 6.6295 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 311 16 6.00 6.7845 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 312 16 8.00 6.6392 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 313 16 12.00 6.3702 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 314 16 16.00 5.5340 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 315 16 20.00 5.3497 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 316 16 24.00 5.3668 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 317 16 36.00 4.9657 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 318 16 48.00 4.7732 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 319 16 60.00 4.8028 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 320 16 71.99 4.0540 0 0 0 120000 71.12 4.68 4.18 85.28 5.1588 #> 321 17 0.00 0.0000 1 30000 1 30000 45.81 4.90 2.64 56.10 5.0007 #> 322 17 0.25 6.5813 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 323 17 0.50 6.4934 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 324 17 0.75 6.4358 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 325 17 1.00 6.3452 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 326 17 1.50 5.8391 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 327 17 2.00 6.0720 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 328 17 2.50 5.8876 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 329 17 3.00 6.1928 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 330 17 4.00 5.5424 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 331 17 6.00 5.3531 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 332 17 8.00 5.2099 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 333 17 12.00 5.2264 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 334 17 16.00 4.3193 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 335 17 20.00 3.6861 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 336 17 24.00 3.4566 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 337 17 36.00 3.3542 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 338 17 48.00 3.2383 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 339 17 60.00 2.8254 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 340 17 71.99 2.5215 0 0 0 30000 45.81 4.90 2.64 56.10 5.0007 #> 341 18 0.00 0.0000 1 60000 1 60000 73.15 4.24 5.01 65.06 3.9261 #> 342 18 0.25 6.5006 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 343 18 0.50 6.6114 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 344 18 0.75 6.6065 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 345 18 1.00 6.4344 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 346 18 1.50 6.7557 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 347 18 2.00 6.2443 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 348 18 2.50 6.6308 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 349 18 3.00 6.3200 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 350 18 4.00 6.2916 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 351 18 6.00 6.1088 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 352 18 8.00 5.9206 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 353 18 12.00 5.6146 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 354 18 16.00 5.0709 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 355 18 20.00 5.4190 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 356 18 24.00 4.9657 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 357 18 36.00 4.9938 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 358 18 48.00 4.3035 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 359 18 60.00 4.3434 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 360 18 71.99 4.1000 0 0 0 60000 73.15 4.24 5.01 65.06 3.9261 #> 361 19 0.00 0.0000 1 30000 1 30000 33.88 4.46 4.15 54.69 4.5211 #> 362 19 0.25 6.8803 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 363 19 0.50 6.4658 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 364 19 0.75 6.3589 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 365 19 1.00 6.3769 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 366 19 1.50 6.5083 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 367 19 2.00 6.2020 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 368 19 2.50 5.8435 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 369 19 3.00 6.3113 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 370 19 4.00 5.7686 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 371 19 6.00 5.5602 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 372 19 8.00 4.9479 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 373 19 12.00 4.6895 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 374 19 16.00 4.4680 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 375 19 20.00 4.3470 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 376 19 24.00 4.1898 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 377 19 36.00 3.4336 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 378 19 48.00 3.2272 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 379 19 60.00 2.8220 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 380 19 71.99 2.9652 0 0 0 30000 33.88 4.46 4.15 54.69 4.5211 #> 381 20 0.00 0.0000 1 120000 1 120000 55.11 2.15 4.10 99.72 2.4653 #> 382 20 0.25 7.6675 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 383 20 0.50 7.6283 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 384 20 0.75 7.5580 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 385 20 1.00 7.6666 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 386 20 1.50 7.7052 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 387 20 2.00 7.4487 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 388 20 2.50 7.3724 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 389 20 3.00 7.4076 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 390 20 4.00 7.2091 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 391 20 6.00 7.1130 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 392 20 8.00 6.7095 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 393 20 12.00 6.2998 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 394 20 16.00 6.0921 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 395 20 20.00 6.1283 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 396 20 24.00 6.0338 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 397 20 36.00 5.5540 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 398 20 48.00 5.8444 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 399 20 60.00 5.4540 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 400 20 71.99 5.6380 0 0 0 120000 55.11 2.15 4.10 99.72 2.4653 #> 401 21 0.00 0.0000 1 10000 1 10000 85.77 5.62 3.70 46.54 5.2112 #> 402 21 0.25 4.7454 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 403 21 0.50 4.5345 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 404 21 0.75 4.9869 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 405 21 1.00 4.5907 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 406 21 1.50 4.6582 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 407 21 2.00 4.3188 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 408 21 2.50 4.3093 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 409 21 3.00 4.6646 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 410 21 4.00 4.3291 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 411 21 6.00 4.7011 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 412 21 8.00 3.8293 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 413 21 12.00 3.8261 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 414 21 16.00 3.7090 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 415 21 20.00 3.0953 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 416 21 24.00 3.1036 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 417 21 36.00 2.8589 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 418 21 48.00 1.8998 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 419 21 60.00 1.6159 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 420 21 71.99 1.6118 0 0 0 10000 85.77 5.62 3.70 46.54 5.2112 #> 421 22 0.00 0.0000 1 10000 1 10000 82.32 4.10 2.50 32.10 3.9274 #> 422 22 0.25 4.9659 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 423 22 0.50 4.7820 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 424 22 0.75 4.4453 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 425 22 1.00 5.0078 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 426 22 1.50 4.4442 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 427 22 2.00 4.5138 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 428 22 2.50 4.7066 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 429 22 3.00 4.8143 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 430 22 4.00 4.7646 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 431 22 6.00 4.4325 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 432 22 8.00 3.8532 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 433 22 12.00 3.9229 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 434 22 16.00 3.7311 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 435 22 20.00 3.9596 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 436 22 24.00 3.5981 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 437 22 36.00 3.0143 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 438 22 48.00 2.3676 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 439 22 60.00 2.3101 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 440 22 71.99 2.1421 0 0 0 10000 82.32 4.10 2.50 32.10 3.9274 #> 441 23 0.00 0.0000 1 60000 1 60000 59.65 5.80 3.69 29.13 6.0951 #> 442 23 0.25 6.9433 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 443 23 0.50 7.0623 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 444 23 0.75 6.7340 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 445 23 1.00 6.5078 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 446 23 1.50 6.7142 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 447 23 2.00 6.4597 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 448 23 2.50 6.3421 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 449 23 3.00 6.2965 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 450 23 4.00 6.3034 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 451 23 6.00 6.1572 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 452 23 8.00 5.9452 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 453 23 12.00 5.0963 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 454 23 16.00 5.3963 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 455 23 20.00 4.9552 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 456 23 24.00 4.8991 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 457 23 36.00 4.2246 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 458 23 48.00 3.2048 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 459 23 60.00 2.4155 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 460 23 71.99 2.4389 0 0 0 60000 59.65 5.80 3.69 29.13 6.0951 #> 461 24 0.00 0.0000 1 120000 1 120000 77.73 2.99 4.44 56.72 3.1382 #> 462 24 0.25 7.2208 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 463 24 0.50 7.6644 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 464 24 0.75 7.3433 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 465 24 1.00 7.2794 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 466 24 1.50 7.1142 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 467 24 2.00 6.9359 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 468 24 2.50 6.9787 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 469 24 3.00 6.5660 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 470 24 4.00 7.4146 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 471 24 6.00 7.0538 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 472 24 8.00 6.8090 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 473 24 12.00 6.4517 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 474 24 16.00 6.4578 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 475 24 20.00 5.8143 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 476 24 24.00 6.3840 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 477 24 36.00 5.6340 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 478 24 48.00 5.4081 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 479 24 60.00 5.2691 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 480 24 71.99 5.1053 0 0 0 120000 77.73 2.99 4.44 56.72 3.1382 #> 481 25 0.00 0.0000 1 120000 1 120000 70.60 5.41 2.80 36.73 5.4958 #> 482 25 0.25 7.4726 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 483 25 0.50 7.4901 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 484 25 0.75 7.3126 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 485 25 1.00 7.3200 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 486 25 1.50 7.4084 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 487 25 2.00 7.1693 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 488 25 2.50 6.9465 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 489 25 3.00 6.8833 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 490 25 4.00 6.8699 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 491 25 6.00 6.4366 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 492 25 8.00 6.8214 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 493 25 12.00 6.3517 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 494 25 16.00 6.2206 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 495 25 20.00 5.8991 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 496 25 24.00 5.3571 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 497 25 36.00 5.0675 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 498 25 48.00 4.6462 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 499 25 60.00 4.0263 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 500 25 71.99 3.4626 0 0 0 120000 70.60 5.41 2.80 36.73 5.4958 #> 501 26 0.00 0.0000 1 30000 1 30000 60.39 3.55 3.38 32.82 3.3820 #> 502 26 0.25 6.1301 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 503 26 0.50 6.5154 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 504 26 0.75 6.5752 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 505 26 1.00 5.9235 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 506 26 1.50 6.1725 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 507 26 2.00 5.9135 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 508 26 2.50 5.8187 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 509 26 3.00 5.7920 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 510 26 4.00 6.1592 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 511 26 6.00 5.5591 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 512 26 8.00 5.6354 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 513 26 12.00 5.0306 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 514 26 16.00 5.0001 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 515 26 20.00 4.8230 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 516 26 24.00 4.4902 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 517 26 36.00 4.4648 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 518 26 48.00 4.1184 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 519 26 60.00 3.3899 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 520 26 71.99 3.2431 0 0 0 30000 60.39 3.55 3.38 32.82 3.3820 #> 521 27 0.00 0.0000 1 30000 1 30000 67.83 3.28 3.27 47.22 2.9610 #> 522 27 0.25 5.9780 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 523 27 0.50 6.2990 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 524 27 0.75 5.9880 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 525 27 1.00 5.8185 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 526 27 1.50 5.8759 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 527 27 2.00 5.8989 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 528 27 2.50 6.2765 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 529 27 3.00 6.1690 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 530 27 4.00 5.6929 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 531 27 6.00 5.5882 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 532 27 8.00 5.4639 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 533 27 12.00 5.0597 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 534 27 16.00 5.3014 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 535 27 20.00 4.7382 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 536 27 24.00 4.8186 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 537 27 36.00 4.0731 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 538 27 48.00 4.5415 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 539 27 60.00 3.7717 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 540 27 71.99 3.4646 0 0 0 30000 67.83 3.28 3.27 47.22 2.9610 #> 541 28 0.00 0.0000 1 10000 1 10000 92.18 4.49 3.98 64.87 4.1281 #> 542 28 0.25 4.7086 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 543 28 0.50 4.8565 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 544 28 0.75 4.8982 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 545 28 1.00 4.6940 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 546 28 1.50 4.4585 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 547 28 2.00 4.8408 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 548 28 2.50 4.6474 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 549 28 3.00 4.6402 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 550 28 4.00 4.4304 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 551 28 6.00 4.0723 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 552 28 8.00 4.1654 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 553 28 12.00 3.7348 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 554 28 16.00 3.4491 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 555 28 20.00 3.6951 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 556 28 24.00 3.4041 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 557 28 36.00 2.7162 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 558 28 48.00 2.9125 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 559 28 60.00 2.2805 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 560 28 71.99 2.1544 0 0 0 10000 92.18 4.49 3.98 64.87 4.1281 #> 561 29 0.00 0.0000 1 120000 1 120000 43.08 4.30 2.96 38.36 4.4047 #> 562 29 0.25 7.8331 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 563 29 0.50 7.9506 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 564 29 0.75 7.8918 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 565 29 1.00 7.8587 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 566 29 1.50 7.5142 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 567 29 2.00 7.1144 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 568 29 2.50 7.8343 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 569 29 3.00 7.4541 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 570 29 4.00 7.2383 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 571 29 6.00 6.8365 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 572 29 8.00 6.7164 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 573 29 12.00 6.1785 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 574 29 16.00 6.1735 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 575 29 20.00 5.5850 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 576 29 24.00 5.5337 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 577 29 36.00 5.2305 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 578 29 48.00 4.7795 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 579 29 60.00 4.2957 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 580 29 71.99 4.1974 0 0 0 120000 43.08 4.30 2.96 38.36 4.4047 #> 581 30 0.00 0.0000 1 10000 1 10000 78.38 3.85 6.72 66.28 3.5578 #> 582 30 0.25 4.6156 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 583 30 0.50 4.5869 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 584 30 0.75 4.4850 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 585 30 1.00 4.7952 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 586 30 1.50 5.0335 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 587 30 2.00 4.6495 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 588 30 2.50 4.5787 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 589 30 3.00 4.3541 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 590 30 4.00 4.4129 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 591 30 6.00 4.0085 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 592 30 8.00 4.0216 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 593 30 12.00 3.5540 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 594 30 16.00 3.9105 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 595 30 20.00 3.8403 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 596 30 24.00 3.4785 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 597 30 36.00 3.0483 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 598 30 48.00 3.0675 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 599 30 60.00 2.9026 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 600 30 71.99 2.0393 0 0 0 10000 78.38 3.85 6.72 66.28 3.5578 #> 601 31 0.00 0.0000 1 60000 1 60000 52.36 5.38 2.75 48.20 5.1076 #> 602 31 0.25 7.0597 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 603 31 0.50 7.1730 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 604 31 0.75 7.3320 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 605 31 1.00 6.8316 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 606 31 1.50 6.5810 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 607 31 2.00 6.7866 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 608 31 2.50 6.5622 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 609 31 3.00 6.9812 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 610 31 4.00 6.2241 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 611 31 6.00 6.2689 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 612 31 8.00 5.9078 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 613 31 12.00 5.7987 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 614 31 16.00 5.2262 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 615 31 20.00 4.9723 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 616 31 24.00 4.6180 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 617 31 36.00 3.9604 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 618 31 48.00 3.5537 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 619 31 60.00 3.2546 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 620 31 71.99 3.0596 0 0 0 60000 52.36 5.38 2.75 48.20 5.1076 #> 621 32 0.00 0.0000 1 60000 1 60000 56.64 3.93 5.68 53.25 4.0269 #> 622 32 0.25 7.0114 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 623 32 0.50 6.9664 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 624 32 0.75 6.7043 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 625 32 1.00 6.8213 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 626 32 1.50 6.9444 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 627 32 2.00 6.6287 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 628 32 2.50 6.4455 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 629 32 3.00 6.6206 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 630 32 4.00 6.3181 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 631 32 6.00 6.1684 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 632 32 8.00 5.7279 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 633 32 12.00 5.9018 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 634 32 16.00 5.6330 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 635 32 20.00 5.2752 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 636 32 24.00 5.4816 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 637 32 36.00 4.4679 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 638 32 48.00 4.0964 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 639 32 60.00 3.8487 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 640 32 71.99 3.8745 0 0 0 60000 56.64 3.93 5.68 53.25 4.0269 #> 641 33 0.00 0.0000 1 30000 1 30000 43.59 2.94 5.29 39.75 2.8854 #> 642 33 0.25 6.5950 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 643 33 0.50 6.5897 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 644 33 0.75 6.6104 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 645 33 1.00 6.4869 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 646 33 1.50 6.6312 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 647 33 2.00 6.2811 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 648 33 2.50 6.1824 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 649 33 3.00 5.8880 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 650 33 4.00 6.0076 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 651 33 6.00 5.4391 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 652 33 8.00 5.6618 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 653 33 12.00 5.3339 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 654 33 16.00 5.2728 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 655 33 20.00 4.9183 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 656 33 24.00 4.6592 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 657 33 36.00 4.3572 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 658 33 48.00 4.3954 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 659 33 60.00 3.6765 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 660 33 71.99 3.4386 0 0 0 30000 43.59 2.94 5.29 39.75 2.8854 #> 661 34 0.00 0.0000 1 120000 1 120000 63.56 4.43 3.96 41.76 4.6186 #> 662 34 0.25 7.6044 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 663 34 0.50 7.6223 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 664 34 0.75 7.4341 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 665 34 1.00 7.2437 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 666 34 1.50 7.1908 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 667 34 2.00 7.0267 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 668 34 2.50 7.3891 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 669 34 3.00 7.1281 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 670 34 4.00 7.0433 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 671 34 6.00 6.9652 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 672 34 8.00 6.6870 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 673 34 12.00 6.2232 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 674 34 16.00 6.3545 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 675 34 20.00 5.9176 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 676 34 24.00 5.3039 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 677 34 36.00 5.2567 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 678 34 48.00 4.8332 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 679 34 60.00 4.5101 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 680 34 71.99 4.2201 0 0 0 120000 63.56 4.43 3.96 41.76 4.6186 #> 681 35 0.00 0.0000 1 120000 1 120000 57.82 3.91 4.13 34.72 4.1672 #> 682 35 0.25 7.8072 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 683 35 0.50 7.7153 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 684 35 0.75 7.6465 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 685 35 1.00 7.6008 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 686 35 1.50 7.1958 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 687 35 2.00 7.4606 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 688 35 2.50 6.9925 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 689 35 3.00 6.9768 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 690 35 4.00 7.3763 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 691 35 6.00 7.0062 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 692 35 8.00 6.4081 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 693 35 12.00 6.5508 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 694 35 16.00 5.9589 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 695 35 20.00 5.9062 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 696 35 24.00 5.9931 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 697 35 36.00 5.5638 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 698 35 48.00 5.1014 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 699 35 60.00 4.4688 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 700 35 71.99 4.2778 0 0 0 120000 57.82 3.91 4.13 34.72 4.1672 #> 701 36 0.00 0.0000 1 60000 1 60000 71.30 3.45 3.78 75.03 3.7767 #> 702 36 0.25 7.0272 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 703 36 0.50 6.4889 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 704 36 0.75 6.6961 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 705 36 1.00 6.6150 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 706 36 1.50 6.5604 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 707 36 2.00 6.3693 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 708 36 2.50 6.4703 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 709 36 3.00 6.6260 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 710 36 4.00 6.5618 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 711 36 6.00 5.8810 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 712 36 8.00 5.7570 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 713 36 12.00 5.6616 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 714 36 16.00 5.1983 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 715 36 20.00 4.9585 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 716 36 24.00 5.2480 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 717 36 36.00 5.1878 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 718 36 48.00 4.6152 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 719 36 60.00 3.9521 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 720 36 71.99 4.1598 0 0 0 60000 71.30 3.45 3.78 75.03 3.7767 #> 721 37 0.00 0.0000 1 30000 1 30000 96.04 3.02 3.26 44.53 2.9672 #> 722 37 0.25 5.8235 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 723 37 0.50 5.3459 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 724 37 0.75 6.1586 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 725 37 1.00 5.5200 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 726 37 1.50 5.6285 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 727 37 2.00 5.6620 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 728 37 2.50 5.8429 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 729 37 3.00 5.4116 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 730 37 4.00 5.9159 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 731 37 6.00 5.7577 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 732 37 8.00 5.4736 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 733 37 12.00 5.2424 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 734 37 16.00 4.9603 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 735 37 20.00 4.8790 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 736 37 24.00 4.6298 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 737 37 36.00 4.5311 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 738 37 48.00 4.2463 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 739 37 60.00 4.0540 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 740 37 71.99 3.6979 0 0 0 30000 96.04 3.02 3.26 44.53 2.9672 #> 741 38 0.00 0.0000 1 10000 1 10000 55.94 2.83 5.75 49.74 2.6509 #> 742 38 0.25 5.3596 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 743 38 0.50 5.1534 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 744 38 0.75 5.1882 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 745 38 1.00 5.0176 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 746 38 1.50 5.0758 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 747 38 2.00 4.7700 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 748 38 2.50 4.9096 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 749 38 3.00 4.7519 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 750 38 4.00 4.9793 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 751 38 6.00 4.6438 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 752 38 8.00 4.1270 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 753 38 12.00 4.2496 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 754 38 16.00 4.0133 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 755 38 20.00 3.8868 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 756 38 24.00 3.3280 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 757 38 36.00 3.2666 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 758 38 48.00 3.3525 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 759 38 60.00 3.0052 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 760 38 71.99 2.7888 0 0 0 10000 55.94 2.83 5.75 49.74 2.6509 #> 761 39 0.00 0.0000 1 10000 1 10000 57.13 2.20 2.79 72.87 2.5151 #> 762 39 0.25 5.3332 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 763 39 0.50 5.0766 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 764 39 0.75 5.1899 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 765 39 1.00 4.9628 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 766 39 1.50 5.1944 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 767 39 2.00 5.0318 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 768 39 2.50 4.9082 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 769 39 3.00 5.0205 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 770 39 4.00 5.1199 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 771 39 6.00 4.8045 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 772 39 8.00 4.1423 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 773 39 12.00 3.8986 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 774 39 16.00 4.0024 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 775 39 20.00 4.1780 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 776 39 24.00 3.5325 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 777 39 36.00 3.4566 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 778 39 48.00 3.2448 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 779 39 60.00 3.1269 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 780 39 71.99 2.7641 0 0 0 10000 57.13 2.20 2.79 72.87 2.5151 #> 781 40 0.00 0.0000 1 60000 1 60000 139.90 2.11 2.01 80.92 2.6296 #> 782 40 0.25 6.1004 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 783 40 0.50 6.0465 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 784 40 0.75 5.7349 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 785 40 1.00 6.1273 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 786 40 1.50 5.9266 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 787 40 2.00 5.7333 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 788 40 2.50 6.0843 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 789 40 3.00 5.8062 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 790 40 4.00 6.2257 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 791 40 6.00 5.8136 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 792 40 8.00 5.7959 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 793 40 12.00 5.6479 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 794 40 16.00 5.4242 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 795 40 20.00 5.6761 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 796 40 24.00 5.1588 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 797 40 36.00 5.4377 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 798 40 48.00 5.0146 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 799 40 60.00 4.8654 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 800 40 71.99 4.8415 0 0 0 60000 139.90 2.11 2.01 80.92 2.6296 #> 801 41 0.00 0.0000 1 60000 1 60000 92.35 4.17 5.04 34.55 3.5742 #> 802 41 0.25 6.4703 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 803 41 0.50 6.4368 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 804 41 0.75 6.2760 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 805 41 1.00 6.1297 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 806 41 1.50 6.5143 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 807 41 2.00 6.0127 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 808 41 2.50 6.2713 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 809 41 3.00 5.9527 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 810 41 4.00 5.8566 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 811 41 6.00 6.0901 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 812 41 8.00 6.3597 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 813 41 12.00 5.8861 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 814 41 16.00 5.6282 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 815 41 20.00 5.5533 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 816 41 24.00 5.2994 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 817 41 36.00 5.1272 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 818 41 48.00 4.6033 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 819 41 60.00 4.6174 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 820 41 71.99 3.9160 0 0 0 60000 92.35 4.17 5.04 34.55 3.5742 #> 821 42 0.00 0.0000 1 120000 1 120000 50.76 5.97 4.85 48.60 5.9115 #> 822 42 0.25 7.6134 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 823 42 0.50 7.6030 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 824 42 0.75 7.5568 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 825 42 1.00 7.7043 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 826 42 1.50 7.6714 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 827 42 2.00 7.1815 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 828 42 2.50 7.0027 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 829 42 3.00 7.0148 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 830 42 4.00 7.1943 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 831 42 6.00 6.6666 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 832 42 8.00 6.4370 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 833 42 12.00 6.0664 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 834 42 16.00 5.6754 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 835 42 20.00 5.6090 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 836 42 24.00 5.5095 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 837 42 36.00 4.8168 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 838 42 48.00 4.2769 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 839 42 60.00 3.8980 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 840 42 71.99 3.4135 0 0 0 120000 50.76 5.97 4.85 48.60 5.9115 #> 841 43 0.00 0.0000 1 10000 1 10000 55.19 4.65 4.87 52.84 4.1954 #> 842 43 0.25 5.1619 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 843 43 0.50 5.3135 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 844 43 0.75 5.1655 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 845 43 1.00 4.8539 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 846 43 1.50 4.4963 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 847 43 2.00 5.4096 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 848 43 2.50 4.8184 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 849 43 3.00 4.5243 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 850 43 4.00 4.4605 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 851 43 6.00 4.2812 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 852 43 8.00 4.3456 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 853 43 12.00 3.6406 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 854 43 16.00 3.2741 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 855 43 20.00 3.4860 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 856 43 24.00 3.6178 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 857 43 36.00 2.8490 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 858 43 48.00 2.6424 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 859 43 60.00 2.1467 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 860 43 71.99 1.6990 0 0 0 10000 55.19 4.65 4.87 52.84 4.1954 #> 861 44 0.00 0.0000 1 60000 1 60000 75.89 8.06 4.02 48.26 8.1867 #> 862 44 0.25 6.8316 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 863 44 0.50 6.5160 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 864 44 0.75 6.3447 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 865 44 1.00 6.4773 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 866 44 1.50 6.5333 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 867 44 2.00 6.2331 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 868 44 2.50 6.1793 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 869 44 3.00 6.0274 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 870 44 4.00 6.2637 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 871 44 6.00 5.6768 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 872 44 8.00 5.5726 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 873 44 12.00 5.2241 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 874 44 16.00 4.8151 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 875 44 20.00 4.5672 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 876 44 24.00 4.3321 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 877 44 36.00 3.8802 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 878 44 48.00 2.6379 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 879 44 60.00 2.5992 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 880 44 71.99 1.9689 0 0 0 60000 75.89 8.06 4.02 48.26 8.1867 #> 881 45 0.00 0.0000 1 120000 1 120000 49.04 7.82 1.95 63.47 7.8866 #> 882 45 0.25 7.8298 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 883 45 0.50 7.7098 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 884 45 0.75 7.3302 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 885 45 1.00 7.3381 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 886 45 1.50 7.7827 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 887 45 2.00 7.4666 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 888 45 2.50 7.4144 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 889 45 3.00 7.3551 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 890 45 4.00 6.8070 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 891 45 6.00 6.6979 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 892 45 8.00 6.1436 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 893 45 12.00 5.4533 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 894 45 16.00 4.9949 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 895 45 20.00 4.6316 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 896 45 24.00 4.3898 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 897 45 36.00 3.6515 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 898 45 48.00 3.7051 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 899 45 60.00 2.8404 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 900 45 71.99 3.1205 0 0 0 120000 49.04 7.82 1.95 63.47 7.8866 #> 901 46 0.00 0.0000 1 10000 1 10000 50.49 3.49 3.65 38.15 3.3579 #> 902 46 0.25 5.6775 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 903 46 0.50 4.8331 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 904 46 0.75 5.4971 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 905 46 1.00 5.3280 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 906 46 1.50 5.2557 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 907 46 2.00 5.2511 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 908 46 2.50 5.3071 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 909 46 3.00 4.9705 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 910 46 4.00 4.6388 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 911 46 6.00 4.2955 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 912 46 8.00 4.6815 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 913 46 12.00 4.2091 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 914 46 16.00 4.1630 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 915 46 20.00 3.5421 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 916 46 24.00 3.7979 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 917 46 36.00 3.0208 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 918 46 48.00 2.7197 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 919 46 60.00 2.3776 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 920 46 71.99 1.7519 0 0 0 10000 50.49 3.49 3.65 38.15 3.3579 #> 921 47 0.00 0.0000 1 30000 1 30000 117.20 2.34 4.00 44.69 2.8389 #> 922 47 0.25 5.6196 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 923 47 0.50 5.7513 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 924 47 0.75 5.2007 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 925 47 1.00 5.1891 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 926 47 1.50 5.4605 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 927 47 2.00 5.7076 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 928 47 2.50 5.3388 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 929 47 3.00 5.3531 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 930 47 4.00 5.5577 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 931 47 6.00 5.0832 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 932 47 8.00 5.0472 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 933 47 12.00 5.1046 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 934 47 16.00 4.7097 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 935 47 20.00 4.6979 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 936 47 24.00 4.7100 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 937 47 36.00 4.7092 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 938 47 48.00 4.4988 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 939 47 60.00 4.0994 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 940 47 71.99 3.9247 0 0 0 30000 117.20 2.34 4.00 44.69 2.8389 #> 941 48 0.00 0.0000 1 30000 1 30000 110.30 5.25 3.93 46.92 5.5422 #> 942 48 0.25 5.5037 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 943 48 0.50 5.7650 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 944 48 0.75 5.7135 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 945 48 1.00 5.7565 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 946 48 1.50 5.4829 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 947 48 2.00 5.1788 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 948 48 2.50 5.4059 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 949 48 3.00 5.3633 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 950 48 4.00 5.3632 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 951 48 6.00 5.1734 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 952 48 8.00 5.0605 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 953 48 12.00 4.7710 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 954 48 16.00 4.5637 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 955 48 20.00 4.1996 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 956 48 24.00 4.1052 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 957 48 36.00 3.8684 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 958 48 48.00 3.5975 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 959 48 60.00 3.0782 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 960 48 71.99 2.7412 0 0 0 30000 110.30 5.25 3.93 46.92 5.5422 #> 961 49 0.00 0.0000 1 30000 1 30000 73.55 4.68 7.60 72.48 4.6025 #> 962 49 0.25 6.1189 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 963 49 0.50 5.6370 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 964 49 0.75 5.5902 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 965 49 1.00 5.9276 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 966 49 1.50 6.0087 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 967 49 2.00 5.9422 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 968 49 2.50 5.5965 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 969 49 3.00 5.5604 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 970 49 4.00 5.2295 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 971 49 6.00 5.8010 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 972 49 8.00 4.9868 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 973 49 12.00 5.0902 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 974 49 16.00 4.4386 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 975 49 20.00 4.4150 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 976 49 24.00 4.4372 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 977 49 36.00 3.5147 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 978 49 48.00 3.4111 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 979 49 60.00 3.4190 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 980 49 71.99 2.8884 0 0 0 30000 73.55 4.68 7.60 72.48 4.6025 #> 981 50 0.00 0.0000 1 30000 1 30000 54.58 4.89 3.29 24.21 4.8163 #> 982 50 0.25 6.0447 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 983 50 0.50 6.2685 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 984 50 0.75 6.4609 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 985 50 1.00 6.2203 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 986 50 1.50 5.9954 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 987 50 2.00 6.1809 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 988 50 2.50 6.2621 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 989 50 3.00 5.4671 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 990 50 4.00 5.6458 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 991 50 6.00 5.3956 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 992 50 8.00 5.9023 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 993 50 12.00 5.0968 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 994 50 16.00 4.5267 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 995 50 20.00 4.5347 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 996 50 24.00 4.4376 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 997 50 36.00 3.6042 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 998 50 48.00 2.9977 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 999 50 60.00 2.3229 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 1000 50 71.99 1.8225 0 0 0 30000 54.58 4.89 3.29 24.21 4.8163 #> 1001 51 0.00 0.0000 1 120000 1 120000 62.71 5.98 3.06 82.96 5.2385 #> 1002 51 0.25 7.6251 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1003 51 0.50 7.6755 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1004 51 0.75 7.5143 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1005 51 1.00 7.4752 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1006 51 1.50 7.2077 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1007 51 2.00 7.1688 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1008 51 2.50 7.1740 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1009 51 3.00 7.1922 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1010 51 4.00 7.0249 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1011 51 6.00 6.9624 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1012 51 8.00 6.3051 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1013 51 12.00 6.1378 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1014 51 16.00 6.0565 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1015 51 20.00 5.2958 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1016 51 24.00 5.4062 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1017 51 36.00 4.5032 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1018 51 48.00 4.0893 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1019 51 60.00 3.7218 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1020 51 71.99 4.3397 0 0 0 120000 62.71 5.98 3.06 82.96 5.2385 #> 1021 52 0.00 0.0000 1 60000 1 60000 92.70 3.20 4.00 87.57 3.2907 #> 1022 52 0.25 6.5479 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1023 52 0.50 6.5100 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1024 52 0.75 6.5912 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1025 52 1.00 6.2271 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1026 52 1.50 6.6801 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1027 52 2.00 6.2589 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1028 52 2.50 6.0867 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1029 52 3.00 6.6513 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1030 52 4.00 6.1965 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1031 52 6.00 5.7945 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1032 52 8.00 6.0669 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1033 52 12.00 5.7802 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1034 52 16.00 5.2683 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1035 52 20.00 5.4662 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1036 52 24.00 5.1675 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1037 52 36.00 5.2654 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1038 52 48.00 4.6696 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1039 52 60.00 4.8388 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1040 52 71.99 4.0905 0 0 0 60000 92.70 3.20 4.00 87.57 3.2907 #> 1041 53 0.00 0.0000 1 10000 1 10000 50.12 3.45 5.36 56.90 3.2016 #> 1042 53 0.25 5.3464 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1043 53 0.50 5.1426 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1044 53 0.75 5.2642 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1045 53 1.00 5.2374 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1046 53 1.50 5.2116 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1047 53 2.00 4.7265 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1048 53 2.50 5.0013 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1049 53 3.00 5.1133 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1050 53 4.00 4.7636 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1051 53 6.00 4.4087 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1052 53 8.00 4.0785 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1053 53 12.00 4.0433 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1054 53 16.00 3.8608 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1055 53 20.00 3.8363 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1056 53 24.00 3.6008 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1057 53 36.00 3.2105 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1058 53 48.00 3.0489 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1059 53 60.00 2.6127 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1060 53 71.99 2.4007 0 0 0 10000 50.12 3.45 5.36 56.90 3.2016 #> 1061 54 0.00 0.0000 1 10000 1 10000 110.10 2.73 2.91 64.76 3.4179 #> 1062 54 0.25 4.5847 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1063 54 0.50 4.0556 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1064 54 0.75 4.7864 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1065 54 1.00 4.6218 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1066 54 1.50 4.3310 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1067 54 2.00 4.6653 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1068 54 2.50 4.4119 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1069 54 3.00 4.5562 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1070 54 4.00 4.2389 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1071 54 6.00 4.2434 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1072 54 8.00 4.1875 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1073 54 12.00 4.0191 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1074 54 16.00 3.8873 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1075 54 20.00 3.6104 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1076 54 24.00 3.6965 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1077 54 36.00 3.1504 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1078 54 48.00 2.7703 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1079 54 60.00 2.8008 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1080 54 71.99 2.5955 0 0 0 10000 110.10 2.73 2.91 64.76 3.4179 #> 1081 55 0.00 0.0000 1 60000 1 60000 51.18 3.91 4.62 44.01 3.5202 #> 1082 55 0.25 7.1950 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1083 55 0.50 6.8521 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1084 55 0.75 7.3424 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1085 55 1.00 6.9670 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1086 55 1.50 6.7517 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1087 55 2.00 6.6640 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1088 55 2.50 6.6420 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1089 55 3.00 6.8715 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1090 55 4.00 6.5614 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1091 55 6.00 6.2040 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1092 55 8.00 6.0568 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1093 55 12.00 5.8737 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1094 55 16.00 5.5537 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1095 55 20.00 5.7690 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1096 55 24.00 5.2693 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1097 55 36.00 4.7863 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1098 55 48.00 4.3883 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1099 55 60.00 4.4400 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1100 55 71.99 3.6769 0 0 0 60000 51.18 3.91 4.62 44.01 3.5202 #> 1101 56 0.00 0.0000 1 120000 1 120000 113.10 2.33 6.55 45.26 2.0826 #> 1102 56 0.25 7.1168 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1103 56 0.50 6.7783 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1104 56 0.75 6.5532 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1105 56 1.00 6.9022 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1106 56 1.50 6.5594 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1107 56 2.00 6.9363 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1108 56 2.50 6.7665 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1109 56 3.00 6.9571 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1110 56 4.00 6.7233 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1111 56 6.00 6.5895 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1112 56 8.00 6.6102 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1113 56 12.00 6.5646 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1114 56 16.00 6.2483 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1115 56 20.00 6.0853 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1116 56 24.00 6.2767 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1117 56 36.00 5.9207 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1118 56 48.00 6.1409 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1119 56 60.00 5.6440 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1120 56 71.99 5.8884 0 0 0 120000 113.10 2.33 6.55 45.26 2.0826 #> 1121 57 0.00 0.0000 1 120000 1 120000 48.41 3.16 2.71 55.80 3.1749 #> 1122 57 0.25 7.6456 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1123 57 0.50 7.5567 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1124 57 0.75 7.8053 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1125 57 1.00 7.4704 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1126 57 1.50 7.6487 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1127 57 2.00 7.4787 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1128 57 2.50 7.5101 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1129 57 3.00 7.4475 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1130 57 4.00 7.4583 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1131 57 6.00 7.1363 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1132 57 8.00 7.2276 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1133 57 12.00 6.1547 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1134 57 16.00 6.2523 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1135 57 20.00 6.0832 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1136 57 24.00 6.0454 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1137 57 36.00 5.6501 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1138 57 48.00 4.9208 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1139 57 60.00 5.0886 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1140 57 71.99 4.9772 0 0 0 120000 48.41 3.16 2.71 55.80 3.1749 #> 1141 58 0.00 0.0000 1 10000 1 10000 68.92 6.17 6.07 38.69 5.6317 #> 1142 58 0.25 5.3360 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1143 58 0.50 4.8485 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1144 58 0.75 4.7396 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1145 58 1.00 5.1042 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1146 58 1.50 4.6117 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1147 58 2.00 4.6849 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1148 58 2.50 4.4597 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1149 58 3.00 4.3787 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1150 58 4.00 4.4404 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1151 58 6.00 4.0853 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1152 58 8.00 4.2419 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1153 58 12.00 3.7586 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1154 58 16.00 3.4019 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1155 58 20.00 3.5230 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1156 58 24.00 3.0670 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1157 58 36.00 2.7789 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1158 58 48.00 2.0232 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1159 58 60.00 1.1144 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1160 58 71.99 0.7284 0 0 0 10000 68.92 6.17 6.07 38.69 5.6317 #> 1161 59 0.00 0.0000 1 60000 1 60000 45.23 4.57 3.77 53.06 4.1764 #> 1162 59 0.25 7.2775 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1163 59 0.50 7.0904 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1164 59 0.75 6.7567 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1165 59 1.00 6.8698 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1166 59 1.50 7.2533 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1167 59 2.00 6.9888 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1168 59 2.50 6.8353 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1169 59 3.00 7.0684 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1170 59 4.00 6.6422 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1171 59 6.00 6.0648 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1172 59 8.00 5.9537 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1173 59 12.00 5.5361 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1174 59 16.00 5.2410 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1175 59 20.00 5.1186 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1176 59 24.00 4.8611 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1177 59 36.00 4.4276 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1178 59 48.00 4.1843 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1179 59 60.00 4.1541 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1180 59 71.99 3.2933 0 0 0 60000 45.23 4.57 3.77 53.06 4.1764 #> 1181 60 0.00 0.0000 1 120000 1 120000 65.13 4.48 5.50 43.81 4.3839 #> 1182 60 0.25 7.4300 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1183 60 0.50 7.6252 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1184 60 0.75 7.3492 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1185 60 1.00 7.4672 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1186 60 1.50 7.1185 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1187 60 2.00 7.4189 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1188 60 2.50 7.3430 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1189 60 3.00 7.2887 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1190 60 4.00 6.9483 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1191 60 6.00 6.1146 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1192 60 8.00 6.4955 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1193 60 12.00 6.2457 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1194 60 16.00 6.2211 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1195 60 20.00 6.1830 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1196 60 24.00 5.8329 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1197 60 36.00 5.7066 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1198 60 48.00 4.9998 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1199 60 60.00 4.5057 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1200 60 71.99 4.1271 0 0 0 120000 65.13 4.48 5.50 43.81 4.3839 #> 1201 61 0.00 0.0000 1 10000 1 10000 65.83 5.53 4.25 58.22 5.7472 #> 1202 61 0.25 5.1268 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1203 61 0.50 5.1010 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1204 61 0.75 4.8334 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1205 61 1.00 5.0289 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1206 61 1.50 4.4169 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1207 61 2.00 5.0137 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1208 61 2.50 4.5095 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1209 61 3.00 4.8064 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1210 61 4.00 4.4994 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1211 61 6.00 4.2374 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1212 61 8.00 4.1515 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1213 61 12.00 3.2935 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1214 61 16.00 3.3403 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1215 61 20.00 3.0518 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1216 61 24.00 2.8858 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1217 61 36.00 2.3145 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1218 61 48.00 1.9880 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1219 61 60.00 1.5794 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1220 61 71.99 1.3347 0 0 0 10000 65.83 5.53 4.25 58.22 5.7472 #> 1221 62 0.00 0.0000 1 30000 1 30000 58.96 2.70 4.66 45.59 2.9843 #> 1222 62 0.25 6.2645 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1223 62 0.50 6.0633 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1224 62 0.75 6.2762 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1225 62 1.00 6.1781 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1226 62 1.50 6.2401 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1227 62 2.00 6.0031 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1228 62 2.50 5.9071 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1229 62 3.00 5.9517 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1230 62 4.00 5.7287 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1231 62 6.00 6.0441 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1232 62 8.00 5.2871 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1233 62 12.00 5.1459 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1234 62 16.00 4.9494 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1235 62 20.00 4.8955 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1236 62 24.00 4.8868 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1237 62 36.00 4.2554 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1238 62 48.00 4.1529 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1239 62 60.00 3.9118 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1240 62 71.99 3.6340 0 0 0 30000 58.96 2.70 4.66 45.59 2.9843 #> 1241 63 0.00 0.0000 1 30000 1 30000 92.46 1.24 4.49 62.20 1.9003 #> 1242 63 0.25 5.6900 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1243 63 0.50 6.0102 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1244 63 0.75 5.5634 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1245 63 1.00 5.8814 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1246 63 1.50 5.5665 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1247 63 2.00 5.2352 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1248 63 2.50 5.3819 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1249 63 3.00 5.7270 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1250 63 4.00 5.2623 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1251 63 6.00 5.6353 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1252 63 8.00 5.1365 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1253 63 12.00 5.2470 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1254 63 16.00 5.2071 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1255 63 20.00 5.3691 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1256 63 24.00 4.8018 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1257 63 36.00 4.9007 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1258 63 48.00 4.8203 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1259 63 60.00 4.5645 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1260 63 71.99 4.4584 0 0 0 30000 92.46 1.24 4.49 62.20 1.9003 #> 1261 64 0.00 0.0000 1 60000 1 60000 61.60 5.86 5.18 29.59 5.7889 #> 1262 64 0.25 6.6046 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1263 64 0.50 7.1043 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1264 64 0.75 6.6614 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1265 64 1.00 6.9764 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1266 64 1.50 6.6408 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1267 64 2.00 6.3033 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1268 64 2.50 6.5626 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1269 64 3.00 6.3354 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1270 64 4.00 6.3817 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1271 64 6.00 6.1609 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1272 64 8.00 6.0324 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1273 64 12.00 5.4267 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1274 64 16.00 5.2045 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1275 64 20.00 5.1011 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1276 64 24.00 4.9313 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1277 64 36.00 4.0274 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1278 64 48.00 3.6144 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1279 64 60.00 3.2314 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1280 64 71.99 1.7787 0 0 0 60000 61.60 5.86 5.18 29.59 5.7889 #> 1281 65 0.00 0.0000 1 120000 1 120000 55.44 4.57 4.51 54.51 4.6241 #> 1282 65 0.25 7.6616 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1283 65 0.50 7.5771 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1284 65 0.75 7.5260 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1285 65 1.00 7.4872 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1286 65 1.50 7.4506 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1287 65 2.00 7.5624 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1288 65 2.50 7.5997 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1289 65 3.00 6.9559 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1290 65 4.00 7.0030 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1291 65 6.00 6.6599 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1292 65 8.00 7.0128 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1293 65 12.00 6.2679 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1294 65 16.00 5.9396 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1295 65 20.00 5.8724 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1296 65 24.00 5.3196 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1297 65 36.00 5.2307 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1298 65 48.00 4.8385 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1299 65 60.00 4.6236 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1300 65 71.99 3.7997 0 0 0 120000 55.44 4.57 4.51 54.51 4.6241 #> 1301 66 0.00 0.0000 1 10000 1 10000 84.54 7.25 4.91 48.94 7.9012 #> 1302 66 0.25 4.5454 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1303 66 0.50 4.5087 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1304 66 0.75 4.5245 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1305 66 1.00 4.6243 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1306 66 1.50 4.4338 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1307 66 2.00 4.3753 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1308 66 2.50 4.3949 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1309 66 3.00 4.2381 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1310 66 4.00 4.1043 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1311 66 6.00 4.0370 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1312 66 8.00 4.0406 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1313 66 12.00 3.5795 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1314 66 16.00 3.5399 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1315 66 20.00 3.0914 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1316 66 24.00 2.4945 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1317 66 36.00 2.1243 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1318 66 48.00 1.2484 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1319 66 60.00 0.5118 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1320 66 71.99 0.1625 0 0 0 10000 84.54 7.25 4.91 48.94 7.9012 #> 1321 67 0.00 0.0000 1 60000 1 60000 73.64 6.16 3.87 27.80 6.1294 #> 1322 67 0.25 6.2278 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1323 67 0.50 6.6103 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1324 67 0.75 6.5052 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1325 67 1.00 6.8195 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1326 67 1.50 6.4912 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1327 67 2.00 6.3579 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1328 67 2.50 6.2287 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1329 67 3.00 6.0533 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1330 67 4.00 6.3342 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1331 67 6.00 5.8486 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1332 67 8.00 5.6573 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1333 67 12.00 5.1534 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1334 67 16.00 5.3720 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1335 67 20.00 5.4303 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1336 67 24.00 4.8981 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1337 67 36.00 4.0911 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1338 67 48.00 3.9021 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1339 67 60.00 2.9687 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1340 67 71.99 1.8471 0 0 0 60000 73.64 6.16 3.87 27.80 6.1294 #> 1341 68 0.00 0.0000 1 120000 1 120000 79.87 3.39 7.42 25.25 3.2342 #> 1342 68 0.25 7.2975 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1343 68 0.50 7.0680 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1344 68 0.75 6.8829 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1345 68 1.00 7.3092 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1346 68 1.50 7.1881 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1347 68 2.00 7.4657 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1348 68 2.50 6.9789 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1349 68 3.00 6.9447 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1350 68 4.00 7.1009 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1351 68 6.00 6.7331 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1352 68 8.00 6.8049 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1353 68 12.00 7.2253 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1354 68 16.00 6.3232 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1355 68 20.00 6.2646 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1356 68 24.00 6.4302 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1357 68 36.00 5.9408 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1358 68 48.00 5.6455 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1359 68 60.00 4.9464 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1360 68 71.99 4.5966 0 0 0 120000 79.87 3.39 7.42 25.25 3.2342 #> 1361 69 0.00 0.0000 1 30000 1 30000 69.03 3.76 4.57 74.42 3.7142 #> 1362 69 0.25 6.1249 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1363 69 0.50 6.1885 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1364 69 0.75 6.0714 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1365 69 1.00 5.8112 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1366 69 1.50 5.8986 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1367 69 2.00 6.1800 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1368 69 2.50 5.9125 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1369 69 3.00 5.9697 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1370 69 4.00 6.0268 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1371 69 6.00 5.5365 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1372 69 8.00 5.3293 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1373 69 12.00 5.0162 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1374 69 16.00 4.3515 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1375 69 20.00 4.2694 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1376 69 24.00 4.6888 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1377 69 36.00 3.9104 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1378 69 48.00 3.8499 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1379 69 60.00 3.5478 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1380 69 71.99 3.4103 0 0 0 30000 69.03 3.76 4.57 74.42 3.7142 #> 1381 70 0.00 0.0000 1 30000 1 30000 101.70 4.64 3.93 65.82 4.5716 #> 1382 70 0.25 5.6711 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1383 70 0.50 5.7779 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1384 70 0.75 5.5084 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1385 70 1.00 5.6085 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1386 70 1.50 5.4554 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1387 70 2.00 5.6845 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1388 70 2.50 5.4785 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1389 70 3.00 5.7388 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1390 70 4.00 5.1743 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1391 70 6.00 5.4597 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1392 70 8.00 4.5655 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1393 70 12.00 4.7783 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1394 70 16.00 4.9278 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1395 70 20.00 4.3700 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1396 70 24.00 4.2201 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1397 70 36.00 3.9793 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1398 70 48.00 3.6186 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1399 70 60.00 3.3047 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1400 70 71.99 3.2858 0 0 0 30000 101.70 4.64 3.93 65.82 4.5716 #> 1401 71 0.00 0.0000 1 60000 1 60000 78.37 2.88 5.13 64.43 2.8093 #> 1402 71 0.25 6.8545 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1403 71 0.50 6.4937 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1404 71 0.75 6.6630 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1405 71 1.00 6.6701 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1406 71 1.50 6.7309 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1407 71 2.00 6.4990 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1408 71 2.50 6.4134 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1409 71 3.00 6.2547 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1410 71 4.00 6.5166 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1411 71 6.00 5.7479 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1412 71 8.00 6.0572 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1413 71 12.00 5.9347 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1414 71 16.00 5.5208 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1415 71 20.00 5.3124 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1416 71 24.00 5.5756 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1417 71 36.00 5.1101 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1418 71 48.00 5.0829 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1419 71 60.00 4.9540 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1420 71 71.99 4.4869 0 0 0 60000 78.37 2.88 5.13 64.43 2.8093 #> 1421 72 0.00 0.0000 1 10000 1 10000 41.94 1.84 4.20 60.63 1.9574 #> 1422 72 0.25 5.5801 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1423 72 0.50 5.3442 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1424 72 0.75 4.9871 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1425 72 1.00 5.4857 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1426 72 1.50 5.0280 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1427 72 2.00 5.4836 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1428 72 2.50 5.6270 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1429 72 3.00 5.0586 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1430 72 4.00 4.9538 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1431 72 6.00 4.6162 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1432 72 8.00 4.5158 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1433 72 12.00 4.1231 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1434 72 16.00 3.8723 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1435 72 20.00 4.4642 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1436 72 24.00 3.8827 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1437 72 36.00 3.5404 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1438 72 48.00 3.6473 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1439 72 60.00 3.3350 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1440 72 71.99 3.1487 0 0 0 10000 41.94 1.84 4.20 60.63 1.9574 #> 1441 73 0.00 0.0000 1 60000 1 60000 121.10 3.95 2.87 34.36 3.9793 #> 1442 73 0.25 5.9986 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1443 73 0.50 6.0917 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1444 73 0.75 5.8988 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1445 73 1.00 6.4694 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1446 73 1.50 6.1652 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1447 73 2.00 5.6670 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1448 73 2.50 6.0231 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1449 73 3.00 6.0107 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1450 73 4.00 6.0844 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1451 73 6.00 5.7938 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1452 73 8.00 5.9040 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1453 73 12.00 5.4132 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1454 73 16.00 5.2736 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1455 73 20.00 5.0042 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1456 73 24.00 5.1073 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1457 73 36.00 4.9045 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1458 73 48.00 4.6645 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1459 73 60.00 4.5004 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1460 73 71.99 4.2531 0 0 0 60000 121.10 3.95 2.87 34.36 3.9793 #> 1461 74 0.00 0.0000 1 10000 1 10000 48.66 5.10 3.48 71.54 4.8427 #> 1462 74 0.25 5.2822 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1463 74 0.50 4.9554 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1464 74 0.75 5.1979 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1465 74 1.00 4.9408 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1466 74 1.50 5.1134 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1467 74 2.00 4.9307 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1468 74 2.50 5.0822 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1469 74 3.00 4.8082 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1470 74 4.00 4.6382 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1471 74 6.00 4.2486 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1472 74 8.00 4.2028 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1473 74 12.00 3.4535 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1474 74 16.00 3.4149 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1475 74 20.00 3.3740 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1476 74 24.00 3.2289 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1477 74 36.00 2.3821 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1478 74 48.00 2.1721 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1479 74 60.00 1.6245 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1480 74 71.99 1.7081 0 0 0 10000 48.66 5.10 3.48 71.54 4.8427 #> 1481 75 0.00 0.0000 1 120000 1 120000 75.64 5.36 3.39 40.57 5.6682 #> 1482 75 0.25 7.1633 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1483 75 0.50 7.3380 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1484 75 0.75 7.6405 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1485 75 1.00 7.2343 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1486 75 1.50 7.2755 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1487 75 2.00 7.2042 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1488 75 2.50 7.3035 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1489 75 3.00 7.0007 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1490 75 4.00 7.2017 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1491 75 6.00 6.6467 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1492 75 8.00 6.3820 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1493 75 12.00 6.1260 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1494 75 16.00 6.1413 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1495 75 20.00 5.6674 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1496 75 24.00 5.3296 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1497 75 36.00 5.0982 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1498 75 48.00 4.5567 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1499 75 60.00 4.0205 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1500 75 71.99 3.5335 0 0 0 120000 75.64 5.36 3.39 40.57 5.6682 #> 1501 76 0.00 0.0000 1 120000 1 120000 74.67 3.85 2.95 46.17 3.7020 #> 1502 76 0.25 7.5344 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1503 76 0.50 7.3792 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1504 76 0.75 7.4963 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1505 76 1.00 7.2482 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1506 76 1.50 7.6447 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1507 76 2.00 7.3519 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1508 76 2.50 7.0765 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1509 76 3.00 7.2385 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1510 76 4.00 7.1056 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1511 76 6.00 6.6969 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1512 76 8.00 6.6821 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1513 76 12.00 6.6867 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1514 76 16.00 6.2576 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1515 76 20.00 5.8448 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1516 76 24.00 6.0572 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1517 76 36.00 5.5831 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1518 76 48.00 5.2131 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1519 76 60.00 5.1962 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1520 76 71.99 4.4236 0 0 0 120000 74.67 3.85 2.95 46.17 3.7020 #> 1521 77 0.00 0.0000 1 10000 1 10000 51.95 4.70 4.63 46.92 4.5626 #> 1522 77 0.25 5.2489 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1523 77 0.50 4.9818 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1524 77 0.75 5.5718 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1525 77 1.00 5.0758 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1526 77 1.50 4.5403 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1527 77 2.00 5.2295 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1528 77 2.50 4.9953 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1529 77 3.00 4.8182 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1530 77 4.00 4.6706 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1531 77 6.00 4.4896 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1532 77 8.00 4.1505 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1533 77 12.00 3.9035 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1534 77 16.00 3.5764 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1535 77 20.00 3.1387 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1536 77 24.00 3.2317 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1537 77 36.00 2.9154 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1538 77 48.00 2.4816 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1539 77 60.00 1.7742 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1540 77 71.99 1.1345 0 0 0 10000 51.95 4.70 4.63 46.92 4.5626 #> 1541 78 0.00 0.0000 1 30000 1 30000 54.61 3.77 3.43 65.63 4.1403 #> 1542 78 0.25 5.8734 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1543 78 0.50 6.1779 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1544 78 0.75 6.1460 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1545 78 1.00 6.1925 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1546 78 1.50 5.7845 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1547 78 2.00 5.8704 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1548 78 2.50 6.3344 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1549 78 3.00 5.9697 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1550 78 4.00 5.9029 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1551 78 6.00 5.5660 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1552 78 8.00 5.1900 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1553 78 12.00 4.9823 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1554 78 16.00 4.6560 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1555 78 20.00 4.5285 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1556 78 24.00 4.4518 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1557 78 36.00 4.2256 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1558 78 48.00 3.4462 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1559 78 60.00 3.2020 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1560 78 71.99 3.0217 0 0 0 30000 54.61 3.77 3.43 65.63 4.1403 #> 1561 79 0.00 0.0000 1 30000 1 30000 51.31 3.64 2.87 31.38 3.4541 #> 1562 79 0.25 6.5141 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1563 79 0.50 6.3145 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1564 79 0.75 6.1968 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1565 79 1.00 6.4682 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1566 79 1.50 5.6386 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1567 79 2.00 6.1714 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1568 79 2.50 5.7662 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1569 79 3.00 5.9910 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1570 79 4.00 6.0333 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1571 79 6.00 5.7272 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1572 79 8.00 5.4365 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1573 79 12.00 4.9790 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1574 79 16.00 5.0315 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1575 79 20.00 5.1548 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1576 79 24.00 4.5870 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1577 79 36.00 4.2479 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1578 79 48.00 4.2164 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1579 79 60.00 3.1809 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1580 79 71.99 2.9240 0 0 0 30000 51.31 3.64 2.87 31.38 3.4541 #> 1581 80 0.00 0.0000 1 60000 1 60000 77.91 3.51 4.82 54.08 3.7554 #> 1582 80 0.25 6.6275 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1583 80 0.50 6.6120 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1584 80 0.75 6.8589 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1585 80 1.00 6.6824 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1586 80 1.50 6.5847 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1587 80 2.00 6.3980 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1588 80 2.50 6.2658 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1589 80 3.00 6.0886 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1590 80 4.00 6.3073 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1591 80 6.00 6.0613 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1592 80 8.00 5.8826 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1593 80 12.00 5.7590 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1594 80 16.00 5.4376 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1595 80 20.00 5.5278 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1596 80 24.00 5.2534 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1597 80 36.00 4.7774 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1598 80 48.00 4.6044 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1599 80 60.00 4.5725 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1600 80 71.99 3.9276 0 0 0 60000 77.91 3.51 4.82 54.08 3.7554 #> 1601 81 0.00 0.0000 1 60000 1 60000 59.65 4.15 6.58 54.94 4.0629 #> 1602 81 0.25 7.2543 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1603 81 0.50 6.7617 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1604 81 0.75 6.9629 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1605 81 1.00 6.4386 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1606 81 1.50 7.0579 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1607 81 2.00 6.1279 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1608 81 2.50 6.5974 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1609 81 3.00 6.7381 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1610 81 4.00 6.3617 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1611 81 6.00 6.2534 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1612 81 8.00 5.9053 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1613 81 12.00 5.2755 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1614 81 16.00 5.6275 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1615 81 20.00 5.4468 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1616 81 24.00 5.1073 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1617 81 36.00 4.6565 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1618 81 48.00 4.2435 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1619 81 60.00 4.1641 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1620 81 71.99 3.7108 0 0 0 60000 59.65 4.15 6.58 54.94 4.0629 #> 1621 82 0.00 0.0000 1 120000 1 120000 52.22 5.57 2.44 44.58 5.7055 #> 1622 82 0.25 7.5784 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1623 82 0.50 7.6663 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1624 82 0.75 7.5995 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1625 82 1.00 7.6884 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1626 82 1.50 7.4243 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1627 82 2.00 7.6782 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1628 82 2.50 7.6024 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1629 82 3.00 7.3569 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1630 82 4.00 7.2186 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1631 82 6.00 6.9165 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1632 82 8.00 6.5670 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1633 82 12.00 6.0916 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1634 82 16.00 5.5138 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1635 82 20.00 5.4139 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1636 82 24.00 5.1387 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1637 82 36.00 4.8114 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1638 82 48.00 4.4415 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1639 82 60.00 3.8190 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1640 82 71.99 3.3863 0 0 0 120000 52.22 5.57 2.44 44.58 5.7055 #> 1641 83 0.00 0.0000 1 120000 1 120000 133.60 4.73 2.87 41.90 5.0623 #> 1642 83 0.25 6.9093 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1643 83 0.50 6.9265 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1644 83 0.75 6.7712 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1645 83 1.00 6.8376 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1646 83 1.50 6.3726 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1647 83 2.00 6.8274 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1648 83 2.50 6.8581 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1649 83 3.00 6.5853 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1650 83 4.00 6.4833 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1651 83 6.00 6.3116 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1652 83 8.00 6.0836 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1653 83 12.00 6.2896 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1654 83 16.00 6.4124 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1655 83 20.00 5.7072 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1656 83 24.00 5.8238 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1657 83 36.00 5.4335 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1658 83 48.00 5.0199 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1659 83 60.00 4.8333 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1660 83 71.99 4.1510 0 0 0 120000 133.60 4.73 2.87 41.90 5.0623 #> 1661 84 0.00 0.0000 1 60000 1 60000 68.38 3.35 3.75 69.10 3.2567 #> 1662 84 0.25 6.9959 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1663 84 0.50 6.8122 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1664 84 0.75 6.6132 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1665 84 1.00 6.7338 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1666 84 1.50 6.3543 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1667 84 2.00 6.5595 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1668 84 2.50 6.3218 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1669 84 3.00 6.4846 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1670 84 4.00 5.9757 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1671 84 6.00 6.4517 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1672 84 8.00 5.8206 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1673 84 12.00 6.2072 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1674 84 16.00 5.4382 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1675 84 20.00 5.2738 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1676 84 24.00 5.2242 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1677 84 36.00 5.0734 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1678 84 48.00 4.7535 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1679 84 60.00 4.5695 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1680 84 71.99 4.2902 0 0 0 60000 68.38 3.35 3.75 69.10 3.2567 #> 1681 85 0.00 0.0000 1 10000 1 10000 90.27 5.58 5.00 48.79 5.4922 #> 1682 85 0.25 4.9758 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1683 85 0.50 4.6891 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1684 85 0.75 4.6076 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1685 85 1.00 4.2723 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1686 85 1.50 4.4016 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1687 85 2.00 4.3766 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1688 85 2.50 4.3485 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1689 85 3.00 4.6783 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1690 85 4.00 4.3729 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1691 85 6.00 4.2176 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1692 85 8.00 3.8089 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1693 85 12.00 3.5910 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1694 85 16.00 3.4712 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1695 85 20.00 3.0264 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1696 85 24.00 3.2300 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1697 85 36.00 2.8752 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1698 85 48.00 2.3938 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1699 85 60.00 1.6206 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1700 85 71.99 1.5455 0 0 0 10000 90.27 5.58 5.00 48.79 5.4922 #> 1701 86 0.00 0.0000 1 30000 1 30000 51.88 3.08 4.27 50.77 3.1025 #> 1702 86 0.25 6.3472 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1703 86 0.50 6.2105 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1704 86 0.75 6.1098 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1705 86 1.00 6.1457 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1706 86 1.50 6.1368 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1707 86 2.00 6.1502 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1708 86 2.50 5.9647 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1709 86 3.00 5.6606 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1710 86 4.00 6.0627 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1711 86 6.00 5.8827 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1712 86 8.00 5.6261 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1713 86 12.00 4.8911 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1714 86 16.00 4.8646 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1715 86 20.00 5.1028 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1716 86 24.00 4.5156 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1717 86 36.00 4.5165 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1718 86 48.00 4.0466 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1719 86 60.00 3.8957 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1720 86 71.99 3.3899 0 0 0 30000 51.88 3.08 4.27 50.77 3.1025 #> 1721 87 0.00 0.0000 1 10000 1 10000 56.24 5.08 2.61 77.78 5.7791 #> 1722 87 0.25 5.1440 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1723 87 0.50 4.6754 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1724 87 0.75 4.7410 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1725 87 1.00 4.8681 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1726 87 1.50 4.9004 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1727 87 2.00 4.6535 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1728 87 2.50 4.5389 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1729 87 3.00 4.5862 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1730 87 4.00 4.6978 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1731 87 6.00 4.2641 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1732 87 8.00 4.1691 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1733 87 12.00 3.6570 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1734 87 16.00 3.4611 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1735 87 20.00 3.1719 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1736 87 24.00 2.5202 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1737 87 36.00 2.2408 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1738 87 48.00 2.0371 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1739 87 60.00 1.4730 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1740 87 71.99 1.3250 0 0 0 10000 56.24 5.08 2.61 77.78 5.7791 #> 1741 88 0.00 0.0000 1 30000 1 30000 73.00 3.49 7.54 48.17 3.5514 #> 1742 88 0.25 5.9222 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1743 88 0.50 5.7882 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1744 88 0.75 5.7894 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1745 88 1.00 5.6465 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1746 88 1.50 5.8770 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1747 88 2.00 5.6170 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1748 88 2.50 5.3690 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1749 88 3.00 5.8201 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1750 88 4.00 5.8814 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1751 88 6.00 5.5354 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1752 88 8.00 5.2278 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1753 88 12.00 5.3834 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1754 88 16.00 5.0301 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1755 88 20.00 4.9180 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1756 88 24.00 4.7181 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1757 88 36.00 4.3322 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1758 88 48.00 4.0078 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1759 88 60.00 3.5962 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1760 88 71.99 3.3745 0 0 0 30000 73.00 3.49 7.54 48.17 3.5514 #> 1761 89 0.00 0.0000 1 30000 1 30000 86.21 3.17 3.90 68.23 3.3827 #> 1762 89 0.25 5.7984 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1763 89 0.50 5.3937 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1764 89 0.75 5.7213 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1765 89 1.00 5.8885 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1766 89 1.50 5.2420 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1767 89 2.00 5.5258 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1768 89 2.50 5.3779 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1769 89 3.00 5.2925 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1770 89 4.00 5.5028 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1771 89 6.00 5.4038 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1772 89 8.00 5.2621 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1773 89 12.00 5.0461 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1774 89 16.00 4.6472 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1775 89 20.00 4.8356 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1776 89 24.00 4.9404 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1777 89 36.00 4.0712 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1778 89 48.00 4.2000 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1779 89 60.00 4.0619 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1780 89 71.99 3.4586 0 0 0 30000 86.21 3.17 3.90 68.23 3.3827 #> 1781 90 0.00 0.0000 1 10000 1 10000 100.80 3.94 4.01 58.87 3.9925 #> 1782 90 0.25 4.2278 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1783 90 0.50 4.6113 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1784 90 0.75 4.8721 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1785 90 1.00 4.7631 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1786 90 1.50 4.7740 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1787 90 2.00 4.6111 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1788 90 2.50 4.3062 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1789 90 3.00 4.4975 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1790 90 4.00 3.8722 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1791 90 6.00 4.2603 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1792 90 8.00 4.0807 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1793 90 12.00 3.7843 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1794 90 16.00 3.5881 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1795 90 20.00 3.4250 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1796 90 24.00 3.2833 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1797 90 36.00 3.3200 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1798 90 48.00 2.8305 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1799 90 60.00 2.4732 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1800 90 71.99 2.2800 0 0 0 10000 100.80 3.94 4.01 58.87 3.9925 #> 1801 91 0.00 0.0000 1 60000 1 60000 41.47 2.81 3.01 52.13 2.5884 #> 1802 91 0.25 7.4743 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1803 91 0.50 7.2035 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1804 91 0.75 7.3514 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1805 91 1.00 7.4949 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1806 91 1.50 7.1567 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1807 91 2.00 6.8630 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1808 91 2.50 7.0466 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1809 91 3.00 7.3553 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1810 91 4.00 6.3123 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1811 91 6.00 6.7350 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1812 91 8.00 6.4016 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1813 91 12.00 5.9693 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1814 91 16.00 5.9432 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1815 91 20.00 5.5828 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1816 91 24.00 5.2562 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1817 91 36.00 4.7854 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1818 91 48.00 4.9007 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1819 91 60.00 4.6547 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1820 91 71.99 4.3990 0 0 0 60000 41.47 2.81 3.01 52.13 2.5884 #> 1821 92 0.00 0.0000 1 120000 1 120000 51.89 4.01 5.08 49.16 3.7047 #> 1822 92 0.25 7.5609 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1823 92 0.50 7.8286 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1824 92 0.75 7.4654 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1825 92 1.00 7.5075 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1826 92 1.50 7.5774 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1827 92 2.00 7.6281 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1828 92 2.50 7.0321 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1829 92 3.00 7.4403 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1830 92 4.00 7.0853 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1831 92 6.00 6.7549 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1832 92 8.00 6.9050 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1833 92 12.00 6.2719 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1834 92 16.00 6.5199 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1835 92 20.00 6.1088 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1836 92 24.00 6.2900 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1837 92 36.00 5.5631 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1838 92 48.00 5.1514 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1839 92 60.00 4.7481 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1840 92 71.99 4.4619 0 0 0 120000 51.89 4.01 5.08 49.16 3.7047 #> 1841 93 0.00 0.0000 1 60000 1 60000 95.09 3.49 5.29 49.83 3.5994 #> 1842 93 0.25 6.1531 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1843 93 0.50 6.4136 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1844 93 0.75 6.5420 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1845 93 1.00 6.7160 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1846 93 1.50 6.5920 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1847 93 2.00 6.2697 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1848 93 2.50 6.6579 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1849 93 3.00 6.1546 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1850 93 4.00 5.7715 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1851 93 6.00 6.1812 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1852 93 8.00 5.9712 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1853 93 12.00 5.7621 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1854 93 16.00 5.3633 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1855 93 20.00 5.4774 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1856 93 24.00 5.2819 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1857 93 36.00 4.4374 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1858 93 48.00 5.0404 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1859 93 60.00 4.4994 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1860 93 71.99 3.8724 0 0 0 60000 95.09 3.49 5.29 49.83 3.5994 #> 1861 94 0.00 0.0000 1 10000 1 10000 106.00 2.32 3.93 51.36 2.1707 #> 1862 94 0.25 4.5668 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1863 94 0.50 4.6144 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1864 94 0.75 4.4419 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1865 94 1.00 4.4674 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1866 94 1.50 4.5793 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1867 94 2.00 4.4365 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1868 94 2.50 4.1741 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1869 94 3.00 4.3684 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1870 94 4.00 4.6263 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1871 94 6.00 4.1330 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1872 94 8.00 4.0853 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1873 94 12.00 3.8859 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1874 94 16.00 3.8712 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1875 94 20.00 4.1030 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1876 94 24.00 4.0199 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1877 94 36.00 3.6407 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1878 94 48.00 3.3083 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1879 94 60.00 3.1160 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1880 94 71.99 3.3643 0 0 0 10000 106.00 2.32 3.93 51.36 2.1707 #> 1881 95 0.00 0.0000 1 120000 1 120000 73.28 2.18 2.24 51.95 2.3285 #> 1882 95 0.25 7.0849 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1883 95 0.50 7.3054 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1884 95 0.75 7.3595 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1885 95 1.00 7.2720 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1886 95 1.50 7.0153 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1887 95 2.00 7.3268 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1888 95 2.50 7.1000 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1889 95 3.00 7.4639 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1890 95 4.00 7.3901 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1891 95 6.00 7.1901 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1892 95 8.00 7.4193 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1893 95 12.00 6.5741 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1894 95 16.00 6.9820 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1895 95 20.00 6.3821 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1896 95 24.00 6.3157 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1897 95 36.00 6.0997 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1898 95 48.00 5.9255 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1899 95 60.00 5.5600 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1900 95 71.99 5.2387 0 0 0 120000 73.28 2.18 2.24 51.95 2.3285 #> 1901 96 0.00 0.0000 1 30000 1 30000 62.83 3.93 3.54 43.67 3.9453 #> 1902 96 0.25 6.2721 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1903 96 0.50 5.9977 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1904 96 0.75 5.7904 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1905 96 1.00 6.3191 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1906 96 1.50 6.0593 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1907 96 2.00 5.9513 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1908 96 2.50 6.0904 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1909 96 3.00 5.7772 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1910 96 4.00 5.4392 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1911 96 6.00 5.5401 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1912 96 8.00 5.3731 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1913 96 12.00 5.3579 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1914 96 16.00 4.5975 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1915 96 20.00 4.4261 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1916 96 24.00 4.4371 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1917 96 36.00 4.3029 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1918 96 48.00 4.0049 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1919 96 60.00 3.3000 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1920 96 71.99 2.8351 0 0 0 30000 62.83 3.93 3.54 43.67 3.9453 #> 1921 97 0.00 0.0000 1 120000 1 120000 36.09 3.89 3.70 61.66 3.8889 #> 1922 97 0.25 8.0057 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1923 97 0.50 8.0264 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1924 97 0.75 8.0005 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1925 97 1.00 7.9445 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1926 97 1.50 7.6329 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1927 97 2.00 8.1819 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1928 97 2.50 7.5863 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1929 97 3.00 7.7539 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1930 97 4.00 7.2309 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1931 97 6.00 6.9522 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1932 97 8.00 6.7698 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1933 97 12.00 6.2143 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1934 97 16.00 6.1285 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1935 97 20.00 5.4980 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1936 97 24.00 5.7722 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1937 97 36.00 5.0610 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1938 97 48.00 4.9570 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1939 97 60.00 4.5014 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1940 97 71.99 4.4180 0 0 0 120000 36.09 3.89 3.70 61.66 3.8889 #> 1941 98 0.00 0.0000 1 30000 1 30000 38.54 3.56 4.83 45.77 3.6848 #> 1942 98 0.25 6.3670 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1943 98 0.50 6.4430 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1944 98 0.75 6.7792 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1945 98 1.00 6.1160 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1946 98 1.50 6.3785 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1947 98 2.00 6.5028 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1948 98 2.50 5.9329 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1949 98 3.00 5.8863 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1950 98 4.00 5.6325 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1951 98 6.00 5.6998 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1952 98 8.00 5.1230 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1953 98 12.00 4.6036 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1954 98 16.00 4.7715 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1955 98 20.00 4.9437 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1956 98 24.00 4.3266 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1957 98 36.00 4.2413 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1958 98 48.00 3.9859 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1959 98 60.00 3.3926 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1960 98 71.99 2.9710 0 0 0 30000 38.54 3.56 4.83 45.77 3.6848 #> 1961 99 0.00 0.0000 1 10000 1 10000 60.76 5.52 5.79 51.35 5.2531 #> 1962 99 0.25 5.2214 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1963 99 0.50 4.7957 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1964 99 0.75 5.1311 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1965 99 1.00 5.0799 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1966 99 1.50 4.6707 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1967 99 2.00 5.0312 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1968 99 2.50 4.8610 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1969 99 3.00 4.2483 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1970 99 4.00 4.0824 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1971 99 6.00 4.3861 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1972 99 8.00 3.9626 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1973 99 12.00 3.3664 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1974 99 16.00 3.4060 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1975 99 20.00 2.9662 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1976 99 24.00 3.5865 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1977 99 36.00 2.4211 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1978 99 48.00 2.0140 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1979 99 60.00 1.7738 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1980 99 71.99 1.1639 0 0 0 10000 60.76 5.52 5.79 51.35 5.2531 #> 1981 100 0.00 0.0000 1 60000 1 60000 57.10 4.75 6.76 40.97 4.6553 #> 1982 100 0.25 6.5906 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1983 100 0.50 7.1578 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1984 100 0.75 6.7795 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1985 100 1.00 6.6517 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1986 100 1.50 6.9479 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1987 100 2.00 6.2698 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1988 100 2.50 6.8049 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1989 100 3.00 6.6084 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1990 100 4.00 6.6015 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1991 100 6.00 5.8904 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1992 100 8.00 5.9595 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1993 100 12.00 5.5801 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1994 100 16.00 5.7328 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1995 100 20.00 5.3268 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1996 100 24.00 5.0195 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1997 100 36.00 4.6884 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1998 100 48.00 4.0432 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 1999 100 60.00 3.2940 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 2000 100 71.99 3.1091 0 0 0 60000 57.10 4.75 6.76 40.97 4.6553 #> 2001 101 0.00 0.0000 1 10000 1 10000 68.05 4.42 4.78 84.69 4.5172 #> 2002 101 0.25 5.2775 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2003 101 0.50 5.0574 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2004 101 0.75 4.6350 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2005 101 1.00 4.6677 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2006 101 1.50 4.6421 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2007 101 2.00 4.6276 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2008 101 2.50 5.0243 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2009 101 3.00 4.4520 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2010 101 4.00 4.3450 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2011 101 6.00 4.3579 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2012 101 8.00 4.0423 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2013 101 12.00 3.4192 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2014 101 16.00 3.5891 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2015 101 20.00 3.2577 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2016 101 24.00 3.2019 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2017 101 36.00 3.2197 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2018 101 48.00 2.5632 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2019 101 60.00 2.0523 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2020 101 71.99 1.7870 0 0 0 10000 68.05 4.42 4.78 84.69 4.5172 #> 2021 102 0.00 0.0000 1 60000 1 60000 110.40 4.89 4.35 59.95 5.1803 #> 2022 102 0.25 6.3521 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2023 102 0.50 6.4064 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2024 102 0.75 6.2692 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2025 102 1.00 6.0854 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2026 102 1.50 6.3631 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2027 102 2.00 5.8324 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2028 102 2.50 6.1285 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2029 102 3.00 6.2492 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2030 102 4.00 6.0095 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2031 102 6.00 5.6028 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2032 102 8.00 5.7268 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2033 102 12.00 5.5763 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2034 102 16.00 5.3242 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2035 102 20.00 5.0551 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2036 102 24.00 4.8601 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2037 102 36.00 4.7476 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2038 102 48.00 4.0818 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2039 102 60.00 3.9937 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2040 102 71.99 3.6534 0 0 0 60000 110.40 4.89 4.35 59.95 5.1803 #> 2041 103 0.00 0.0000 1 30000 1 30000 74.46 3.85 5.00 43.94 3.5066 #> 2042 103 0.25 5.8740 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2043 103 0.50 5.9156 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2044 103 0.75 6.2102 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2045 103 1.00 5.7849 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2046 103 1.50 5.7246 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2047 103 2.00 5.3849 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2048 103 2.50 6.0297 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2049 103 3.00 5.6271 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2050 103 4.00 5.7332 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2051 103 6.00 5.1451 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2052 103 8.00 5.2739 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2053 103 12.00 4.8142 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2054 103 16.00 4.9637 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2055 103 20.00 5.0656 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2056 103 24.00 4.2051 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2057 103 36.00 4.2380 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2058 103 48.00 4.3378 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2059 103 60.00 3.7777 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2060 103 71.99 3.1209 0 0 0 30000 74.46 3.85 5.00 43.94 3.5066 #> 2061 104 0.00 0.0000 1 120000 1 120000 74.17 4.24 5.21 49.21 4.2137 #> 2062 104 0.25 7.4039 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2063 104 0.50 7.4499 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2064 104 0.75 7.4363 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2065 104 1.00 7.1069 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2066 104 1.50 7.2324 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2067 104 2.00 7.6221 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2068 104 2.50 7.0780 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2069 104 3.00 6.9753 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2070 104 4.00 6.5803 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2071 104 6.00 6.0916 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2072 104 8.00 6.7067 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2073 104 12.00 6.7509 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2074 104 16.00 6.3806 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2075 104 20.00 6.0048 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2076 104 24.00 5.9113 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2077 104 36.00 5.2029 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2078 104 48.00 5.0672 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2079 104 60.00 4.7792 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2080 104 71.99 4.3138 0 0 0 120000 74.17 4.24 5.21 49.21 4.2137 #> 2081 105 0.00 0.0000 1 30000 1 30000 84.52 2.93 6.15 61.72 3.3479 #> 2082 105 0.25 5.6819 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2083 105 0.50 6.1715 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2084 105 0.75 6.0714 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2085 105 1.00 5.9143 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2086 105 1.50 5.8360 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2087 105 2.00 5.5700 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2088 105 2.50 5.2962 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2089 105 3.00 5.6920 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2090 105 4.00 5.4136 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2091 105 6.00 5.2353 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2092 105 8.00 4.9572 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2093 105 12.00 4.6072 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2094 105 16.00 4.7434 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2095 105 20.00 4.6058 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2096 105 24.00 4.7982 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2097 105 36.00 4.5292 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2098 105 48.00 4.3386 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2099 105 60.00 3.9727 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2100 105 71.99 3.4504 0 0 0 30000 84.52 2.93 6.15 61.72 3.3479 #> 2101 106 0.00 0.0000 1 60000 1 60000 108.20 3.22 3.18 41.94 3.5482 #> 2102 106 0.25 6.2758 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2103 106 0.50 6.4430 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2104 106 0.75 6.4989 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2105 106 1.00 5.9464 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2106 106 1.50 6.1863 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2107 106 2.00 6.3042 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2108 106 2.50 6.3045 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2109 106 3.00 6.3503 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2110 106 4.00 6.4207 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2111 106 6.00 5.4596 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2112 106 8.00 5.4616 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2113 106 12.00 5.9212 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2114 106 16.00 5.4158 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2115 106 20.00 5.4419 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2116 106 24.00 5.3412 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2117 106 36.00 4.6963 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2118 106 48.00 4.7707 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2119 106 60.00 4.5140 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2120 106 71.99 4.3545 0 0 0 60000 108.20 3.22 3.18 41.94 3.5482 #> 2121 107 0.00 0.0000 1 10000 1 10000 57.48 2.47 4.99 30.07 2.4718 #> 2122 107 0.25 4.9553 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2123 107 0.50 5.2266 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2124 107 0.75 5.2258 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2125 107 1.00 5.1632 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2126 107 1.50 4.8583 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2127 107 2.00 5.1701 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2128 107 2.50 4.8643 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2129 107 3.00 4.6076 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2130 107 4.00 5.0261 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2131 107 6.00 4.6165 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2132 107 8.00 4.6760 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2133 107 12.00 4.4690 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2134 107 16.00 3.9583 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2135 107 20.00 4.0423 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2136 107 24.00 3.5517 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2137 107 36.00 3.3162 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2138 107 48.00 3.0737 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2139 107 60.00 3.3373 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2140 107 71.99 2.5108 0 0 0 10000 57.48 2.47 4.99 30.07 2.4718 #> 2141 108 0.00 0.0000 1 30000 1 30000 55.41 1.88 3.42 81.22 2.2452 #> 2142 108 0.25 6.2043 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2143 108 0.50 6.2393 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2144 108 0.75 5.8866 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2145 108 1.00 6.5284 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2146 108 1.50 6.0409 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2147 108 2.00 6.2407 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2148 108 2.50 6.0659 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2149 108 3.00 6.1876 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2150 108 4.00 5.8700 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2151 108 6.00 5.2993 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2152 108 8.00 5.7124 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2153 108 12.00 5.2871 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2154 108 16.00 4.8208 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2155 108 20.00 5.3167 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2156 108 24.00 5.3166 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2157 108 36.00 4.5650 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2158 108 48.00 4.3854 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2159 108 60.00 4.1098 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2160 108 71.99 4.2461 0 0 0 30000 55.41 1.88 3.42 81.22 2.2452 #> 2161 109 0.00 0.0000 1 120000 1 120000 82.02 3.69 5.38 58.24 3.8365 #> 2162 109 0.25 7.0973 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2163 109 0.50 7.1426 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2164 109 0.75 7.1160 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2165 109 1.00 7.0624 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2166 109 1.50 7.1595 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2167 109 2.00 7.2242 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2168 109 2.50 6.9320 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2169 109 3.00 6.8547 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2170 109 4.00 7.0335 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2171 109 6.00 6.6997 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2172 109 8.00 6.8957 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2173 109 12.00 6.1783 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2174 109 16.00 6.0599 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2175 109 20.00 6.0350 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2176 109 24.00 5.8777 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2177 109 36.00 5.4658 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2178 109 48.00 5.2573 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2179 109 60.00 5.2259 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2180 109 71.99 4.7301 0 0 0 120000 82.02 3.69 5.38 58.24 3.8365 #> 2181 110 0.00 0.0000 1 10000 1 10000 33.02 4.32 2.68 47.16 4.1615 #> 2182 110 0.25 5.6083 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2183 110 0.50 5.7539 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2184 110 0.75 5.6557 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2185 110 1.00 5.7754 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2186 110 1.50 5.5669 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2187 110 2.00 5.3329 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2188 110 2.50 4.7922 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2189 110 3.00 5.4122 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2190 110 4.00 5.3034 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2191 110 6.00 4.3813 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2192 110 8.00 4.2647 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2193 110 12.00 3.8482 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2194 110 16.00 3.2489 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2195 110 20.00 3.1873 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2196 110 24.00 2.7926 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2197 110 36.00 2.5362 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2198 110 48.00 1.9971 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2199 110 60.00 1.8917 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2200 110 71.99 1.4647 0 0 0 10000 33.02 4.32 2.68 47.16 4.1615 #> 2201 111 0.00 0.0000 1 120000 1 120000 56.80 2.26 5.80 57.11 2.3658 #> 2202 111 0.25 7.5450 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2203 111 0.50 7.3998 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2204 111 0.75 7.4727 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2205 111 1.00 7.3439 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2206 111 1.50 7.2691 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2207 111 2.00 7.1870 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2208 111 2.50 7.1550 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2209 111 3.00 7.0969 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2210 111 4.00 7.1245 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2211 111 6.00 7.1705 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2212 111 8.00 6.8447 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2213 111 12.00 6.8559 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2214 111 16.00 6.8472 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2215 111 20.00 6.5130 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2216 111 24.00 6.2248 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2217 111 36.00 6.0660 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2218 111 48.00 5.7711 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2219 111 60.00 5.6278 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2220 111 71.99 5.5306 0 0 0 120000 56.80 2.26 5.80 57.11 2.3658 #> 2221 112 0.00 0.0000 1 60000 1 60000 89.19 3.32 4.83 38.46 3.2529 #> 2222 112 0.25 6.4389 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2223 112 0.50 6.2810 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2224 112 0.75 6.4017 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2225 112 1.00 6.4865 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2226 112 1.50 6.4855 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2227 112 2.00 5.8339 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2228 112 2.50 6.5342 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2229 112 3.00 6.2224 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2230 112 4.00 6.4204 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2231 112 6.00 6.0170 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2232 112 8.00 6.0817 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2233 112 12.00 5.8258 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2234 112 16.00 5.7958 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2235 112 20.00 5.4774 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2236 112 24.00 5.1324 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2237 112 36.00 5.2753 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2238 112 48.00 4.9959 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2239 112 60.00 4.4452 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2240 112 71.99 4.3151 0 0 0 60000 89.19 3.32 4.83 38.46 3.2529 #> 2241 113 0.00 0.0000 1 120000 1 120000 51.03 4.26 6.49 34.22 3.8093 #> 2242 113 0.25 7.8079 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2243 113 0.50 7.7080 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2244 113 0.75 7.9522 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2245 113 1.00 7.3093 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2246 113 1.50 7.2752 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2247 113 2.00 7.3606 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2248 113 2.50 6.9918 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2249 113 3.00 7.1807 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2250 113 4.00 7.3859 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2251 113 6.00 6.8443 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2252 113 8.00 6.6308 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2253 113 12.00 6.5199 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2254 113 16.00 6.8353 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2255 113 20.00 6.0561 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2256 113 24.00 6.3037 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2257 113 36.00 5.5437 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2258 113 48.00 4.6363 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2259 113 60.00 4.6770 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2260 113 71.99 4.0423 0 0 0 120000 51.03 4.26 6.49 34.22 3.8093 #> 2261 114 0.00 0.0000 1 120000 1 120000 54.41 4.79 3.07 46.85 4.6786 #> 2262 114 0.25 7.7603 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2263 114 0.50 7.6790 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2264 114 0.75 7.6545 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2265 114 1.00 7.8145 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2266 114 1.50 7.5313 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2267 114 2.00 7.4079 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2268 114 2.50 7.0512 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2269 114 3.00 7.3297 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2270 114 4.00 7.2178 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2271 114 6.00 6.8568 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2272 114 8.00 6.5614 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2273 114 12.00 6.6495 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2274 114 16.00 6.0921 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2275 114 20.00 5.6724 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2276 114 24.00 5.5536 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2277 114 36.00 5.1335 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2278 114 48.00 4.5665 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2279 114 60.00 4.2571 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2280 114 71.99 4.0580 0 0 0 120000 54.41 4.79 3.07 46.85 4.6786 #> 2281 115 0.00 0.0000 1 30000 1 30000 77.47 4.38 4.88 42.68 4.2592 #> 2282 115 0.25 6.0701 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2283 115 0.50 5.8497 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2284 115 0.75 5.6992 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2285 115 1.00 5.6403 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2286 115 1.50 5.8723 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2287 115 2.00 5.8391 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2288 115 2.50 5.5018 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2289 115 3.00 6.0790 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2290 115 4.00 5.4512 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2291 115 6.00 5.3948 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2292 115 8.00 4.9564 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2293 115 12.00 5.0630 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2294 115 16.00 4.6427 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2295 115 20.00 4.8753 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2296 115 24.00 4.8461 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2297 115 36.00 3.7851 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2298 115 48.00 3.7707 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2299 115 60.00 3.1457 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2300 115 71.99 3.0031 0 0 0 30000 77.47 4.38 4.88 42.68 4.2592 #> 2301 116 0.00 0.0000 1 60000 1 60000 89.74 2.37 3.05 63.01 2.8436 #> 2302 116 0.25 6.5182 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2303 116 0.50 6.1346 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2304 116 0.75 6.4850 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2305 116 1.00 6.7041 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2306 116 1.50 6.4318 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2307 116 2.00 6.2126 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2308 116 2.50 6.8140 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2309 116 3.00 6.6262 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2310 116 4.00 6.4087 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2311 116 6.00 6.0723 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2312 116 8.00 5.7455 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2313 116 12.00 5.9934 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2314 116 16.00 5.8292 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2315 116 20.00 5.1093 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2316 116 24.00 5.4453 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2317 116 36.00 5.2281 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2318 116 48.00 5.1360 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2319 116 60.00 4.6329 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2320 116 71.99 4.5770 0 0 0 60000 89.74 2.37 3.05 63.01 2.8436 #> 2321 117 0.00 0.0000 1 60000 1 60000 46.76 3.73 3.17 45.09 3.7116 #> 2322 117 0.25 7.2372 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2323 117 0.50 6.8813 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2324 117 0.75 6.8554 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2325 117 1.00 7.0076 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2326 117 1.50 7.0250 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2327 117 2.00 6.9488 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2328 117 2.50 7.2128 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2329 117 3.00 6.3986 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2330 117 4.00 6.4377 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2331 117 6.00 6.3683 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2332 117 8.00 6.0206 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2333 117 12.00 5.7848 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2334 117 16.00 5.8478 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2335 117 20.00 5.5071 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2336 117 24.00 5.1212 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2337 117 36.00 5.1749 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2338 117 48.00 4.1990 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2339 117 60.00 3.8779 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2340 117 71.99 3.4521 0 0 0 60000 46.76 3.73 3.17 45.09 3.7116 #> 2341 118 0.00 0.0000 1 10000 1 10000 86.90 3.28 2.77 59.03 3.4401 #> 2342 118 0.25 4.5603 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2343 118 0.50 4.4919 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2344 118 0.75 4.5673 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2345 118 1.00 4.9488 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2346 118 1.50 4.5801 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2347 118 2.00 4.2591 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2348 118 2.50 4.6817 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2349 118 3.00 4.5970 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2350 118 4.00 4.4408 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2351 118 6.00 4.5016 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2352 118 8.00 4.4667 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2353 118 12.00 4.1623 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2354 118 16.00 3.7907 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2355 118 20.00 3.6824 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2356 118 24.00 3.9045 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2357 118 36.00 3.0218 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2358 118 48.00 2.7980 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2359 118 60.00 2.6303 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2360 118 71.99 2.4180 0 0 0 10000 86.90 3.28 2.77 59.03 3.4401 #> 2361 119 0.00 0.0000 1 30000 1 30000 47.91 4.39 2.86 57.14 4.3617 #> 2362 119 0.25 6.8032 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2363 119 0.50 6.4084 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2364 119 0.75 6.4412 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2365 119 1.00 6.2701 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2366 119 1.50 6.1219 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2367 119 2.00 6.1937 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2368 119 2.50 5.6521 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2369 119 3.00 5.3953 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2370 119 4.00 6.1504 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2371 119 6.00 5.8878 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2372 119 8.00 5.4198 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2373 119 12.00 4.9462 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2374 119 16.00 4.3914 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2375 119 20.00 4.1493 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2376 119 24.00 4.2053 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2377 119 36.00 3.8847 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2378 119 48.00 3.0589 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2379 119 60.00 2.9091 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2380 119 71.99 2.8784 0 0 0 30000 47.91 4.39 2.86 57.14 4.3617 #> 2381 120 0.00 0.0000 1 10000 1 10000 54.16 7.04 4.51 45.20 6.8698 #> 2382 120 0.25 5.1029 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2383 120 0.50 5.1382 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2384 120 0.75 4.9832 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2385 120 1.00 4.9910 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2386 120 1.50 4.9774 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2387 120 2.00 4.9170 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2388 120 2.50 4.7479 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2389 120 3.00 5.0471 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2390 120 4.00 4.4159 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2391 120 6.00 4.0390 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2392 120 8.00 3.6357 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2393 120 12.00 3.5117 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2394 120 16.00 3.4362 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2395 120 20.00 2.7368 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2396 120 24.00 2.4657 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2397 120 36.00 1.8923 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2398 120 48.00 1.1582 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2399 120 60.00 0.8168 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> 2400 120 71.99 0.4012 0 0 0 10000 54.16 7.04 4.51 45.20 6.8698 #> V Q V2 ETA1 ETA2 ETA3 ETA4 #> 1 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 2 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 3 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 4 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 5 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 6 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 7 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 8 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 9 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 10 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 11 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 12 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 13 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 14 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 15 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 16 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 17 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 18 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 19 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 20 96.814 4.2420 61.389 -0.1442400 0.3746400 0.0650110 0.24066000 #> 21 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 22 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 23 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 24 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 25 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 26 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 27 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 28 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 29 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 30 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 31 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 32 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 33 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 34 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 35 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 36 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 37 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 38 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 39 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 40 55.868 5.6482 51.688 0.5676500 -0.1751600 0.3513000 0.06865500 #> 41 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 42 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 43 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 44 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 45 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 46 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 47 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 48 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 49 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 50 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 51 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 52 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 53 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 54 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 55 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 56 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 57 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 58 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 59 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 60 62.842 3.6754 46.851 0.4774000 -0.0575320 -0.0783820 -0.02959500 #> 61 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 62 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 63 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 64 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 65 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 66 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 67 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 68 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 69 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 70 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 71 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 72 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 73 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 74 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 75 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 76 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 77 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 78 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 79 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 80 99.810 4.2461 43.480 -0.5958900 0.4051100 0.0659580 -0.10426000 #> 81 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 82 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 83 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 84 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 85 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 86 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 87 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 88 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 89 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 90 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 91 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 92 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 93 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 94 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 95 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 96 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 97 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 98 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 99 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 100 87.672 4.0926 62.084 -0.3236400 0.2754500 0.0291470 0.25192000 #> 101 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 102 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 103 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 104 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 105 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 106 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 107 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 108 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 109 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 110 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 111 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 112 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 113 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 114 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 115 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 116 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 117 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 118 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 119 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 120 78.206 3.9656 51.495 0.2327800 0.1612000 -0.0023819 0.06491000 #> 121 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 122 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 123 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 124 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 125 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 126 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 127 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 128 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 129 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 130 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 131 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 132 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 133 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 134 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 135 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 136 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 137 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 138 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 139 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 140 67.745 4.4765 46.893 0.6069900 0.0175970 0.1188000 -0.02870000 #> 141 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 142 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 143 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 144 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 145 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 146 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 147 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 148 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 149 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 150 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 151 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 152 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 153 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 154 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 155 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 156 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 157 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 158 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 159 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 160 39.094 3.7295 38.683 0.3128300 -0.5321800 -0.0637530 -0.22117000 #> 161 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 162 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 163 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 164 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 165 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 166 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 167 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 168 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 169 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 170 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 171 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 172 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 173 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 174 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 175 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 176 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 177 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 178 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 179 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 180 70.561 4.4350 60.824 0.2949500 0.0583210 0.1094900 0.23141000 #> 181 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 182 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 183 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 184 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 185 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 186 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 187 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 188 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 189 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 190 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 191 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 192 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 193 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 194 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 195 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 196 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 197 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 198 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 199 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 200 51.950 3.3450 37.434 0.1419500 -0.2478600 -0.1725600 -0.25400000 #> 201 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 202 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 203 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 204 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 205 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 206 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 207 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 208 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 209 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 210 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 211 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 212 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 213 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 214 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 215 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 216 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 217 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 218 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 219 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 220 52.636 3.3959 57.221 -0.2705400 -0.2347400 -0.1574600 0.17035000 #> 221 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 222 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 223 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 224 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 225 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 226 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 227 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 228 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 229 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 230 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 231 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 232 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 233 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 234 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 235 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 236 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 237 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 238 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 239 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 240 102.080 4.2640 44.736 -0.4260300 0.4275800 0.0701730 -0.07579300 #> 241 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 242 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 243 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 244 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 245 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 246 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 247 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 248 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 249 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 250 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 251 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 252 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 253 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 254 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 255 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 256 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 257 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 258 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 259 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 260 141.160 3.9696 50.489 0.0801760 0.7517600 -0.0013625 0.04517300 #> 261 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 262 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 263 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 264 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 265 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 266 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 267 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 268 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 269 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 270 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 271 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 272 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 273 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 274 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 275 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 276 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 277 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 278 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 279 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 280 59.879 3.6480 49.249 -0.1263600 -0.1058200 -0.0858530 0.02031600 #> 281 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 282 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 283 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 284 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 285 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 286 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 287 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 288 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 289 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 290 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 291 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 292 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 293 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 294 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 295 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 296 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 297 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 298 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 299 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 300 78.009 3.9433 53.774 0.3869200 0.1586800 -0.0080055 0.10821000 #> 301 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 302 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 303 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 304 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 305 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 306 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 307 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 308 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 309 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 310 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 311 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 312 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 313 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 314 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 315 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 316 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 317 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 318 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 319 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 320 79.947 3.9584 70.167 0.2703600 0.1832100 -0.0041988 0.37430000 #> 321 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 322 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 323 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 324 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 325 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 326 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 327 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 328 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 329 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 330 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 331 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 332 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 333 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 334 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 335 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 336 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 337 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 338 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 339 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 340 48.097 2.6536 61.932 0.2392400 -0.3249200 -0.4041300 0.24946000 #> 341 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 342 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 343 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 344 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 345 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 346 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 347 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 348 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 349 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 350 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 351 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 352 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 353 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 354 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 355 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 356 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 357 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 358 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 359 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 360 77.603 4.3215 60.715 -0.0026996 0.1534600 0.0835740 0.22961000 #> 361 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 362 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 363 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 364 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 365 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 366 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 367 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 368 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 369 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 370 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 371 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 372 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 373 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 374 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 375 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 376 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 377 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 378 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 379 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 380 38.742 3.8278 64.932 0.1384100 -0.5412200 -0.0377320 0.29677000 #> 381 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 382 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 383 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 384 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 385 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 386 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 387 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 388 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 389 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 390 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 391 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 392 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 393 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 394 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 395 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 396 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 397 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 398 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 399 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 400 54.497 5.0026 81.163 -0.4680100 -0.2000000 0.2299200 0.51988000 #> 401 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 402 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 403 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 404 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 405 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 406 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 407 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 408 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 409 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 410 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 411 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 412 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 413 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 414 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 415 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 416 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 417 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 418 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 419 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 420 80.672 3.1024 45.742 0.2804600 0.1922400 -0.2478500 -0.05355400 #> 421 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 422 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 423 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 424 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 425 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 426 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 427 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 428 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 429 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 430 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 431 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 432 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 433 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 434 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 435 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 436 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 437 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 438 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 439 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 440 74.118 3.9131 40.712 -0.0023522 0.1075100 -0.0157060 -0.17004000 #> 441 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 442 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 443 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 444 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 445 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 446 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 447 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 448 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 449 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 450 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 451 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 452 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 453 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 454 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 455 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 456 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 457 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 458 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 459 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 460 60.328 4.8688 36.046 0.4371500 -0.0983500 0.2028200 -0.29177000 #> 461 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 462 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 463 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 464 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 465 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 466 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 467 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 468 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 469 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 470 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 471 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 472 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 473 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 474 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 475 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 476 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 477 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 478 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 479 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 480 73.690 3.7236 49.202 -0.2267000 0.1017200 -0.0653410 0.01935200 #> 481 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 482 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 483 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 484 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 485 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 486 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 487 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 488 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 489 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 490 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 491 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 492 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 493 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 494 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 495 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 496 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 497 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 498 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 499 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 500 70.042 4.5058 36.316 0.3336500 0.0509520 0.1253400 -0.28433000 #> 501 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 502 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 503 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 504 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 505 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 506 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 507 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 508 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 509 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 510 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 511 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 512 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 513 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 514 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 515 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 516 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 517 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 518 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 519 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 520 51.204 4.0884 45.178 -0.1518700 -0.2623300 0.0281190 -0.06596200 #> 521 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 522 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 523 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 524 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 525 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 526 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 527 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 528 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 529 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 530 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 531 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 532 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 533 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 534 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 535 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 536 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 537 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 538 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 539 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 540 61.767 3.8609 44.796 -0.2848000 -0.0747870 -0.0291410 -0.07445900 #> 541 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 542 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 543 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 544 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 545 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 546 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 547 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 548 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 549 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 550 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 551 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 552 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 553 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 554 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 555 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 556 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 557 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 558 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 559 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 560 79.375 4.4519 54.202 0.0474860 0.1760400 0.1133000 0.11615000 #> 561 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 562 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 563 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 564 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 565 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 566 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 567 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 568 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 569 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 570 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 571 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 572 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 573 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 574 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 575 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 576 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 577 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 578 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 579 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 580 43.399 3.5117 53.998 0.1123200 -0.4277000 -0.1239300 0.11237000 #> 581 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 582 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 583 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 584 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 585 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 586 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 587 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 588 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 589 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 590 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 591 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 592 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 593 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 594 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 595 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 596 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 597 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 598 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 599 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 600 84.751 4.8026 49.358 -0.1012100 0.2415700 0.1891200 0.02252700 #> 601 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 602 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 603 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 604 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 605 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 606 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 607 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 608 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 609 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 610 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 611 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 612 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 613 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 614 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 615 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 616 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 617 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 618 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 619 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 620 48.438 2.4995 45.584 0.2603800 -0.3178700 -0.4639600 -0.05701200 #> 621 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 622 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 623 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 624 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 625 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 626 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 627 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 628 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 629 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 630 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 631 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 632 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 633 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 634 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 635 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 636 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 637 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 638 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 639 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 640 58.942 4.3908 46.148 0.0226570 -0.1215900 0.0994800 -0.04471400 #> 641 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 642 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 643 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 644 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 645 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 646 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 647 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 648 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 649 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 650 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 651 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 652 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 653 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 654 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 655 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 656 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 657 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 658 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 659 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 660 40.156 4.4755 44.864 -0.3106900 -0.5053800 0.1185800 -0.07294000 #> 661 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 662 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 663 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 664 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 665 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 666 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 667 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 668 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 669 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 670 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 671 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 672 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 673 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 674 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 675 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 676 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 677 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 678 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 679 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 680 66.177 3.4456 49.577 0.1597400 -0.0058195 -0.1429400 0.02696000 #> 681 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 682 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 683 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 684 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 685 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 686 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 687 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 688 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 689 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 690 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 691 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 692 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 693 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 694 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 695 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 696 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 697 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 698 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 699 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 700 55.206 4.5658 46.422 0.0568940 -0.1870800 0.1385500 -0.03880200 #> 701 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 702 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 703 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 704 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 705 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 706 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 707 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 708 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 709 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 710 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 711 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 712 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 713 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 714 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 715 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 716 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 717 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 718 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 719 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 720 67.547 5.0975 61.102 -0.0414910 0.0146740 0.2487100 0.23597000 #> 721 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 722 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 723 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 724 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 725 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 726 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 727 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 728 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 729 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 730 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 731 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 732 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 733 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 734 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 735 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 736 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 737 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 738 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 739 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 740 80.382 3.4325 48.367 -0.2827100 0.1886500 -0.1467500 0.00223900 #> 741 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 742 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 743 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 744 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 745 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 746 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 747 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 748 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 749 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 750 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 751 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 752 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 753 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 754 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 755 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 756 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 757 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 758 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 759 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 760 55.840 4.0996 56.650 -0.3954400 -0.1756600 0.0308630 0.16032000 #> 761 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 762 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 763 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 764 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 765 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 766 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 767 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 768 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 769 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 770 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 771 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 772 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 773 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 774 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 775 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 776 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 777 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 778 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 779 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 780 52.707 3.7639 49.956 -0.4480100 -0.2333900 -0.0545780 0.03456900 #> 781 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 782 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 783 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 784 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 785 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 786 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 787 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 788 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 789 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 790 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 791 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 792 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 793 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 794 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 795 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 796 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 797 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 798 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 799 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 800 136.260 4.1121 45.860 -0.4035200 0.7164000 0.0338870 -0.05097500 #> 801 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 802 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 803 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 804 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 805 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 806 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 807 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 808 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 809 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 810 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 811 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 812 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 813 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 814 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 815 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 816 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 817 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 818 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 819 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 820 96.520 3.4546 40.987 -0.0966040 0.3716000 -0.1403300 -0.16331000 #> 821 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 822 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 823 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 824 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 825 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 826 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 827 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 828 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 829 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 830 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 831 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 832 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 833 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 834 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 835 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 836 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 837 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 838 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 839 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 840 54.552 4.3678 48.957 0.4065500 -0.1989900 0.0942210 0.01436500 #> 841 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 842 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 843 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 844 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 845 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 846 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 847 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 848 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 849 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 850 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 851 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 852 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 853 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 854 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 855 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 856 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 857 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 858 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 859 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 860 52.375 4.7782 49.445 0.0636550 -0.2397100 0.1840300 0.02427900 #> 861 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 862 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 863 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 864 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 865 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 866 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 867 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 868 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 869 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 870 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 871 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 872 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 873 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 874 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 875 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 876 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 877 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 878 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 879 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 880 77.455 4.3338 44.993 0.7321600 0.1515500 0.0864090 -0.07006200 #> 881 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 882 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 883 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 884 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 885 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 886 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 887 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 888 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 889 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 890 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 891 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 892 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 893 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 894 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 895 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 896 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 897 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 898 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 899 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 900 47.568 2.5274 66.952 0.6948200 -0.3359900 -0.4528600 0.32740000 #> 901 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 902 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 903 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 904 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 905 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 906 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 907 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 908 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 909 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 910 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 911 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 912 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 913 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 914 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 915 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 916 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 917 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 918 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 919 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 920 40.722 4.3334 34.811 -0.1590300 -0.4913900 0.0863150 -0.32664000 #> 921 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 922 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 923 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 924 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 925 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 926 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 927 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 928 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 929 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 930 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 931 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 932 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 933 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 934 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 935 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 936 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 937 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 938 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 939 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 940 112.980 4.6427 48.154 -0.3269300 0.5290700 0.1552600 -0.00216720 #> 941 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 942 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 943 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 944 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 945 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 946 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 947 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 948 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 949 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 950 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 951 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 952 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 953 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 954 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 955 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 956 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 957 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 958 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 959 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 960 102.930 4.4021 54.271 0.3420600 0.4359100 0.1020500 0.11741000 #> 961 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 962 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 963 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 964 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 965 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 966 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 967 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 968 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 969 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 970 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 971 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 972 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 973 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 974 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 975 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 976 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 977 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 978 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 979 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 980 75.479 3.2984 56.797 0.1562500 0.1257100 -0.1865900 0.16290000 #> 981 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 982 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 983 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 984 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 985 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 986 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 987 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 988 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 989 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 990 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 991 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 992 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 993 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 994 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 995 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 996 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 997 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 998 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 999 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 1000 50.377 3.5837 26.172 0.2016700 -0.2786200 -0.1036400 -0.61187000 #> 1001 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1002 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1003 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1004 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1005 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1006 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1007 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1008 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1009 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1010 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1011 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1012 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1013 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1014 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1015 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1016 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1017 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1018 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1019 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1020 63.128 2.9074 78.164 0.2857000 -0.0529810 -0.3127700 0.48224000 #> 1021 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1022 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1023 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1024 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1025 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1026 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1027 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1028 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1029 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1030 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1031 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1032 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1033 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1034 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1035 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1036 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1037 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1038 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1039 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1040 83.933 4.5427 53.888 -0.1792500 0.2318700 0.1334900 0.11034000 #> 1041 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1042 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1043 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1044 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1045 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1046 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1047 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1048 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1049 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1050 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1051 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1052 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1053 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1054 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1055 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1056 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1057 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1058 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1059 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1060 50.070 4.5831 52.431 -0.2067000 -0.2847300 0.1423300 0.08293300 #> 1061 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1062 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1063 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1064 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1065 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1066 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1067 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1068 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1069 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1070 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1071 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1072 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1073 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1074 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1075 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1076 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1077 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1078 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1079 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1080 97.275 3.7713 49.698 -0.1413200 0.3793900 -0.0526100 0.02939400 #> 1081 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1082 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1083 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1084 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1085 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1086 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1087 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1088 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1089 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1090 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1091 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1092 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1093 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1094 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1095 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1096 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1097 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1098 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1099 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1100 48.008 4.6787 44.969 -0.1118100 -0.3267900 0.1629900 -0.07061000 #> 1101 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1102 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1103 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1104 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1105 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1106 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1107 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1108 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1109 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1110 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1111 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1112 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1113 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1114 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1115 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1116 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1117 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1118 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1119 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1120 119.460 4.4151 48.914 -0.6367300 0.5848500 0.1049900 0.01349900 #> 1121 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1122 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1123 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1124 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1125 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1126 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1127 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1128 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1129 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1130 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1131 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1132 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1133 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1134 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1135 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1136 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1137 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1138 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1139 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1140 52.931 2.9816 57.712 -0.2150700 -0.2291700 -0.2875600 0.17890000 #> 1141 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1142 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1143 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1144 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1145 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1146 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1147 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1148 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1149 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1150 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1151 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1152 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1153 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1154 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1155 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1156 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1157 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1158 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1159 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1160 63.053 5.9800 36.605 0.3580700 -0.0541690 0.4083800 -0.27638000 #> 1161 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1162 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1163 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1164 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1165 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1166 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1167 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1168 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1169 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1170 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1171 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1172 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1173 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1174 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1175 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1176 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1177 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1178 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1179 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1180 42.515 3.5249 60.022 0.0591050 -0.4482800 -0.1201800 0.21815000 #> 1181 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1182 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1183 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1184 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1185 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1186 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1187 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1188 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1189 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1190 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1191 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1192 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1193 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1194 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1195 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1196 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1197 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1198 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1199 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1200 63.819 5.3346 43.401 0.1075900 -0.0420950 0.2941800 -0.10610000 #> 1201 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1202 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1203 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1204 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1205 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1206 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1207 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1208 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1209 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1210 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1211 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1212 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1213 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1214 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1215 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1216 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1217 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1218 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1219 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1220 61.956 3.6523 58.887 0.3783700 -0.0717270 -0.0846660 0.19904000 #> 1221 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1222 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1223 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1224 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1225 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1226 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1227 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1228 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1229 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1230 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1231 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1232 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1233 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1234 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1235 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1236 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1237 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1238 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1239 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1240 57.856 3.5788 50.096 -0.2769600 -0.1401900 -0.1050200 0.03736100 #> 1241 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1242 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1243 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1244 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1245 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1246 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1247 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1248 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1249 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1250 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1251 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1252 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1253 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1254 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1255 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1256 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1257 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1258 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1259 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1260 93.431 4.6402 41.207 -0.7283300 0.3390700 0.1547200 -0.15796000 #> 1261 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1262 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1263 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1264 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1265 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1266 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1267 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1268 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1269 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1270 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1271 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1272 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1273 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1274 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1275 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1276 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1277 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1278 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1279 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1280 58.618 4.5069 35.518 0.3856100 -0.1271100 0.1255700 -0.30653000 #> 1281 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1282 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1283 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1284 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1285 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1286 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1287 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1288 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1289 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1290 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1291 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1292 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1293 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1294 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1295 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1296 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1297 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1298 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1299 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1300 56.495 3.4061 50.452 0.1609400 -0.1640000 -0.1544600 0.04444500 #> 1301 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1302 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1303 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1304 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1305 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1306 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1307 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1308 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1309 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1310 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1311 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1312 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1313 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1314 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1315 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1316 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1317 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1318 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1319 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1320 93.953 4.5511 30.610 0.6966800 0.3446400 0.1353300 -0.45524000 #> 1321 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1322 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1323 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1324 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1325 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1326 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1327 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1328 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1329 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1330 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1331 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1332 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1333 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1334 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1335 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1336 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1337 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1338 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1339 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1340 75.634 5.7046 31.963 0.4427500 0.1277600 0.3612500 -0.41201000 #> 1341 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1342 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1343 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1344 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1345 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1346 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1347 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1348 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1349 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1350 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1351 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1352 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1353 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1354 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1355 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1356 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1357 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1358 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1359 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1360 74.633 4.4215 26.725 -0.1965500 0.1144300 0.1064500 -0.59098000 #> 1361 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1362 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1363 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1364 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1365 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1366 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1367 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1368 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1369 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1370 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1371 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1372 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1373 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1374 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1375 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1376 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1377 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1378 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1379 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1380 61.192 3.7566 62.829 -0.0581820 -0.0841300 -0.0565100 0.26385000 #> 1381 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1382 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1383 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1384 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1385 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1386 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1387 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1388 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1389 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1390 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1391 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1392 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1393 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1394 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1395 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1396 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1397 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1398 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1399 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1400 98.675 3.7819 58.445 0.1495200 0.3936800 -0.0498170 0.19150000 #> 1401 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1402 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1403 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1404 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1405 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1406 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1407 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1408 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1409 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1410 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1411 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1412 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1413 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1414 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1415 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1416 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1417 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1418 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1419 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1420 73.985 4.8367 56.402 -0.3374100 0.1057100 0.1962000 0.15593000 #> 1421 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1422 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1423 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1424 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1425 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1426 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1427 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1428 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1429 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1430 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1431 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1432 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1433 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1434 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1435 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1436 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1437 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1438 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1439 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1440 39.758 4.1537 48.299 -0.6987200 -0.5153400 0.0439630 0.00084665 #> 1441 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1442 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1443 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1444 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1445 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1446 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1447 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1448 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1449 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1450 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1451 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1452 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1453 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1454 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1455 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1456 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1457 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1458 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1459 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1460 123.170 4.3495 57.693 0.0107670 0.6154100 0.0900220 0.17856000 #> 1461 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1462 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1463 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1464 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1465 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1466 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1467 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1468 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1469 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1470 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1471 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1472 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1473 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1474 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1475 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1476 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1477 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1478 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1479 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1480 53.932 3.7504 55.345 0.2071300 -0.2104300 -0.0581760 0.13701000 #> 1481 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1482 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1483 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1484 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1485 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1486 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1487 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1488 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1489 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1490 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1491 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1492 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1493 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1494 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1495 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1496 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1497 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1498 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1499 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1500 67.196 4.0367 43.579 0.3645300 0.0094577 0.0153880 -0.10201000 #> 1501 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1502 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1503 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1504 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1505 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1506 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1507 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1508 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1509 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1510 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1511 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1512 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1513 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1514 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1515 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1516 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1517 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1518 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1519 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1520 65.333 4.1355 49.500 -0.0614750 -0.0186490 0.0395690 0.02540500 #> 1521 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1522 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1523 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1524 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1525 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1526 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1527 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1528 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1529 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1530 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1531 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1532 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1533 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1534 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1535 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1536 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1537 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1538 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1539 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1540 47.462 4.3087 43.464 0.1475500 -0.3382100 0.0806090 -0.10464000 #> 1541 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1542 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1543 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1544 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1545 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1546 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1547 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1548 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1549 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1550 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1551 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1552 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1553 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1554 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1555 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1556 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1557 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1558 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1559 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1560 57.844 3.7229 50.091 0.0504310 -0.1403900 -0.0655300 0.03727100 #> 1561 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1562 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1563 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1564 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1565 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1566 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1567 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1568 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1569 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1570 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1571 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1572 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1573 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1574 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1575 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1576 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1577 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1578 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1579 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1580 50.165 4.7522 37.367 -0.1307900 -0.2828300 0.1785700 -0.25578000 #> 1581 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1582 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1583 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1584 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1585 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1586 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1587 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1588 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1589 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1590 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1591 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1592 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1593 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1594 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1595 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1596 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1597 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1598 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1599 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1600 76.172 4.7591 53.814 -0.0471420 0.1348500 0.1800300 0.10897000 #> 1601 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1602 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1603 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1604 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1605 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1606 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1607 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1608 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1609 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1610 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1611 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1612 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1613 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1614 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1615 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1616 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1617 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1618 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1619 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1620 53.922 4.5740 52.758 0.0315520 -0.2106100 0.1403500 0.08913800 #> 1621 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1622 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1623 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1624 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1625 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1626 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1627 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1628 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1629 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1630 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1631 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1632 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1633 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1634 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1635 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1636 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1637 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1638 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1639 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1640 48.719 3.1339 49.545 0.3710800 -0.3120900 -0.2377500 0.02630500 #> 1641 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1642 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1643 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1644 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1645 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1646 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1647 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1648 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1649 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1650 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1651 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1652 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1653 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1654 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1655 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1656 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1657 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1658 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1659 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1660 122.770 4.4265 40.436 0.2514800 0.6121900 0.1075800 -0.17685000 #> 1661 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1662 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1663 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1664 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1665 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1666 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1667 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1668 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1669 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1670 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1671 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1672 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1673 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1674 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1675 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1676 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1677 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1678 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1679 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1680 69.937 3.8110 53.444 -0.1896300 0.0494390 -0.0421410 0.10207000 #> 1681 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1682 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1683 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1684 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1685 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1686 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1687 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1688 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1689 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1690 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1691 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1692 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1693 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1694 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1695 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1696 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1697 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1698 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1699 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1700 87.531 4.6792 49.911 0.3329900 0.2738500 0.1631000 0.03366600 #> 1701 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1702 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1703 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1704 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1705 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1706 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1707 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1708 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1709 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1710 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1711 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1712 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1713 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1714 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1715 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1716 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1717 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1718 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1719 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1720 56.700 3.6462 45.506 -0.2381200 -0.1603800 -0.0863430 -0.05873100 #> 1721 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1722 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1723 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1724 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1725 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1726 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1727 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1728 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1729 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1730 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1731 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1732 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1733 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1734 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1735 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1736 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1737 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1738 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1739 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1740 69.362 3.0150 55.927 0.3839200 0.0411960 -0.2764400 0.14747000 #> 1741 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1742 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1743 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1744 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1745 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1746 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1747 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1748 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1749 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1750 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1751 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1752 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1753 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1754 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1755 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1756 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1757 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1758 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1759 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1760 81.281 3.3988 39.508 -0.1029900 0.1997700 -0.1566200 -0.20006000 #> 1761 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1762 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1763 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1764 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1765 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1766 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1767 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1768 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1769 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1770 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1771 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1772 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1773 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1774 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1775 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1776 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1777 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1778 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1779 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1780 100.800 4.3734 45.220 -0.1516700 0.4149500 0.0954980 -0.06503200 #> 1781 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1782 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1783 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1784 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1785 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1786 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1787 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1788 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1789 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1790 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1791 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1792 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1793 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1794 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1795 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1796 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1797 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1798 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1799 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1800 89.416 4.8265 55.279 0.0140740 0.2951500 0.1940900 0.13582000 #> 1801 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1802 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1803 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1804 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1805 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1806 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1807 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1808 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1809 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1810 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1811 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1812 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1813 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1814 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1815 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1816 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1817 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1818 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1819 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1820 36.502 2.8617 54.041 -0.4192900 -0.6007800 -0.3286300 0.11317000 #> 1821 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1822 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1823 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1824 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1825 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1826 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1827 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1828 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1829 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1830 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1831 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1832 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1833 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1834 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1835 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1836 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1837 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1838 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1839 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1840 54.750 4.7106 39.857 -0.0607360 -0.1953600 0.1697700 -0.19127000 #> 1841 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1842 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1843 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1844 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1845 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1846 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1847 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1848 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1849 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1850 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1851 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1852 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1853 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1854 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1855 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1856 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1857 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1858 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1859 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1860 83.380 4.3828 50.792 -0.0895760 0.2252600 0.0976620 0.05117200 #> 1861 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1862 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1863 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1864 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1865 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1866 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1867 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1868 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1869 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1870 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1871 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1872 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1873 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1874 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1875 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1876 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1877 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1878 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1879 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1880 104.310 4.3687 44.060 -0.5952800 0.4492600 0.0944350 -0.09101900 #> 1881 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1882 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1883 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1884 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1885 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1886 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1887 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1888 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1889 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1890 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1891 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1892 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1893 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1894 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1895 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1896 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1897 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1898 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1899 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1900 69.570 2.4219 40.001 -0.5251200 0.0441880 -0.4954900 -0.18768000 #> 1901 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1902 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1903 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1904 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1905 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1906 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1907 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1908 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1909 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1910 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1911 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1912 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1913 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1914 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1915 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1916 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1917 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1918 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1919 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1920 60.899 4.1879 44.198 0.0021884 -0.0889310 0.0521610 -0.08790500 #> 1921 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1922 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1923 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1924 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1925 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1926 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1927 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1928 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1929 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1930 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1931 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1932 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1933 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1934 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1935 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1936 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1937 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1938 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1939 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1940 35.477 3.1933 57.080 -0.0122150 -0.6292700 -0.2189700 0.16788000 #> 1941 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1942 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1943 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1944 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1945 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1946 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1947 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1948 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1949 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1950 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1951 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1952 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1953 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1954 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1955 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1956 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1957 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1958 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1959 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1960 41.032 5.1390 52.797 -0.0661140 -0.4838100 0.2568300 0.08987800 #> 1961 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1962 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1963 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1964 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1965 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1966 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1967 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1968 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1969 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1970 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1971 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1972 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1973 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1974 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1975 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1976 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1977 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1978 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1979 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1980 58.800 5.4494 46.261 0.2884700 -0.1240100 0.3154700 -0.04228300 #> 1981 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1982 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1983 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1984 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1985 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1986 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1987 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1988 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1989 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1990 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1991 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1992 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1993 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1994 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1995 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1996 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1997 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1998 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 1999 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 2000 55.448 4.5104 36.173 0.1676800 -0.1827100 0.1263400 -0.28827000 #> 2001 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2002 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2003 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2004 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2005 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2006 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2007 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2008 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2009 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2010 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2011 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2012 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2013 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2014 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2015 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2016 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2017 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2018 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2019 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2020 65.298 5.2789 55.379 0.1375500 -0.0191870 0.2836800 0.13762000 #> 2021 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2022 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2023 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2024 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2025 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2026 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2027 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2028 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2029 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2030 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2031 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2032 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2033 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2034 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2035 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2036 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2037 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2038 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2039 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2040 106.740 4.2647 53.705 0.2745200 0.4722300 0.0703480 0.10694000 #> 2041 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2042 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2043 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2044 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2045 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2046 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2047 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2048 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2049 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2050 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2051 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2052 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2053 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2054 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2055 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2056 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2057 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2058 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2059 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2060 74.870 4.8045 46.215 -0.1156800 0.1176000 0.1895100 -0.04326800 #> 2061 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2062 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2063 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2064 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2065 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2066 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2067 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2068 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2069 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2070 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2071 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2072 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2073 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2074 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2075 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2076 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2077 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2078 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2079 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2080 70.539 3.7937 41.746 0.0680130 0.0580180 -0.0466930 -0.14497000 #> 2081 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2082 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2083 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2084 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2085 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2086 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2087 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2088 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2089 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2090 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2091 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2092 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2093 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2094 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2095 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2096 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2097 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2098 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2099 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2100 78.522 6.4487 59.293 -0.1620100 0.1652300 0.4838400 0.20592000 #> 2101 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2102 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2103 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2104 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2105 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2106 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2107 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2108 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2109 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2110 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2111 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2112 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2113 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2114 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2115 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2116 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2117 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2118 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2119 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2120 98.558 3.9291 53.986 -0.1039000 0.3924900 -0.0116280 0.11216000 #> 2121 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2122 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2123 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2124 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2125 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2126 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2127 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2128 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2129 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2130 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2131 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2132 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2133 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2134 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2135 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2136 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2137 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2138 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2139 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2140 56.580 3.1700 49.555 -0.4654100 -0.1624900 -0.2263100 0.02651600 #> 2141 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2142 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2143 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2144 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2145 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2146 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2147 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2148 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2149 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2150 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2151 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2152 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2153 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2154 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2155 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2156 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2157 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2158 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2159 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2160 54.266 4.3201 45.091 -0.5615600 -0.2042500 0.0832340 -0.06788500 #> 2161 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2162 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2163 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2164 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2165 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2166 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2167 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2168 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2169 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2170 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2171 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2172 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2173 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2174 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2175 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2176 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2177 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2178 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2179 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2180 89.492 3.8201 56.336 -0.0257820 0.2960000 -0.0397460 0.15477000 #> 2181 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2182 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2183 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2184 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2185 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2186 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2187 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2188 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2189 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2190 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2191 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2192 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2193 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2194 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2195 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2196 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2197 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2198 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2199 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2200 31.031 2.4218 48.834 0.0555450 -0.7631600 -0.4955200 0.01184700 #> 2201 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2202 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2203 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2204 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2205 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2206 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2207 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2208 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2209 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2210 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2211 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2212 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2213 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2214 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2215 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2216 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2217 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2218 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2219 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2220 71.446 3.5915 42.969 -0.5092300 0.0707980 -0.1014800 -0.11609000 #> 2221 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2222 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2223 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2224 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2225 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2226 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2227 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2228 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2229 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2230 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2231 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2232 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2233 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2234 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2235 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2236 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2237 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2238 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2239 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2240 90.360 3.8807 44.888 -0.1907900 0.3056500 -0.0240140 -0.07240200 #> 2241 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2242 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2243 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2244 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2245 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2246 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2247 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2248 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2249 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2250 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2251 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2252 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2253 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2254 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2255 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2256 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2257 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2258 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2259 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2260 51.120 6.0450 31.724 -0.0328870 -0.2639800 0.4192000 -0.41951000 #> 2261 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2262 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2263 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2264 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2265 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2266 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2267 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2268 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2269 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2270 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2271 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2272 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2273 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2274 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2275 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2276 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2277 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2278 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2279 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2280 53.523 3.1314 47.097 0.1726700 -0.2180400 -0.2385600 -0.02436800 #> 2281 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2282 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2283 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2284 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2285 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2286 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2287 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2288 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2289 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2290 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2291 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2292 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2293 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2294 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2295 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2296 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2297 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2298 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2299 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2300 75.679 4.4668 38.791 0.0787500 0.1283600 0.1166400 -0.21838000 #> 2301 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2302 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2303 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2304 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2305 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2306 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2307 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2308 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2309 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2310 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2311 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2312 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2313 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2314 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2315 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2316 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2317 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2318 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2319 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2320 78.554 3.9420 51.201 -0.3252800 0.1656400 -0.0083469 0.05918700 #> 2321 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2322 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2323 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2324 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2325 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2326 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2327 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2328 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2329 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2330 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2331 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2332 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2333 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2334 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2335 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2336 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2337 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2338 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2339 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2340 45.696 4.3789 36.422 -0.0588720 -0.3761500 0.0967660 -0.28140000 #> 2341 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2342 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2343 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2344 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2345 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2346 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2347 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2348 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2349 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2350 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2351 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2352 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2353 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2354 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2355 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2356 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2357 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2358 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2359 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2360 85.632 3.1675 41.960 -0.1348300 0.2519100 -0.2270900 -0.13986000 #> 2361 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2362 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2363 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2364 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2365 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2366 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2367 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2368 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2369 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2370 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2371 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2372 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2373 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2374 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2375 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2376 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2377 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2378 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2379 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2380 44.288 2.9913 55.885 0.1025200 -0.4074300 -0.2843200 0.14673000 #> 2381 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2382 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2383 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2384 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2385 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2386 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2387 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2388 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2389 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2390 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2391 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2392 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2393 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2394 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2395 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2396 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2397 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2398 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2399 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> 2400 55.704 3.2898 40.363 0.5568000 -0.1781000 -0.1892200 -0.17867000 #> IPRED IRES IWRES CWRESI DV PRED RES #> 1 1239.5000 -1.2395e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2 1215.4000 -1.7466e+02 -0.73154000 -0.94933000 1040.7 1750.3000 -7.0959e+02 #> 3 1191.9000 4.3708e+02 1.86670000 0.92773000 1629.0 1699.8000 -7.0834e+01 #> 4 1169.2000 -2.9136e+02 -1.26860000 -1.31600000 877.8 1651.3000 -7.7355e+02 #> 5 1147.1000 1.0014e+02 0.44442000 -0.06214200 1247.2 1604.8000 -3.5755e+02 #> 6 1104.7000 1.2038e+02 0.55470000 0.04936100 1225.1 1516.9000 -2.9181e+02 #> 7 1064.8000 7.3942e+01 0.35351000 -0.07069100 1138.7 1435.7000 -2.9702e+02 #> 8 1027.0000 -9.4425e+01 -0.46802000 -0.66369000 932.6 1360.6000 -4.2804e+02 #> 9 991.3800 -4.9883e+01 -0.25613000 -0.48370000 941.5 1291.2000 -3.4967e+02 #> 10 925.8700 -2.3127e+02 -1.27150000 -1.23970000 694.6 1167.3000 -4.7267e+02 #> 11 814.8000 4.2802e+01 0.26741000 0.03960700 857.6 969.0700 -1.1147e+02 #> 12 725.3500 3.5551e+01 0.24950000 0.08633300 760.9 821.0200 -6.0120e+01 #> 13 593.2400 9.8162e+01 0.84231000 0.70403000 691.4 622.5300 6.8871e+01 #> 14 502.8200 3.4078e+01 0.34500000 0.32047000 536.9 500.6600 3.6237e+01 #> 15 438.1100 -1.5151e+02 -1.76040000 -1.65760000 286.6 419.5400 -1.3294e+02 #> 16 389.5000 -3.0199e+01 -0.39468000 -0.31722000 359.3 360.9500 -1.6535e+00 #> 17 293.0200 -2.4224e+01 -0.42082000 -0.25990000 268.8 247.0800 2.1722e+01 #> 18 230.0500 -4.7148e+01 -1.04330000 -0.88073000 182.9 174.9500 7.9453e+00 #> 19 182.7600 4.2935e+01 1.19590000 1.74640000 225.7 124.6500 1.0105e+02 #> 20 145.6900 2.5208e+01 0.88075000 1.44280000 170.9 88.9240 8.1976e+01 #> 21 178.9900 -1.7899e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 22 169.2400 -2.1745e+01 -0.65402000 -0.41179000 147.5 145.8600 1.6425e+00 #> 23 160.1400 6.0559e+01 1.92500000 2.24700000 220.7 141.6500 7.9047e+01 #> 24 151.6400 1.7863e+01 0.59966000 0.71962000 169.5 137.6100 3.1888e+01 #> 25 143.6900 -3.4092e+01 -1.20780000 -1.19830000 109.6 133.7300 -2.4129e+01 #> 26 129.3300 8.7705e+00 0.34521000 0.18898000 138.1 126.4100 1.1691e+01 #> 27 116.7800 1.5125e+01 0.65931000 0.33372000 131.9 119.6400 1.2256e+01 #> 28 105.7900 -2.9591e+01 -1.42390000 -1.56970000 76.2 113.3900 -3.7187e+01 #> 29 96.1680 -3.3668e+01 -1.78210000 -1.88200000 62.5 107.6000 -4.5098e+01 #> 30 80.3130 -7.6130e+00 -0.48253000 -0.88819000 72.7 97.2730 -2.4573e+01 #> 31 58.4760 7.6241e+00 0.66369000 -0.13884000 66.1 80.7560 -1.4656e+01 #> 32 44.9890 -5.7888e+00 -0.65500000 -0.96188000 39.2 68.4180 -2.9218e+01 #> 33 30.4330 -4.3266e-01 -0.07237100 -0.45571000 30.0 51.8770 -2.1877e+01 #> 34 23.0350 -1.7347e+00 -0.38335000 -0.52725000 21.3 41.7220 -2.0422e+01 #> 35 18.3840 -5.8412e-01 -0.16174000 -0.35077000 17.8 34.9620 -1.7162e+01 #> 36 15.0010 1.3988e+00 0.47467000 0.00145430 16.4 30.0790 -1.3679e+01 #> 37 8.4362 2.8638e+00 1.72800000 0.53135000 11.3 20.5900 -9.2898e+00 #> 38 4.7824 -9.8235e-01 -1.04560000 -0.68863000 3.8 14.5800 -1.0780e+01 #> 39 2.7123 -1.2258e-02 -0.02300600 -0.26886000 2.7 10.3870 -7.6871e+00 #> 40 1.5390 6.1007e-02 0.20179000 -0.18265000 1.6 7.4103 -5.8103e+00 #> 41 1909.6000 -1.9096e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 42 1835.2000 7.6630e+02 2.12560000 2.33740000 2601.5 1750.3000 8.5121e+02 #> 43 1764.2000 -3.4495e+02 -0.99530000 -0.80509000 1419.3 1699.8000 -2.8053e+02 #> 44 1696.5000 -5.0155e+02 -1.50490000 -1.33210000 1195.0 1651.3000 -4.5635e+02 #> 45 1631.9000 -1.4394e+02 -0.44898000 -0.32949000 1488.0 1604.8000 -1.1675e+02 #> 46 1511.4000 8.5180e+01 0.28688000 0.31167000 1596.6 1516.9000 7.9687e+01 #> 47 1401.6000 -3.2110e+02 -1.16620000 -1.10970000 1080.5 1435.7000 -3.5522e+02 #> 48 1301.5000 2.8103e+02 1.09920000 0.92316000 1582.5 1360.6000 2.2186e+02 #> 49 1210.2000 -3.7775e+02 -1.58900000 -1.55130000 832.4 1291.2000 -4.5877e+02 #> 50 1050.7000 1.8579e+02 0.90009000 0.54798000 1236.5 1167.3000 6.9227e+01 #> 51 806.2600 1.0424e+02 0.65813000 0.16025000 910.5 969.0700 -5.8572e+01 #> 52 634.0900 -1.1119e+02 -0.89262000 -1.09670000 522.9 821.0200 -2.9812e+02 #> 53 421.9200 6.5779e+01 0.79362000 -0.02376900 487.7 622.5300 -1.3483e+02 #> 54 305.8600 5.0637e+01 0.84275000 -0.06161400 356.5 500.6600 -1.4416e+02 #> 55 236.3000 -4.5304e+01 -0.97594000 -1.10110000 191.0 419.5400 -2.2854e+02 #> 56 190.3300 2.2731e+00 0.06079500 -0.50835000 192.6 360.9500 -1.6835e+02 #> 57 111.1500 6.3476e+00 0.29070000 -0.33049000 117.5 247.0800 -1.2958e+02 #> 58 68.1420 -2.2442e+01 -1.67650000 -1.15850000 45.7 174.9500 -1.2925e+02 #> 59 42.0920 1.2808e+01 1.54890000 0.32179000 54.9 124.6500 -6.9745e+01 #> 60 26.0420 -4.1415e+00 -0.80956000 -0.58061000 21.9 88.9240 -6.7024e+01 #> 61 100.1900 -1.0019e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 62 98.6060 2.9094e+01 1.50190000 0.60415000 127.7 145.8600 -1.8158e+01 #> 63 97.0720 -1.0272e+01 -0.53867000 -0.80951000 86.8 141.6500 -5.4853e+01 #> 64 95.5860 -8.9861e+00 -0.47855000 -0.75393000 86.6 137.6100 -5.1012e+01 #> 65 94.1470 -9.8465e+00 -0.53240000 -0.77932000 84.3 133.7300 -4.9429e+01 #> 66 91.4000 6.5995e+00 0.36755000 -0.10313000 98.0 126.4100 -2.8409e+01 #> 67 88.8210 -2.1021e+01 -1.20480000 -1.22350000 67.8 119.6400 -5.1844e+01 #> 68 86.3980 -3.9765e-01 -0.02342900 -0.32862000 86.0 113.3900 -2.7387e+01 #> 69 84.1180 -1.5218e+01 -0.92094000 -0.97757000 68.9 107.6000 -3.8698e+01 #> 70 79.9540 3.3464e+00 0.21306000 -0.06560900 83.3 97.2730 -1.3973e+01 #> 71 72.9600 -5.5965e-01 -0.03904700 -0.16635000 72.4 80.7560 -8.3560e+00 #> 72 67.3720 3.0428e+01 2.29910000 1.91660000 97.8 68.4180 2.9382e+01 #> 73 59.1090 -2.1609e+01 -1.86100000 -1.66160000 37.5 51.8770 -1.4377e+01 #> 74 53.3120 1.0875e+00 0.10384000 0.27896000 54.4 41.7220 1.2678e+01 #> 75 48.9500 3.4950e-01 0.03634500 0.27971000 49.3 34.9620 1.4338e+01 #> 76 45.4480 -4.4480e+00 -0.49820000 -0.28734000 41.0 30.0790 1.0921e+01 #> 77 37.5120 8.0881e+00 1.09760000 1.86100000 45.6 20.5900 2.5010e+01 #> 78 31.4400 6.3599e+00 1.02970000 2.02130000 37.8 14.5800 2.3220e+01 #> 79 26.4340 6.6593e-01 0.12824000 0.51684000 27.1 10.3870 1.6713e+01 #> 80 22.2430 1.0575e+00 0.24202000 0.68597000 23.3 7.4103 1.5890e+01 #> 81 342.1900 -3.4219e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 82 335.5100 -7.1612e+01 -1.08650000 -1.21740000 263.9 437.5700 -1.7367e+02 #> 83 329.0300 8.2268e+01 1.27280000 0.61262000 411.3 424.9600 -1.3659e+01 #> 84 322.7400 -3.2039e+01 -0.50534000 -0.74685000 290.7 412.8400 -1.2214e+02 #> 85 316.6300 -2.1928e+01 -0.35255000 -0.61523000 294.7 401.1900 -1.0649e+02 #> 86 304.9300 7.8704e+00 0.13139000 -0.20688000 312.8 379.2300 -6.6428e+01 #> 87 293.8900 1.3508e+01 0.23397000 -0.09590000 307.4 358.9300 -5.1531e+01 #> 88 283.4700 4.0425e+01 0.72593000 0.33238000 323.9 340.1600 -1.6261e+01 #> 89 273.6400 5.1597e+00 0.09598400 -0.15386000 278.8 322.7900 -4.3993e+01 #> 90 255.5800 3.6322e+01 0.72343000 0.42278000 291.9 291.8200 8.1755e-02 #> 91 225.0200 5.0842e+00 0.11502000 -0.00738410 230.1 242.2700 -1.2168e+01 #> 92 200.4800 -1.0479e+01 -0.26608000 -0.29034000 190.0 205.2600 -1.5255e+01 #> 93 164.4400 3.7657e+01 1.16570000 1.17620000 202.1 155.6300 4.6468e+01 #> 94 140.0100 -1.7711e+01 -0.64393000 -0.56274000 122.3 125.1700 -2.8659e+00 #> 95 122.7100 -1.6307e+01 -0.67649000 -0.58042000 106.4 104.8900 1.5145e+00 #> 96 109.8400 -2.7941e+01 -1.29490000 -1.23800000 81.9 90.2380 -8.3384e+00 #> 97 84.6120 -1.2412e+01 -0.74673000 -0.60903000 72.2 61.7700 1.0430e+01 #> 98 68.1290 6.9713e+00 0.52088000 1.01240000 75.1 43.7390 3.1361e+01 #> 99 55.5280 9.7170e-01 0.08907800 0.50259000 56.5 31.1610 2.5339e+01 #> 100 45.4120 1.2488e+01 1.39980000 2.44320000 57.9 22.2310 3.5669e+01 #> 101 383.6000 -3.8360e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 102 372.8500 3.6354e+01 0.49633000 0.21965000 409.2 437.5700 -2.8373e+01 #> 103 362.4800 -5.6482e+01 -0.79320000 -0.85685000 306.0 424.9600 -1.1896e+02 #> 104 352.4900 -6.1394e+01 -0.88661000 -0.93707000 291.1 412.8400 -1.2174e+02 #> 105 342.8700 -3.0667e+00 -0.04553000 -0.23340000 339.8 401.1900 -6.1388e+01 #> 106 324.6400 5.7660e+01 0.90413000 0.56527000 382.3 379.2300 3.0718e+00 #> 107 307.7000 4.4803e+01 0.74122000 0.42834000 352.5 358.9300 -6.4309e+00 #> 108 291.9400 2.1960e+01 0.38292000 0.12410000 313.9 340.1600 -2.6261e+01 #> 109 277.2800 -1.2790e+00 -0.02348100 -0.22320000 276.0 322.7900 -4.6793e+01 #> 110 250.9200 -6.8222e+01 -1.38400000 -1.39010000 182.7 291.8200 -1.0912e+02 #> 111 208.1200 6.3581e+01 1.55520000 1.10860000 271.7 242.2700 2.9432e+01 #> 112 175.5400 2.2585e+00 0.06549400 -0.17780000 177.8 205.2600 -2.7455e+01 #> 113 130.9200 -1.9022e+01 -0.73960000 -0.87153000 111.9 155.6300 -4.3732e+01 #> 114 103.0400 -1.5642e+01 -0.77273000 -0.89537000 87.4 125.1700 -3.7766e+01 #> 115 84.4670 7.1330e+00 0.42988000 0.06442200 91.6 104.8900 -1.3286e+01 #> 116 71.2320 5.6804e-01 0.04059400 -0.24457000 71.8 90.2380 -1.8438e+01 #> 117 46.5940 7.7057e+00 0.84186000 0.35495000 54.3 61.7700 -7.4695e+00 #> 118 31.9300 -1.8299e+00 -0.29174000 -0.42659000 30.1 43.7390 -1.3639e+01 #> 119 22.1040 -5.0443e-01 -0.11617000 -0.26746000 21.6 31.1610 -9.5613e+00 #> 120 15.3400 1.3600e+00 0.45130000 0.12642000 16.7 22.2310 -5.5309e+00 #> 121 885.6800 -8.8568e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 122 848.4200 7.3780e+01 0.44267000 0.32534000 922.2 875.1500 4.7055e+01 #> 123 813.0600 1.1604e+02 0.72654000 0.53888000 929.1 849.9200 7.9183e+01 #> 124 779.4800 6.4516e+01 0.42133000 0.21529000 844.0 825.6700 1.8325e+01 #> 125 747.6100 5.5904e+00 0.03806500 -0.16891000 753.2 802.3800 -4.9176e+01 #> 126 688.6000 -2.3796e+01 -0.17591000 -0.42308000 664.8 758.4600 -9.3656e+01 #> 127 635.3500 1.5352e+01 0.12300000 -0.22283000 650.7 717.8600 -6.7162e+01 #> 128 587.2700 -1.5297e+02 -1.32590000 -1.47940000 434.3 680.3200 -2.4602e+02 #> 129 543.8300 5.5775e+01 0.52208000 0.00287500 599.6 645.5900 -4.5986e+01 #> 130 468.9800 -7.0879e+01 -0.76935000 -1.08350000 398.1 583.6400 -1.8554e+02 #> 131 356.9400 1.8357e+01 0.26180000 -0.37827000 375.3 484.5400 -1.0924e+02 #> 132 280.2000 1.2396e+01 0.22520000 -0.44179000 292.6 410.5100 -1.1791e+02 #> 133 188.0100 -6.4067e+00 -0.17347000 -0.67964000 181.6 311.2600 -1.2966e+02 #> 134 137.9400 -2.1136e+01 -0.78000000 -0.97326000 116.8 250.3300 -1.3353e+02 #> 135 107.2100 2.4389e+01 1.15800000 0.10155000 131.6 209.7700 -7.8171e+01 #> 136 86.1330 1.6267e+01 0.96137000 -0.00339870 102.4 180.4800 -7.8077e+01 #> 137 48.1790 -7.7788e+00 -0.82189000 -0.81157000 40.4 123.5400 -8.3139e+01 #> 138 27.7110 -3.9107e+00 -0.71840000 -0.68242000 23.8 87.4770 -6.3677e+01 #> 139 15.9930 -6.9274e-01 -0.22050000 -0.42228000 15.3 62.3230 -4.7023e+01 #> 140 9.2379 1.4621e+00 0.80565000 -0.03250900 10.7 44.4620 -3.3762e+01 #> 141 1534.8000 -1.5348e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 142 1448.3000 -2.3340e+02 -0.82036000 -0.46169000 1214.9 875.1500 3.3975e+02 #> 143 1367.5000 -1.0353e+02 -0.38539000 0.14146000 1264.0 849.9200 4.1408e+02 #> 144 1292.1000 -1.6326e+02 -0.64321000 -0.38024000 1128.8 825.6700 3.0313e+02 #> 145 1221.5000 6.2298e+02 2.59610000 4.34140000 1844.5 802.3800 1.0421e+03 #> 146 1094.0000 1.6004e+02 0.74473000 1.26890000 1254.0 758.4600 4.9554e+02 #> 147 982.4200 -6.4919e+01 -0.33638000 -0.34567000 917.5 717.8600 1.9964e+02 #> 148 884.8200 4.1982e+01 0.24153000 0.20680000 926.8 680.3200 2.4648e+02 #> 149 799.3400 -1.2164e+02 -0.77462000 -1.01770000 677.7 645.5900 3.2114e+01 #> 150 658.6200 6.3884e+01 0.49376000 0.11605000 722.5 583.6400 1.3886e+02 #> 151 465.5900 6.8610e+01 0.75014000 0.08656600 534.2 484.5400 4.9664e+01 #> 152 347.7000 -4.6697e+01 -0.68367000 -1.00540000 301.0 410.5100 -1.0951e+02 #> 153 224.1400 3.1460e+01 0.71450000 -0.03564200 255.6 311.2600 -5.5664e+01 #> 154 165.0700 -1.0367e+01 -0.31970000 -0.63244000 154.7 250.3300 -9.5632e+01 #> 155 130.1100 3.0193e+01 1.18130000 0.23556000 160.3 209.7700 -4.9471e+01 #> 156 105.6600 7.5425e+00 0.36339000 -0.27977000 113.2 180.4800 -6.7277e+01 #> 157 59.3830 -6.5828e+00 -0.56429000 -0.86429000 52.8 123.5400 -7.0739e+01 #> 158 33.7650 -3.7646e+00 -0.56756000 -0.86173000 30.0 87.4770 -5.7477e+01 #> 159 19.2120 -6.3116e+00 -1.67240000 -1.22990000 12.9 62.3230 -4.9423e+01 #> 160 10.9370 2.4633e+00 1.14650000 -0.14093000 13.4 44.4620 -3.1062e+01 #> 161 141.7200 -1.4172e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 162 136.9400 1.7057e+01 0.63403000 0.43723000 154.0 145.8600 8.1425e+00 #> 163 132.3600 6.1360e+00 0.23598000 0.06807300 138.5 141.6500 -3.1529e+00 #> 164 127.9800 3.0924e+01 1.23010000 0.95383000 158.9 137.6100 2.1288e+01 #> 165 123.7700 -9.8699e+00 -0.40593000 -0.52590000 113.9 133.7300 -1.9829e+01 #> 166 115.8700 -2.0575e+01 -0.90386000 -0.98372000 95.3 126.4100 -3.1109e+01 #> 167 108.6200 3.8135e-01 0.01787200 -0.17413000 109.0 119.6400 -1.0644e+01 #> 168 101.9500 -1.8347e+01 -0.91613000 -1.01020000 83.6 113.3900 -2.9787e+01 #> 169 95.8110 -1.8110e+00 -0.09622100 -0.29727000 94.0 107.6000 -1.3598e+01 #> 170 84.9650 2.2135e+01 1.32620000 0.91301000 107.1 97.2730 9.8273e+00 #> 171 67.9330 -5.4325e+00 -0.40708000 -0.59599000 62.5 80.7560 -1.8256e+01 #> 172 55.5480 -1.7748e+01 -1.62640000 -1.58270000 37.8 68.4180 -3.0618e+01 #> 173 39.6260 -1.3261e+00 -0.17035000 -0.40854000 38.3 51.8770 -1.3577e+01 #> 174 30.4480 8.0522e+00 1.34620000 0.70603000 38.5 41.7220 -3.2220e+00 #> 175 24.7110 -6.6109e+00 -1.36180000 -1.20750000 18.1 34.9620 -1.6862e+01 #> 176 20.7920 -3.0919e+00 -0.75699000 -0.74067000 17.7 30.0790 -1.2379e+01 #> 177 13.6810 -2.8099e-01 -0.10455000 -0.17528000 13.4 20.5900 -7.1898e+00 #> 178 9.4235 1.8765e+00 1.01370000 0.65174000 11.3 14.5800 -3.2796e+00 #> 179 6.5420 3.5802e-01 0.27859000 0.25631000 6.9 10.3870 -3.4871e+00 #> 180 4.5489 1.5112e-01 0.16911000 0.24134000 4.7 7.4103 -2.7103e+00 #> 181 192.4900 -1.9249e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 182 185.3600 -2.1261e+01 -0.58388000 -0.32923000 164.1 145.8600 1.8242e+01 #> 183 178.5600 -1.7459e+01 -0.49773000 -0.25467000 161.1 141.6500 1.9447e+01 #> 184 172.0700 3.2029e+01 0.94754000 1.45750000 204.1 137.6100 6.6488e+01 #> 185 165.8800 -5.5280e+01 -1.69640000 -1.74570000 110.6 133.7300 -2.3129e+01 #> 186 154.3400 1.9264e+01 0.63538000 0.97576000 173.6 126.4100 4.7191e+01 #> 187 143.8200 1.2481e+01 0.44175000 0.68588000 156.3 119.6400 3.6656e+01 #> 188 134.2300 3.6867e+01 1.39810000 1.72420000 171.1 113.3900 5.7713e+01 #> 189 125.4900 4.5121e+00 0.18304000 0.28571000 130.0 107.6000 2.2402e+01 #> 190 110.2100 -3.7138e+00 -0.17153000 -0.18252000 106.5 97.2730 9.2273e+00 #> 191 86.7420 2.7458e+01 1.61140000 1.54360000 114.2 80.7560 3.3444e+01 #> 192 70.1060 -5.5059e+00 -0.39979000 -0.55141000 64.6 68.4180 -3.8184e+00 #> 193 49.2560 -1.5256e+01 -1.57660000 -1.60730000 34.0 51.8770 -1.7877e+01 #> 194 37.4010 3.8994e+00 0.53073000 0.17116000 41.3 41.7220 -4.2196e-01 #> 195 29.9150 1.0885e+01 1.85220000 1.14050000 40.8 34.9620 5.8382e+00 #> 196 24.6890 2.4111e+00 0.49713000 0.03710600 27.1 30.0790 -2.9795e+00 #> 197 14.9920 -3.0920e+00 -1.04990000 -1.13430000 11.9 20.5900 -8.6898e+00 #> 198 9.3930 -2.6930e+00 -1.45950000 -1.36470000 6.7 14.5800 -7.8796e+00 #> 199 5.9115 -8.1145e-01 -0.69876000 -0.87799000 5.1 10.3870 -5.2871e+00 #> 200 3.7241 6.7589e-01 0.92387000 -0.02464500 4.4 7.4103 -3.0103e+00 #> 201 569.9500 -5.6995e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 202 552.9500 -6.5510e+00 -0.06030900 0.07964800 546.4 437.5700 1.0883e+02 #> 203 536.5900 -6.4492e+01 -0.61181000 -0.58714000 472.1 424.9600 4.7141e+01 #> 204 520.8500 3.2855e+01 0.32110000 0.55262000 553.7 412.8400 1.4086e+02 #> 205 505.6900 5.5413e+01 0.55781000 0.84683000 561.1 401.1900 1.5991e+02 #> 206 477.0500 -1.2845e+02 -1.37060000 -1.51230000 348.6 379.2300 -3.0628e+01 #> 207 450.5000 7.9604e+01 0.89950000 1.28540000 530.1 358.9300 1.7117e+02 #> 208 425.8800 1.2592e+02 1.50510000 2.04040000 551.8 340.1600 2.1164e+02 #> 209 403.0400 1.1956e+01 0.15100000 0.37137000 415.0 322.7900 9.2207e+01 #> 210 362.2000 -3.6198e+01 -0.50874000 -0.44075000 326.0 291.8200 3.4182e+01 #> 211 296.6000 6.7704e+01 1.16200000 1.60740000 364.3 242.2700 1.2203e+02 #> 212 247.5400 1.8355e+01 0.37746000 0.62599000 265.9 205.2600 6.0645e+01 #> 213 182.4400 -2.8740e+01 -0.80191000 -0.78143000 153.7 155.6300 -1.9322e+00 #> 214 143.8600 -2.4664e+01 -0.87271000 -0.84667000 119.2 125.1700 -5.9659e+00 #> 215 119.6300 3.6866e+01 1.56870000 1.79390000 156.5 104.8900 5.1614e+01 #> 216 103.2900 -2.4190e+01 -1.19220000 -1.14610000 79.1 90.2380 -1.1138e+01 #> 217 74.4730 -1.5673e+01 -1.07130000 -0.97131000 58.8 61.7700 -2.9695e+00 #> 218 56.9180 2.5823e+00 0.23094000 0.48438000 59.5 43.7390 1.5761e+01 #> 219 44.0100 9.2897e+00 1.07450000 1.47590000 53.3 31.1610 2.2139e+01 #> 220 34.1130 1.4868e+00 0.22186000 0.45257000 35.6 22.2310 1.3369e+01 #> 221 587.7900 -5.8779e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 222 578.1000 7.2896e+01 0.64188000 -0.07552800 651.0 875.1500 -2.2415e+02 #> 223 568.7200 -2.8182e+00 -0.02522500 -0.52007000 565.9 849.9200 -2.8402e+02 #> 224 559.6200 3.6778e+01 0.33454000 -0.25420000 596.4 825.6700 -2.2927e+02 #> 225 550.8100 5.6495e+01 0.52212000 -0.10615000 607.3 802.3800 -1.9508e+02 #> 226 533.9700 -1.3607e+02 -1.29720000 -1.36900000 397.9 758.4600 -3.6056e+02 #> 227 518.1400 -8.0640e+01 -0.79224000 -0.98909000 437.5 717.8600 -2.8036e+02 #> 228 503.2400 4.4656e+01 0.45170000 -0.05941000 547.9 680.3200 -1.3242e+02 #> 229 489.2200 -3.0120e+01 -0.31340000 -0.59646000 459.1 645.5900 -1.8649e+02 #> 230 463.5500 5.7053e+01 0.62652000 0.16263000 520.6 583.6400 -6.3036e+01 #> 231 420.2900 -3.4587e+01 -0.41891000 -0.56018000 385.7 484.5400 -9.8836e+01 #> 232 385.5700 2.4528e+01 0.32382000 0.12508000 410.1 410.5100 -4.1016e-01 #> 233 333.9700 1.5731e+01 0.23978000 0.19771000 349.7 311.2600 3.8436e+01 #> 234 297.6000 2.1802e+01 0.37292000 0.43885000 319.4 250.3300 6.9068e+01 #> 235 270.2100 -1.2912e+01 -0.24325000 -0.11217000 257.3 209.7700 4.7529e+01 #> 236 248.2900 6.7009e+01 1.37380000 1.72090000 315.3 180.4800 1.3482e+02 #> 237 199.2900 -3.9919e+00 -0.10196000 0.17449000 195.3 123.5400 7.1761e+01 #> 238 162.7800 1.3017e+01 0.40707000 0.95841000 175.8 87.4770 8.8323e+01 #> 239 133.4600 -2.8863e+01 -1.10090000 -1.47120000 104.6 62.3230 4.2277e+01 #> 240 109.5300 2.2870e+01 1.06290000 2.28180000 132.4 44.4620 8.7938e+01 #> 241 212.5200 -2.1252e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 242 209.4600 -4.9059e+01 -1.19230000 -1.41000000 160.4 437.5700 -2.7717e+02 #> 243 206.4700 -7.1691e+00 -0.17675000 -0.82254000 199.3 424.9600 -2.2566e+02 #> 244 203.5500 7.0150e+01 1.75440000 0.29567000 273.7 412.8400 -1.3914e+02 #> 245 200.7000 -4.5699e+01 -1.15910000 -1.36220000 155.0 401.1900 -2.4619e+02 #> 246 195.1900 1.8105e+01 0.47216000 -0.39357000 213.3 379.2300 -1.6593e+02 #> 247 189.9400 1.1157e+01 0.29899000 -0.46727000 201.1 358.9300 -1.5783e+02 #> 248 184.9300 -1.4831e+01 -0.40823000 -0.86300000 170.1 340.1600 -1.7006e+02 #> 249 180.1400 -6.8433e+00 -0.19338000 -0.71296000 173.3 322.7900 -1.4949e+02 #> 250 171.2000 -3.4498e+01 -1.02580000 -1.18580000 136.7 291.8200 -1.5512e+02 #> 251 155.5200 -1.0422e+01 -0.34111000 -0.69549000 145.1 242.2700 -9.7168e+01 #> 252 142.3100 2.8190e+01 1.00840000 0.26473000 170.5 205.2600 -3.4755e+01 #> 253 121.4600 -1.5055e+01 -0.63100000 -0.76318000 106.4 155.6300 -4.9232e+01 #> 254 105.8500 1.7346e+01 0.83416000 0.39531000 123.2 125.1700 -1.9659e+00 #> 255 93.7450 9.4548e+00 0.51340000 0.22489000 103.2 104.8900 -1.6855e+00 #> 256 84.0090 4.1909e+00 0.25394000 0.07065900 88.2 90.2380 -2.0384e+00 #> 257 63.0450 -5.2454e+00 -0.42353000 -0.41542000 57.8 61.7700 -3.9695e+00 #> 258 48.6930 -1.9793e+01 -2.06920000 -1.93170000 28.9 43.7390 -1.4839e+01 #> 259 37.9630 8.4370e+00 1.13130000 1.26780000 46.4 31.1610 1.5239e+01 #> 260 29.6930 1.3074e+00 0.22414000 0.41977000 31.0 22.2310 8.7691e+00 #> 261 1002.0000 -1.0020e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 262 972.8200 1.8778e+02 0.98259000 1.05420000 1160.6 875.1500 2.8545e+02 #> 263 944.7400 -6.4140e+01 -0.34560000 -0.34752000 880.6 849.9200 3.0683e+01 #> 264 917.7400 -3.9036e+01 -0.21652000 -0.20658000 878.7 825.6700 5.3025e+01 #> 265 891.7600 9.6638e+01 0.55164000 0.61700000 988.4 802.3800 1.8602e+02 #> 266 842.7400 -7.4243e+01 -0.44846000 -0.44393000 768.5 758.4600 1.0044e+01 #> 267 797.3700 -2.8171e+01 -0.17984000 -0.14872000 769.2 717.8600 5.1338e+01 #> 268 755.3600 -4.8955e+01 -0.32992000 -0.30416000 706.4 680.3200 2.6079e+01 #> 269 716.4300 1.8877e+02 1.34130000 1.51220000 905.2 645.5900 2.5961e+02 #> 270 646.9000 -1.2180e+02 -0.95843000 -0.97224000 525.1 583.6400 -5.8536e+01 #> 271 535.4000 -4.7597e+01 -0.45254000 -0.40844000 487.8 484.5400 3.2638e+00 #> 272 451.9800 1.8002e+02 2.02750000 2.29250000 632.0 410.5100 2.2149e+02 #> 273 340.3800 1.7822e+01 0.26653000 0.36669000 358.2 311.2600 4.6936e+01 #> 274 272.6000 -4.4100e+01 -0.82352000 -0.80298000 228.5 250.3300 -2.1832e+01 #> 275 228.3000 -5.2602e+01 -1.17290000 -1.17160000 175.7 209.7700 -3.4071e+01 #> 276 196.9600 1.8036e+01 0.46612000 0.50616000 215.0 180.4800 3.4523e+01 #> 277 137.6200 2.0879e+01 0.77229000 0.78250000 158.5 123.5400 3.4961e+01 #> 278 100.1900 4.0080e+00 0.20364000 0.18715000 104.2 87.4770 1.6723e+01 #> 279 73.5130 2.1873e+00 0.15146000 0.11057000 75.7 62.3230 1.3377e+01 #> 280 54.0290 1.4711e+00 0.13860000 0.06926700 55.5 44.4620 1.1038e+01 #> 281 1538.3000 -1.5383e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 282 1491.2000 -5.3180e+01 -0.18154000 -0.36418000 1438.0 1750.3000 -3.1229e+02 #> 283 1445.9000 3.1714e+02 1.11660000 0.71198000 1763.0 1699.8000 6.3166e+01 #> 284 1402.3000 1.5195e+02 0.55160000 0.23586000 1554.2 1651.3000 -9.7149e+01 #> 285 1360.3000 -8.6585e+01 -0.32402000 -0.49907000 1273.7 1604.8000 -3.3105e+02 #> 286 1281.0000 -3.3282e+02 -1.32250000 -1.34070000 948.2 1516.9000 -5.6871e+02 #> 287 1207.6000 2.0331e+01 0.08570300 -0.17910000 1227.9 1435.7000 -2.0782e+02 #> 288 1139.5000 2.0242e+02 0.90426000 0.48940000 1341.9 1360.6000 -1.8742e+01 #> 289 1076.3000 -5.3343e+01 -0.25228000 -0.47946000 1023.0 1291.2000 -2.6817e+02 #> 290 963.3900 -1.6079e+02 -0.84961000 -0.98811000 802.6 1167.3000 -3.6467e+02 #> 291 781.8200 4.4985e+01 0.29290000 -0.08916500 826.8 969.0700 -1.4227e+02 #> 292 645.6200 8.7484e+01 0.68978000 0.18736000 733.1 821.0200 -8.7920e+01 #> 293 463.2000 -7.5604e+01 -0.83086000 -1.01750000 387.6 622.5300 -2.3493e+02 #> 294 352.9600 3.4342e+01 0.49529000 -0.07494700 387.3 500.6600 -1.1336e+02 #> 295 281.9700 -4.4365e+01 -0.80094000 -0.97261000 237.6 419.5400 -1.8194e+02 #> 296 232.9800 4.5419e+01 0.99238000 0.21808000 278.4 360.9500 -8.2553e+01 #> 297 145.9700 -1.5073e+01 -0.52562000 -0.68114000 130.9 247.0800 -1.1618e+02 #> 298 96.7650 1.3352e+00 0.07024200 -0.23821000 98.1 174.9500 -7.6855e+01 #> 299 64.9300 1.6973e-01 0.01330700 -0.19084000 65.1 124.6500 -5.9545e+01 #> 300 43.6930 4.7068e+00 0.54836000 0.15322000 48.4 88.9240 -4.0524e+01 #> 301 1501.0000 -1.5010e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 302 1458.9000 -4.7834e+01 -0.16690000 -0.39744000 1411.1 1750.3000 -3.3919e+02 #> 303 1418.3000 1.1830e+02 0.42458000 0.09022600 1536.6 1699.8000 -1.6323e+02 #> 304 1379.1000 -5.8503e+00 -0.02159500 -0.27362000 1373.2 1651.3000 -2.7815e+02 #> 305 1341.1000 5.0872e+01 0.19309000 -0.09455800 1392.0 1604.8000 -2.1275e+02 #> 306 1269.1000 1.8611e+02 0.74651000 0.36752000 1455.2 1516.9000 -6.1713e+01 #> 307 1201.8000 -1.5813e+02 -0.66977000 -0.80262000 1043.7 1435.7000 -3.9202e+02 #> 308 1139.0000 -9.9314e+01 -0.44385000 -0.61375000 1039.7 1360.6000 -3.2094e+02 #> 309 1080.3000 1.3016e+02 0.61331000 0.26782000 1210.5 1291.2000 -8.0672e+01 #> 310 974.2700 -2.1707e+02 -1.13420000 -1.18750000 757.2 1167.3000 -4.1007e+02 #> 311 800.4500 8.3655e+01 0.53201000 0.19755000 884.1 969.0700 -8.4972e+01 #> 312 666.9700 9.7532e+01 0.74438000 0.35780000 764.5 821.0200 -5.6520e+01 #> 313 483.5400 1.0066e+02 1.05970000 0.55734000 584.2 622.5300 -3.8329e+01 #> 314 370.4600 -1.1726e+02 -1.61120000 -1.51280000 253.2 500.6600 -2.4746e+02 #> 315 297.7100 -8.7106e+01 -1.48940000 -1.38180000 210.6 419.5400 -2.0894e+02 #> 316 248.4000 -3.4205e+01 -0.70094000 -0.78612000 214.2 360.9500 -1.4675e+02 #> 317 164.8000 -2.1399e+01 -0.66099000 -0.61754000 143.4 247.0800 -1.0368e+02 #> 318 118.6900 -3.9394e-01 -0.01689500 -0.01167100 118.3 174.9500 -5.6655e+01 #> 319 87.3120 3.4588e+01 2.01650000 1.52010000 121.9 124.6500 -2.7453e+00 #> 320 64.5720 -6.9715e+00 -0.54960000 -0.02387500 57.6 88.9240 -3.1324e+01 #> 321 623.7400 -6.2374e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 322 599.4500 1.2205e+02 1.03640000 1.49530000 721.5 437.5700 2.8393e+02 #> 323 576.2000 8.4599e+01 0.74739000 1.10370000 660.8 424.9600 2.3584e+02 #> 324 553.9400 6.9861e+01 0.64199000 0.95938000 623.8 412.8400 2.1096e+02 #> 325 532.6200 3.7177e+01 0.35532000 0.58528000 569.8 401.1900 1.6861e+02 #> 326 492.6700 -1.4917e+02 -1.54130000 -1.79420000 343.5 379.2300 -3.5728e+01 #> 327 456.0300 -2.2427e+01 -0.25034000 -0.15767000 433.6 358.9300 7.4669e+01 #> 328 422.4200 -6.1823e+01 -0.74501000 -0.72601000 360.6 340.1600 2.0439e+01 #> 329 391.6000 9.7599e+01 1.26870000 1.62520000 489.2 322.7900 1.6641e+02 #> 330 337.3800 -8.2079e+01 -1.23840000 -1.16150000 255.3 291.8200 -3.6518e+01 #> 331 253.2200 -4.1925e+01 -0.84279000 -0.62707000 211.3 242.2700 -3.0968e+01 #> 332 193.3300 -1.0231e+01 -0.26939000 -0.08907400 183.1 205.2600 -2.2155e+01 #> 333 119.7200 6.6378e+01 2.82230000 1.92020000 186.1 155.6300 3.0468e+01 #> 334 81.0900 -5.9897e+00 -0.37601000 -0.43030000 75.1 125.1700 -5.0066e+01 #> 335 59.9270 -2.0027e+01 -1.70120000 -1.30840000 39.9 104.8900 -6.4986e+01 #> 336 47.5800 -1.5880e+01 -1.69900000 -1.39500000 31.7 90.2380 -5.8538e+01 #> 337 30.2630 -1.6625e+00 -0.27966000 -0.72439000 28.6 61.7700 -3.3170e+01 #> 338 21.7780 3.7218e+00 0.86993000 0.07505400 25.5 43.7390 -1.8239e+01 #> 339 16.0250 8.7507e-01 0.27797000 0.03523100 16.9 31.1610 -1.4261e+01 #> 340 11.8380 5.6211e-01 0.24171000 0.29454000 12.4 22.2310 -9.8309e+00 #> 341 773.1700 -7.7317e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 342 752.9900 -8.7388e+01 -0.59077000 -0.72605000 665.6 875.1500 -2.0955e+02 #> 343 733.5200 9.9813e+00 0.06926800 -0.16569000 743.5 849.9200 -1.0642e+02 #> 344 714.7300 2.5267e+01 0.17996000 -0.06610500 740.0 825.6700 -8.5675e+01 #> 345 696.6100 -7.3705e+01 -0.53860000 -0.67070000 622.9 802.3800 -1.7948e+02 #> 346 662.2300 1.9677e+02 1.51260000 1.09230000 859.0 758.4600 1.0054e+02 #> 347 630.2000 -1.1510e+02 -0.92969000 -0.99441000 515.1 717.8600 -2.0276e+02 #> 348 600.3400 1.5776e+02 1.33770000 0.97688000 758.1 680.3200 7.7779e+01 #> 349 572.5000 -1.6905e+01 -0.15031000 -0.30669000 555.6 645.5900 -8.9986e+01 #> 350 522.3100 1.7693e+01 0.17244000 -0.00805480 540.0 583.6400 -4.3636e+01 #> 351 440.3300 9.4737e+00 0.10952000 -0.03718500 449.8 484.5400 -3.4736e+01 #> 352 377.5100 -4.8061e+00 -0.06480800 -0.17545000 372.7 410.5100 -3.7810e+01 #> 353 290.8000 -1.6403e+01 -0.28713000 -0.35247000 274.4 311.2600 -3.6864e+01 #> 354 236.2300 -7.6928e+01 -1.65770000 -1.59010000 159.3 250.3300 -9.1032e+01 #> 355 199.6900 2.6007e+01 0.66296000 0.56774000 225.7 209.7700 1.5929e+01 #> 356 173.5300 -3.0128e+01 -0.88381000 -0.82267000 143.4 180.4800 -3.7077e+01 #> 357 123.8300 2.3673e+01 0.97317000 0.98389000 147.5 123.5400 2.3961e+01 #> 358 92.4020 -1.8402e+01 -1.01380000 -0.77275000 74.0 87.4770 -1.3477e+01 #> 359 69.6250 7.3747e+00 0.53918000 0.75378000 77.0 62.3230 1.4677e+01 #> 360 52.5830 7.7174e+00 0.74711000 0.98874000 60.3 44.4620 1.5838e+01 #> 361 774.3500 -7.7435e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 362 733.8700 2.3913e+02 1.65870000 3.36820000 973.0 437.5700 5.3543e+02 #> 363 695.7700 -5.2973e+01 -0.38756000 -0.22615000 642.8 424.9600 2.1784e+02 #> 364 659.9100 -8.2211e+01 -0.63416000 -0.65486000 577.7 412.8400 1.6486e+02 #> 365 626.1500 -3.7952e+01 -0.30854000 -0.15553000 588.2 401.1900 1.8701e+02 #> 366 564.4500 1.0625e+02 0.95819000 1.63420000 670.7 379.2300 2.9147e+02 #> 367 509.7600 -1.5957e+01 -0.15935000 -0.04239600 493.8 358.9300 1.3487e+02 #> 368 461.2600 -1.1626e+02 -1.28300000 -1.49630000 345.0 340.1600 4.8394e+00 #> 369 418.2300 1.3257e+02 1.61350000 1.94430000 550.8 322.7900 2.2801e+02 #> 370 346.1600 -2.6061e+01 -0.38324000 -0.42130000 320.1 291.8200 2.8282e+01 #> 371 244.3600 1.5543e+01 0.32379000 0.13240000 259.9 242.2700 1.7632e+01 #> 372 180.3900 -3.9494e+01 -1.11450000 -1.02530000 140.9 205.2600 -6.4355e+01 #> 373 113.1500 -4.3487e+00 -0.19564000 -0.43459000 108.8 155.6300 -4.6832e+01 #> 374 83.2230 3.9770e+00 0.24326000 -0.22360000 87.2 125.1700 -3.7966e+01 #> 375 67.7290 9.4710e+00 0.71184000 0.05498400 77.2 104.8900 -2.7686e+01 #> 376 58.0750 7.9247e+00 0.69463000 0.08319300 66.0 90.2380 -2.4238e+01 #> 377 40.3630 -9.3630e+00 -1.18080000 -0.92294000 31.0 61.7700 -3.0770e+01 #> 378 28.8160 -3.6163e+00 -0.63883000 -0.32249000 25.2 43.7390 -1.8539e+01 #> 379 20.6140 -3.8135e+00 -0.94174000 -0.31208000 16.8 31.1610 -1.4361e+01 #> 380 14.7520 4.6480e+00 1.60390000 1.58980000 19.4 22.2310 -2.8309e+00 #> 381 2202.0000 -2.2020e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 382 2128.2000 9.7213e+00 0.02325300 0.07939900 2137.9 1750.3000 3.8761e+02 #> 383 2057.6000 -1.9123e+00 -0.00473090 0.03520400 2055.7 1699.8000 3.5587e+02 #> 384 1990.1000 -7.3915e+01 -0.18907000 -0.18813000 1916.2 1651.3000 2.6485e+02 #> 385 1925.6000 2.1045e+02 0.55635000 0.65783000 2136.0 1604.8000 5.3125e+02 #> 386 1804.7000 4.1530e+02 1.17140000 1.33450000 2220.0 1516.9000 7.0309e+02 #> 387 1694.1000 2.3622e+01 0.07098200 0.06462200 1717.7 1435.7000 2.8198e+02 #> 388 1592.8000 -1.1927e+00 -0.00381180 -0.03373900 1591.6 1360.6000 2.3096e+02 #> 389 1500.0000 1.4847e+02 0.50385000 0.51699000 1648.5 1291.2000 3.5733e+02 #> 390 1337.2000 1.4549e+01 0.05538700 0.00010548 1351.7 1167.3000 1.8443e+02 #> 391 1085.0000 1.4294e+02 0.67063000 0.62263000 1227.9 969.0700 2.5883e+02 #> 392 905.4900 -8.5290e+01 -0.47948000 -0.57497000 820.2 821.0200 -8.2032e-01 #> 393 682.7300 -1.3823e+02 -1.03060000 -1.08630000 544.5 622.5300 -7.8029e+01 #> 394 561.1700 -1.1877e+02 -1.07730000 -1.08720000 442.4 500.6600 -5.8263e+01 #> 395 489.0400 -3.0342e+01 -0.31584000 -0.26804000 458.7 419.5400 3.9158e+01 #> 396 441.4700 -2.4166e+01 -0.27865000 -0.16080000 417.3 360.9500 5.6347e+01 #> 397 353.7700 -9.5472e+01 -1.37380000 -1.25950000 258.3 247.0800 1.1222e+01 #> 398 293.2400 5.2063e+01 0.90379000 1.77410000 345.3 174.9500 1.7035e+02 #> 399 244.1800 -1.0480e+01 -0.21847000 0.28728000 233.7 124.6500 1.0905e+02 #> 400 203.4900 7.7415e+01 1.93660000 3.83640000 280.9 88.9240 1.9198e+02 #> 401 123.9600 -1.2396e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 402 120.8200 -5.7164e+00 -0.24085000 -0.31742000 115.1 145.8600 -3.0758e+01 #> 403 117.7700 -2.4572e+01 -1.06210000 -0.98543000 93.2 141.6500 -4.8453e+01 #> 404 114.8200 3.1676e+01 1.40430000 1.03690000 146.5 137.6100 8.8876e+00 #> 405 111.9700 -1.3369e+01 -0.60778000 -0.61158000 98.6 133.7300 -3.5129e+01 #> 406 106.5200 -1.0224e+00 -0.04885800 -0.14740000 105.5 126.4100 -2.0909e+01 #> 407 101.4100 -2.6310e+01 -1.32070000 -1.20360000 75.1 119.6400 -4.4544e+01 #> 408 96.6110 -2.2211e+01 -1.17030000 -1.08160000 74.4 113.3900 -3.8987e+01 #> 409 92.1020 1.3998e+01 0.77364000 0.54919000 106.1 107.6000 -1.4976e+00 #> 410 83.8860 -7.9858e+00 -0.48460000 -0.51451000 75.9 97.2730 -2.1373e+01 #> 411 70.1910 3.9909e+01 2.89430000 2.35050000 110.1 80.7560 2.9344e+01 #> 412 59.4200 -1.3420e+01 -1.14970000 -1.13050000 46.0 68.4180 -2.2418e+01 #> 413 44.0680 1.8316e+00 0.21158000 -0.04921900 45.9 51.8770 -5.9774e+00 #> 414 34.0930 6.7066e+00 1.00140000 0.49835000 40.8 41.7220 -9.2196e-01 #> 415 27.3360 -5.2363e+00 -0.97508000 -1.11730000 22.1 34.9620 -1.2862e+01 #> 416 22.5450 -2.4486e-01 -0.05528800 -0.45807000 22.3 30.0790 -7.7795e+00 #> 417 14.0230 3.3769e+00 1.22590000 0.35565000 17.4 20.5900 -3.1898e+00 #> 418 9.3485 -2.6485e+00 -1.44220000 -1.32560000 6.7 14.5800 -7.8796e+00 #> 419 6.3617 -1.3617e+00 -1.08960000 -0.99985000 5.0 10.3870 -5.3871e+00 #> 420 4.3555 6.4445e-01 0.75319000 0.16188000 5.0 7.4103 -2.4103e+00 #> 421 134.9200 -1.3492e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 422 131.4200 1.1980e+01 0.46406000 0.33179000 143.4 145.8600 -2.4575e+00 #> 423 128.0500 -8.6505e+00 -0.34389000 -0.37030000 119.4 141.6500 -2.2253e+01 #> 424 124.8100 -3.9608e+01 -1.61550000 -1.48680000 85.2 137.6100 -5.2412e+01 #> 425 121.6900 2.7914e+01 1.16770000 0.97119000 149.6 133.7300 1.5871e+01 #> 426 115.7800 -3.0685e+01 -1.34900000 -1.25620000 85.1 126.4100 -4.1309e+01 #> 427 110.3100 -1.9010e+01 -0.87724000 -0.83476000 91.3 119.6400 -2.8344e+01 #> 428 105.2300 5.4727e+00 0.26475000 0.20058000 110.7 113.3900 -2.6869e+00 #> 429 100.5100 2.2795e+01 1.15450000 1.02150000 123.3 107.6000 1.5702e+01 #> 430 92.0300 2.5270e+01 1.39780000 1.27470000 117.3 97.2730 2.0027e+01 #> 431 78.2830 5.8169e+00 0.37825000 0.36020000 84.1 80.7560 3.3440e+00 #> 432 67.7930 -2.0693e+01 -1.55380000 -1.49180000 47.1 68.4180 -2.1318e+01 #> 433 53.2210 -2.7209e+00 -0.26025000 -0.22871000 50.5 51.8770 -1.3774e+00 #> 434 43.7670 -2.0671e+00 -0.24042000 -0.21694000 41.7 41.7220 -2.1957e-02 #> 435 37.1210 1.5279e+01 2.09530000 2.12450000 52.4 34.9620 1.7438e+01 #> 436 32.0960 4.4043e+00 0.69853000 0.68322000 36.5 30.0790 6.4205e+00 #> 437 21.8520 -1.4516e+00 -0.33815000 -0.42232000 20.4 20.5900 -1.8983e-01 #> 438 15.2440 -4.5440e+00 -1.51740000 -1.53820000 10.7 14.5800 -3.8796e+00 #> 439 10.6820 -5.8230e-01 -0.27748000 -0.40361000 10.1 10.3870 -2.8711e-01 #> 440 7.4939 1.0061e+00 0.68339000 0.39570000 8.5 7.4103 1.0897e+00 #> 441 994.5600 -9.9456e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 442 950.7100 8.5491e+01 0.45775000 0.60433000 1036.2 875.1500 1.6105e+02 #> 443 909.4200 2.5778e+02 1.44290000 1.54210000 1167.2 849.9200 3.1728e+02 #> 444 870.5200 -2.9924e+01 -0.17498000 -0.15456000 840.6 825.6700 1.4925e+01 #> 445 833.8800 -1.6348e+02 -0.99796000 -1.01500000 670.4 802.3800 -1.3198e+02 #> 446 766.7800 5.7324e+01 0.38056000 0.25589000 824.1 758.4600 6.5644e+01 #> 447 707.0900 -6.8185e+01 -0.49088000 -0.64030000 638.9 717.8600 -7.8962e+01 #> 448 653.9100 -8.5909e+01 -0.66877000 -0.84718000 568.0 680.3200 -1.1232e+02 #> 449 606.4600 -6.3760e+01 -0.53518000 -0.75635000 542.7 645.5900 -1.0289e+02 #> 450 526.0700 2.0428e+01 0.19767000 -0.16121000 546.5 583.6400 -3.7136e+01 #> 451 408.8400 6.3261e+01 0.78767000 0.27373000 472.1 484.5400 -1.2436e+01 #> 452 330.1700 5.1729e+01 0.79754000 0.27192000 381.9 410.5100 -2.8610e+01 #> 453 234.8500 -7.1455e+01 -1.54880000 -1.41120000 163.4 311.2600 -1.4786e+02 #> 454 179.4500 4.1146e+01 1.16720000 0.49271000 220.6 250.3300 -2.9732e+01 #> 455 142.0300 -1.3125e-01 -0.00470420 -0.35628000 141.9 209.7700 -6.7871e+01 #> 456 114.2200 1.9979e+01 0.89037000 0.09747500 134.2 180.4800 -4.6277e+01 #> 457 61.1090 7.2911e+00 0.60736000 -0.30916000 68.4 123.5400 -5.5139e+01 #> 458 32.9490 -8.2487e+00 -1.27440000 -1.16820000 24.7 87.4770 -6.2777e+01 #> 459 17.7760 -6.5759e+00 -1.88310000 -1.28630000 11.2 62.3230 -5.1123e+01 #> 460 9.5955 1.9045e+00 1.01030000 -0.28190000 11.5 44.4620 -3.2962e+01 #> 461 1628.4000 -1.6284e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 462 1591.2000 -2.2346e+02 -0.71489000 -0.68981000 1367.7 1750.3000 -3.8259e+02 #> 463 1555.1000 5.7609e+02 1.88580000 1.61790000 2131.2 1699.8000 4.3137e+02 #> 464 1520.2000 2.5665e+01 0.08593800 0.04026000 1545.9 1651.3000 -1.0545e+02 #> 465 1486.5000 -3.6305e+01 -0.12433000 -0.13513000 1450.2 1604.8000 -1.5455e+02 #> 466 1422.3000 -1.9301e+02 -0.69078000 -0.62618000 1229.3 1516.9000 -2.8761e+02 #> 467 1362.2000 -3.3361e+02 -1.24670000 -1.12130000 1028.6 1435.7000 -4.0712e+02 #> 468 1305.9000 -2.3232e+02 -0.90558000 -0.79771000 1073.6 1360.6000 -2.8704e+02 #> 469 1253.2000 -5.4258e+02 -2.20400000 -2.00580000 710.6 1291.2000 -5.8057e+02 #> 470 1157.4000 5.0283e+02 2.21160000 2.21340000 1660.2 1167.3000 4.9293e+02 #> 471 998.5700 1.5873e+02 0.80917000 0.95147000 1157.3 969.0700 1.8823e+02 #> 472 874.3600 3.1745e+01 0.18482000 0.36941000 906.1 821.0200 8.5080e+01 #> 473 697.6400 -6.3839e+01 -0.46582000 -0.29380000 633.8 622.5300 1.1271e+01 #> 474 581.6300 5.6066e+01 0.49069000 0.75651000 637.7 500.6600 1.3704e+02 #> 475 500.8600 -1.6576e+02 -1.68470000 -1.70120000 335.1 419.5400 -8.4442e+01 #> 476 441.0500 1.5125e+02 1.74570000 2.20730000 592.3 360.9500 2.3135e+02 #> 477 322.6100 -4.2810e+01 -0.67549000 -0.59672000 279.8 247.0800 3.2722e+01 #> 478 245.1100 -2.1912e+01 -0.45506000 -0.35253000 223.2 174.9500 4.8245e+01 #> 479 187.8800 6.4218e+00 0.17400000 0.39559000 194.3 124.6500 6.9655e+01 #> 480 144.3300 2.0574e+01 0.72564000 1.03330000 164.9 88.9240 7.5976e+01 #> 481 1713.2000 -1.7132e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 482 1653.6000 1.0572e+02 0.32546000 0.21209000 1759.3 1750.3000 9.0098e+00 #> 483 1596.8000 1.9351e+02 0.61691000 0.45630000 1790.3 1699.8000 9.0466e+01 #> 484 1542.7000 -4.3522e+01 -0.14361000 -0.24999000 1499.2 1651.3000 -1.5215e+02 #> 485 1491.2000 1.9062e+01 0.06507000 -0.07791100 1510.3 1604.8000 -9.4452e+01 #> 486 1395.5000 2.5442e+02 0.92809000 0.66592000 1649.9 1516.9000 1.3299e+02 #> 487 1308.5000 -9.4978e+00 -0.03694900 -0.22213000 1299.0 1435.7000 -1.3672e+02 #> 488 1229.4000 -1.8980e+02 -0.78590000 -0.90489000 1039.6 1360.6000 -3.2104e+02 #> 489 1157.4000 -1.8149e+02 -0.79823000 -0.92776000 975.9 1291.2000 -3.1527e+02 #> 490 1031.8000 -6.8892e+01 -0.33989000 -0.54224000 962.9 1167.3000 -2.0437e+02 #> 491 838.4900 -2.1419e+02 -1.30040000 -1.37240000 624.3 969.0700 -3.4477e+02 #> 492 699.9200 2.1738e+02 1.58100000 1.08100000 917.3 821.0200 9.6280e+01 #> 493 519.6400 5.3861e+01 0.52763000 0.20162000 573.5 622.5300 -4.9029e+01 #> 494 408.5200 9.4478e+01 1.17730000 0.68282000 503.0 500.6600 2.3365e+00 #> 495 331.7000 3.3004e+01 0.50651000 0.09892100 364.7 419.5400 -5.4842e+01 #> 496 273.9200 -6.1822e+01 -1.14890000 -1.14970000 212.1 360.9500 -1.4885e+02 #> 497 159.9900 -1.1886e+00 -0.03781900 -0.52840000 158.8 247.0800 -8.8278e+01 #> 498 94.6470 9.5531e+00 0.51380000 -0.33003000 104.2 174.9500 -7.0755e+01 #> 499 56.0750 2.4508e-02 0.00222480 -0.62601000 56.1 124.6500 -6.8545e+01 #> 500 33.2430 -1.3433e+00 -0.20570000 -0.70448000 31.9 88.9240 -5.7024e+01 #> 501 585.8900 -5.8589e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 502 565.0300 -1.0553e+02 -0.95077000 -0.80282000 459.5 437.5700 2.1927e+01 #> 503 545.1700 1.3033e+02 1.21690000 1.86400000 675.5 424.9600 2.5054e+02 #> 504 526.2500 1.9085e+02 1.84610000 2.61460000 717.1 412.8400 3.0426e+02 #> 505 508.2200 -1.3452e+02 -1.34740000 -1.33830000 373.7 401.1900 -2.7488e+01 #> 506 474.6700 4.7269e+00 0.05069200 0.34430000 479.4 379.2300 1.0017e+02 #> 507 444.2000 -7.4197e+01 -0.85029000 -0.77677000 370.0 358.9300 1.1069e+01 #> 508 416.4900 -7.9892e+01 -0.97646000 -0.94676000 336.6 340.1600 -3.5606e+00 #> 509 391.2900 -6.3589e+01 -0.82726000 -0.78349000 327.7 322.7900 4.9071e+00 #> 510 347.4400 1.2566e+02 1.84110000 2.31330000 473.1 291.8200 1.8128e+02 #> 511 280.5300 -2.0925e+01 -0.37971000 -0.31860000 259.6 242.2700 1.7332e+01 #> 512 233.4900 4.6713e+01 1.01840000 1.22610000 280.2 205.2600 7.4945e+01 #> 513 174.8900 -2.1893e+01 -0.63721000 -0.60513000 153.0 155.6300 -2.6322e+00 #> 514 141.4000 7.0016e+00 0.25206000 0.37520000 148.4 125.1700 2.3234e+01 #> 515 119.7100 4.5900e+00 0.19518000 0.31330000 124.3 104.8900 1.9414e+01 #> 516 103.9400 -1.4838e+01 -0.72672000 -0.69911000 89.1 90.2380 -1.1384e+00 #> 517 71.9290 1.4971e+01 1.05950000 1.12630000 86.9 61.7700 2.5130e+01 #> 518 50.7800 1.0720e+01 1.07470000 1.00570000 61.5 43.7390 1.7761e+01 #> 519 35.9340 -6.2338e+00 -0.88309000 -0.98251000 29.7 31.1610 -1.4613e+00 #> 520 25.4430 1.5741e-01 0.03149500 -0.15860000 25.6 22.2310 3.3691e+00 #> 521 485.7000 -4.8570e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 522 472.5500 -7.7852e+01 -0.83864000 -0.75723000 394.7 437.5700 -4.2873e+01 #> 523 459.9200 8.4185e+01 0.93177000 1.06890000 544.1 424.9600 1.1914e+02 #> 524 447.7700 -4.9170e+01 -0.55898000 -0.47050000 398.6 412.8400 -1.4237e+01 #> 525 436.0900 -9.9593e+01 -1.16250000 -1.09940000 336.5 401.1900 -6.4688e+01 #> 526 414.0700 -5.7673e+01 -0.70901000 -0.62894000 356.4 379.2300 -2.2828e+01 #> 527 393.7100 -2.9007e+01 -0.37505000 -0.27706000 364.7 358.9300 5.7691e+00 #> 528 374.8600 1.5714e+02 2.13390000 2.40140000 532.0 340.1600 1.9184e+02 #> 529 357.4100 1.2039e+02 1.71460000 1.97240000 477.8 322.7900 1.5501e+02 #> 530 326.2500 -2.9454e+01 -0.45957000 -0.36305000 296.8 291.8200 4.9818e+00 #> 531 276.2800 -8.9818e+00 -0.16549000 -0.02628600 267.3 242.2700 2.5032e+01 #> 532 238.7900 -2.7880e+00 -0.05943400 0.11503000 236.0 205.2600 3.0745e+01 #> 533 188.0800 -3.0484e+01 -0.82504000 -0.74033000 157.6 155.6300 1.9678e+00 #> 534 156.4300 4.4170e+01 1.43730000 2.03960000 200.6 125.1700 7.5434e+01 #> 535 134.8900 -2.0693e+01 -0.78090000 -0.63745000 114.2 104.8900 9.3145e+00 #> 536 118.9400 4.8558e+00 0.20782000 0.61502000 123.8 90.2380 3.3562e+01 #> 537 86.4670 -2.7767e+01 -1.63470000 -1.75550000 58.7 61.7700 -3.0695e+00 #> 538 64.5380 2.9262e+01 2.30800000 3.28170000 93.8 43.7390 5.0061e+01 #> 539 48.3890 -4.8885e+00 -0.51427000 -0.43470000 43.5 31.1610 1.2339e+01 #> 540 36.3160 -4.3165e+00 -0.60504000 -0.59167000 32.0 22.2310 9.7691e+00 #> 541 125.9800 -1.2598e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 542 122.6400 -1.1743e+01 -0.48739000 -0.66817000 110.9 145.8600 -3.4958e+01 #> 543 119.4200 9.1755e+00 0.39111000 0.06185300 128.6 141.6500 -1.3053e+01 #> 544 116.3200 1.7775e+01 0.77786000 0.38870000 134.1 137.6100 -3.5124e+00 #> 545 113.3400 -4.0386e+00 -0.18139000 -0.40411000 109.3 133.7300 -2.4429e+01 #> 546 107.6900 -2.1290e+01 -1.00630000 -1.08890000 86.4 126.4100 -4.0009e+01 #> 547 102.4400 2.4157e+01 1.20040000 0.77775000 126.6 119.6400 6.9564e+00 #> 548 97.5690 6.7313e+00 0.35119000 0.07032800 104.3 113.3900 -9.0869e+00 #> 549 93.0370 1.0563e+01 0.57795000 0.27369000 103.6 107.6000 -3.9976e+00 #> 550 84.8980 -8.9835e-01 -0.05386500 -0.25207000 84.0 97.2730 -1.3273e+01 #> 551 71.7010 -1.3001e+01 -0.92300000 -0.98997000 58.7 80.7560 -2.2056e+01 #> 552 61.6620 2.7380e+00 0.22604000 0.04908000 64.4 68.4180 -4.0184e+00 #> 553 47.8710 -5.9709e+00 -0.63493000 -0.68377000 41.9 51.8770 -9.9774e+00 #> 554 39.1490 -7.6494e+00 -0.99462000 -0.97867000 31.5 41.7220 -1.0222e+01 #> 555 33.2110 7.0886e+00 1.08650000 0.95812000 40.3 34.9620 5.3382e+00 #> 556 28.8570 1.2433e+00 0.21932000 0.19177000 30.1 30.0790 2.0543e-02 #> 557 20.2580 -5.1583e+00 -1.29620000 -1.12740000 15.1 20.5900 -5.4898e+00 #> 558 14.7070 3.6935e+00 1.27850000 1.24950000 18.4 14.5800 3.8204e+00 #> 559 10.7470 -9.4658e-01 -0.44838000 -0.28473000 9.8 10.3870 -5.8711e-01 #> 560 7.8649 7.3515e-01 0.47582000 0.53018000 8.6 7.4103 1.1897e+00 #> 561 2765.0000 -2.7650e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 562 2642.2000 -1.1929e+02 -0.22983000 0.08028200 2522.9 1750.3000 7.7261e+02 #> 563 2525.7000 3.1172e+02 0.62826000 1.31590000 2837.4 1699.8000 1.1376e+03 #> 564 2415.2000 2.6035e+02 0.54874000 1.14630000 2675.5 1651.3000 1.0242e+03 #> 565 2310.3000 2.7801e+02 0.61257000 1.18730000 2588.3 1604.8000 9.8355e+02 #> 566 2116.4000 -2.8247e+02 -0.67943000 -0.67813000 1833.9 1516.9000 3.1699e+02 #> 567 1941.7000 -7.1214e+02 -1.86690000 -2.25510000 1229.6 1435.7000 -2.0612e+02 #> 568 1784.4000 7.4158e+02 2.11550000 2.81050000 2526.0 1360.6000 1.1654e+03 #> 569 1642.6000 8.4467e+01 0.26176000 0.41961000 1727.1 1291.2000 4.3593e+02 #> 570 1399.5000 -7.6920e+00 -0.02797900 -0.00083416 1391.8 1167.3000 2.2453e+02 #> 571 1039.8000 -1.0853e+02 -0.53132000 -0.58845000 931.3 969.0700 -3.7772e+01 #> 572 798.9600 2.6938e+01 0.17163000 -0.00345000 825.9 821.0200 4.8797e+00 #> 573 522.6600 -4.0365e+01 -0.39313000 -0.53987000 482.3 622.5300 -1.4023e+02 #> 574 385.2400 9.4664e+01 1.25090000 0.56415000 479.9 500.6600 -2.0763e+01 #> 575 308.5600 -4.2155e+01 -0.69546000 -0.80412000 266.4 419.5400 -1.5314e+02 #> 576 259.5500 -6.4475e+00 -0.12645000 -0.41649000 253.1 360.9500 -1.0785e+02 #> 577 172.5500 1.4353e+01 0.42345000 0.03666500 186.9 247.0800 -6.0178e+01 #> 578 119.2200 -1.2216e-01 -0.00521580 -0.14436000 119.1 174.9500 -5.5855e+01 #> 579 82.7260 -9.3259e+00 -0.57386000 -0.41891000 73.4 124.6500 -5.1245e+01 #> 580 57.4450 9.0547e+00 0.80238000 0.54032000 66.5 88.9240 -2.2424e+01 #> 581 117.9900 -1.1799e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 582 115.1400 -1.4038e+01 -0.62066000 -0.73729000 101.1 145.8600 -4.4758e+01 #> 583 112.3900 -1.4192e+01 -0.64277000 -0.75074000 98.2 141.6500 -4.3453e+01 #> 584 109.7500 -2.1048e+01 -0.97628000 -1.01100000 88.7 137.6100 -4.8912e+01 #> 585 107.2000 1.3696e+01 0.65034000 0.28584000 120.9 133.7300 -1.2829e+01 #> 586 102.4000 5.1104e+01 2.54050000 1.82140000 153.5 126.4100 2.7091e+01 #> 587 97.9370 6.5626e+00 0.34110000 0.06993800 104.5 119.6400 -1.5144e+01 #> 588 93.8000 3.6004e+00 0.19539000 -0.03424800 97.4 113.3900 -1.5987e+01 #> 589 89.9570 -1.2157e+01 -0.68792000 -0.74977000 77.8 107.6000 -2.9798e+01 #> 590 83.0620 -5.6243e-01 -0.03446800 -0.18590000 82.5 97.2730 -1.4773e+01 #> 591 71.8890 -1.6789e+01 -1.18880000 -1.14310000 55.1 80.7560 -2.5656e+01 #> 592 63.3680 -7.5679e+00 -0.60794000 -0.60790000 55.8 68.4180 -1.2618e+01 #> 593 51.5190 -1.6519e+01 -1.63220000 -1.52920000 35.0 51.8770 -1.6877e+01 #> 594 43.7860 6.1141e+00 0.71082000 0.79035000 49.9 41.7220 8.1780e+00 #> 595 38.2820 8.2184e+00 1.09280000 1.24890000 46.5 34.9620 1.1538e+01 #> 596 34.0430 -1.6429e+00 -0.24567000 -0.09575200 32.4 30.0790 2.3205e+00 #> 597 25.0140 -3.9143e+00 -0.79657000 -0.67554000 21.1 20.5900 5.1017e-01 #> 598 18.7430 2.7567e+00 0.74870000 1.03310000 21.5 14.5800 6.9204e+00 #> 599 14.0910 4.1086e+00 1.48420000 1.85410000 18.2 10.3870 7.8129e+00 #> 600 10.6030 -2.9026e+00 -1.39360000 -1.37170000 7.7 7.4103 2.8969e-01 #> 601 1238.7000 -1.2387e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 602 1191.1000 -2.7020e+01 -0.11548000 0.09733900 1164.1 875.1500 2.8895e+02 #> 603 1145.6000 1.5823e+02 0.70311000 1.15360000 1303.8 849.9200 4.5388e+02 #> 604 1102.0000 4.2653e+02 1.97030000 2.76650000 1528.5 825.6700 7.0283e+02 #> 605 1060.2000 -1.3353e+02 -0.64110000 -0.60590000 926.7 802.3800 1.2432e+02 #> 606 982.0100 -2.6071e+02 -1.35140000 -1.49230000 721.3 758.4600 -3.7156e+01 #> 607 910.3000 -2.4405e+01 -0.13647000 0.00400600 885.9 717.8600 1.6804e+02 #> 608 844.5600 -1.3676e+02 -0.82430000 -0.82197000 707.8 680.3200 2.7479e+01 #> 609 784.2700 2.9203e+02 1.89550000 2.30230000 1076.3 645.5900 4.3071e+02 #> 610 678.2100 -1.7341e+02 -1.30160000 -1.31030000 504.8 583.6400 -7.8836e+01 #> 611 513.5300 1.4373e+01 0.14247000 0.15137000 527.9 484.5400 4.3364e+01 #> 612 396.0700 -2.8165e+01 -0.36200000 -0.37802000 367.9 410.5100 -4.2610e+01 #> 613 250.6500 7.9248e+01 1.60940000 0.87026000 329.9 311.2600 1.8636e+01 #> 614 172.8300 1.3272e+01 0.39092000 -0.19698000 186.1 250.3300 -6.4232e+01 #> 615 128.7800 1.5618e+01 0.61734000 -0.23441000 144.4 209.7700 -6.5371e+01 #> 616 101.9400 -6.3688e-01 -0.03180400 -0.69377000 101.3 180.4800 -7.9177e+01 #> 617 61.3680 -8.8676e+00 -0.73557000 -1.09200000 52.5 123.5400 -7.1039e+01 #> 618 40.7960 -5.8958e+00 -0.73567000 -0.94898000 34.9 87.4770 -5.2577e+01 #> 619 27.6230 -1.7234e+00 -0.31758000 -0.55998000 25.9 62.3230 -3.6423e+01 #> 620 18.7700 2.5303e+00 0.68622000 0.10645000 21.3 44.4620 -2.3162e+01 #> 621 1017.9000 -1.0179e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 622 982.4600 1.2684e+02 0.65719000 0.68411000 1109.3 875.1500 2.3415e+02 #> 623 948.6400 1.1186e+02 0.60025000 0.61335000 1060.5 849.9200 2.1058e+02 #> 624 916.4000 -1.0040e+02 -0.55768000 -0.62614000 816.0 825.6700 -9.6745e+00 #> 625 885.6500 3.1547e+01 0.18132000 0.15246000 917.2 802.3800 1.1482e+02 #> 626 828.3800 2.0902e+02 1.28450000 1.30330000 1037.4 758.4600 2.7894e+02 #> 627 776.2600 -1.9655e+01 -0.12889000 -0.19081000 756.6 717.8600 3.8738e+01 #> 628 728.7900 -9.8891e+01 -0.69074000 -0.77811000 629.9 680.3200 -5.0421e+01 #> 629 685.5400 6.4864e+01 0.48165000 0.43610000 750.4 645.5900 1.0481e+02 #> 630 610.0600 -5.5564e+01 -0.46363000 -0.53305000 554.5 583.6400 -2.9136e+01 #> 631 494.2100 -1.6712e+01 -0.17214000 -0.21661000 477.5 484.5400 -7.0362e+00 #> 632 412.0300 -1.0473e+02 -1.29390000 -1.29700000 307.3 410.5100 -1.0321e+02 #> 633 308.1800 5.7525e+01 0.95020000 0.91709000 365.7 311.2600 5.4436e+01 #> 634 247.5900 3.1915e+01 0.65618000 0.63453000 279.5 250.3300 2.9168e+01 #> 635 207.7300 -1.2327e+01 -0.30209000 -0.27481000 195.4 209.7700 -1.4371e+01 #> 636 178.5200 6.1676e+01 1.75860000 1.64870000 240.2 180.4800 5.9723e+01 #> 637 119.6100 -3.2412e+01 -1.37940000 -1.16980000 87.2 123.5400 -3.6339e+01 #> 638 81.7490 -2.1649e+01 -1.34810000 -1.00640000 60.1 87.4770 -2.7377e+01 #> 639 56.0100 -9.1099e+00 -0.82795000 -0.46654000 46.9 62.3230 -1.5423e+01 #> 640 38.3980 9.8016e+00 1.29940000 1.15980000 48.2 44.4620 3.7381e+00 #> 641 747.0900 -7.4709e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 642 713.8700 1.7627e+01 0.12569000 0.42321000 731.5 437.5700 2.9393e+02 #> 643 682.6200 4.4981e+01 0.33543000 0.74103000 727.6 424.9600 3.0264e+02 #> 644 653.2100 8.9594e+01 0.69821000 1.29760000 742.8 412.8400 3.2996e+02 #> 645 625.5200 3.1081e+01 0.25294000 0.55461000 656.6 401.1900 2.5541e+02 #> 646 574.9100 1.8349e+02 1.62470000 2.61320000 758.4 379.2300 3.7917e+02 #> 647 530.0200 4.3819e+00 0.04208500 0.17963000 534.4 358.9300 1.7547e+02 #> 648 490.1700 -5.9659e+00 -0.06195700 0.02377100 484.2 340.1600 1.4404e+02 #> 649 454.7500 -9.4054e+01 -1.05280000 -1.34150000 360.7 322.7900 3.7907e+01 #> 650 395.2100 1.1292e+01 0.14545000 0.31497000 406.5 291.8200 1.1468e+02 #> 651 310.0400 -7.9841e+01 -1.31090000 -1.42930000 230.2 242.2700 -1.2068e+01 #> 652 254.9200 3.2781e+01 0.65461000 1.00090000 287.7 205.2600 8.2445e+01 #> 653 192.3700 1.4933e+01 0.39516000 0.75553000 207.3 155.6300 5.1668e+01 #> 654 159.1200 3.5876e+01 1.14770000 1.72160000 195.0 125.1700 6.9834e+01 #> 655 137.5900 -7.8899e-01 -0.02919100 0.22227000 136.8 104.8900 3.1914e+01 #> 656 121.2900 -1.5691e+01 -0.65855000 -0.62220000 105.6 90.2380 1.5362e+01 #> 657 85.8080 -7.8076e+00 -0.46318000 -0.39903000 78.0 61.7700 1.6230e+01 #> 658 61.2000 1.9900e+01 1.65520000 2.18440000 81.1 43.7390 3.7361e+01 #> 659 43.6730 -4.1729e+00 -0.48639000 -0.41517000 39.5 31.1610 8.3387e+00 #> 660 31.1750 -7.5237e-02 -0.01228500 0.10431000 31.1 22.2310 8.8691e+00 #> 661 1813.3000 -1.8133e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 662 1759.1000 2.4798e+02 0.71761000 0.61143000 2007.1 1750.3000 2.5681e+02 #> 663 1706.9000 3.3638e+02 1.00320000 0.88822000 2043.3 1699.8000 3.4347e+02 #> 664 1656.7000 3.6246e+01 0.11138000 0.03160300 1692.9 1651.3000 4.1551e+01 #> 665 1608.2000 -2.0895e+02 -0.66136000 -0.71236000 1399.3 1604.8000 -2.0545e+02 #> 666 1516.7000 -1.8952e+02 -0.63607000 -0.68755000 1327.2 1516.9000 -1.8971e+02 #> 667 1431.8000 -3.0539e+02 -1.08580000 -1.12160000 1126.4 1435.7000 -3.0932e+02 #> 668 1353.0000 2.6535e+02 0.99837000 0.89203000 1618.3 1360.6000 2.5766e+02 #> 669 1279.7000 -3.3144e+01 -0.13184000 -0.20014000 1246.6 1291.2000 -4.4572e+01 #> 670 1148.5000 -3.3334e+00 -0.01477400 -0.08979000 1145.2 1167.3000 -2.2073e+01 #> 671 936.8700 1.2233e+02 0.66470000 0.54163000 1059.2 969.0700 9.0128e+01 #> 672 777.4300 2.4571e+01 0.16089000 0.03995400 802.0 821.0200 -1.9020e+01 #> 673 562.9200 -5.8624e+01 -0.53013000 -0.63064000 504.3 622.5300 -1.1823e+02 #> 674 432.8200 1.4228e+02 1.67340000 1.17380000 575.1 500.6600 7.4437e+01 #> 675 348.9800 2.2620e+01 0.32996000 -0.00008768 371.6 419.5400 -4.7942e+01 #> 676 291.1800 -9.0079e+01 -1.57480000 -1.49900000 201.1 360.9500 -1.5985e+02 #> 677 188.3600 3.5434e+00 0.09576400 -0.22081000 191.9 247.0800 -5.5178e+01 #> 678 129.1900 -3.5856e+00 -0.14129000 -0.34033000 125.6 174.9500 -4.9355e+01 #> 679 89.7450 1.1549e+00 0.06551000 -0.14725000 90.9 124.6500 -3.3745e+01 #> 680 62.5320 5.4678e+00 0.44511000 0.13746000 68.0 88.9240 -2.0924e+01 #> 681 2173.7000 -2.1737e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 682 2089.9000 3.6838e+02 0.89726000 1.16580000 2458.3 1750.3000 7.0801e+02 #> 683 2010.4000 2.3206e+02 0.58759000 0.78519000 2242.5 1699.8000 5.4267e+02 #> 684 1935.0000 1.5842e+02 0.41675000 0.56743000 2093.4 1651.3000 4.4205e+02 #> 685 1863.3000 1.3655e+02 0.37304000 0.49599000 1999.9 1604.8000 3.9515e+02 #> 686 1730.7000 -3.9682e+02 -1.16710000 -1.23480000 1333.9 1516.9000 -1.8301e+02 #> 687 1611.0000 1.2715e+02 0.40177000 0.45447000 1738.2 1435.7000 3.0248e+02 #> 688 1503.0000 -4.1447e+02 -1.40380000 -1.49960000 1088.5 1360.6000 -2.7214e+02 #> 689 1405.3000 -3.3379e+02 -1.20910000 -1.29100000 1071.5 1291.2000 -2.1967e+02 #> 690 1236.9000 3.6080e+02 1.48490000 1.48280000 1597.7 1167.3000 4.3043e+02 #> 691 984.2600 1.1924e+02 0.61671000 0.55697000 1103.5 969.0700 1.3443e+02 #> 692 810.2000 -2.0340e+02 -1.27800000 -1.25740000 606.8 821.0200 -2.1422e+02 #> 693 597.6900 1.0221e+02 0.87048000 0.81353000 699.9 622.5300 7.7371e+01 #> 694 477.5700 -9.0372e+01 -0.96327000 -0.85402000 387.2 500.6600 -1.1346e+02 #> 695 399.4000 -3.2096e+01 -0.40908000 -0.34229000 367.3 419.5400 -5.2242e+01 #> 696 342.0000 5.8696e+01 0.87365000 0.79075000 400.7 360.9500 3.9747e+01 #> 697 225.4400 3.5365e+01 0.79855000 0.60976000 260.8 247.0800 1.3722e+01 #> 698 150.9900 1.3310e+01 0.44872000 0.23337000 164.3 174.9500 -1.0655e+01 #> 699 101.3000 -1.3996e+01 -0.70336000 -0.64678000 87.3 124.6500 -3.7345e+01 #> 700 67.9920 4.1084e+00 0.30759000 0.03008000 72.1 88.9240 -1.6824e+01 #> 701 888.2700 -8.8827e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 702 859.7400 2.6716e+02 1.58180000 1.45190000 1126.9 875.1500 2.5175e+02 #> 703 832.4600 -1.7456e+02 -1.06740000 -1.05060000 657.9 849.9200 -1.9202e+02 #> 704 806.3600 2.9369e+00 0.01854000 -0.03960000 809.3 825.6700 -1.6375e+01 #> 705 781.4100 -3.5205e+01 -0.22934000 -0.28185000 746.2 802.3800 -5.6176e+01 #> 706 734.6900 -2.8089e+01 -0.19462000 -0.26604000 706.6 758.4600 -5.1856e+01 #> 707 691.9200 -1.0822e+02 -0.79616000 -0.84346000 583.7 717.8600 -1.3416e+02 #> 708 652.7400 -7.0380e+00 -0.05488700 -0.16190000 645.7 680.3200 -3.4621e+01 #> 709 616.8300 1.3767e+02 1.13620000 0.93866000 754.5 645.5900 1.0891e+02 #> 710 553.6600 1.5394e+02 1.41530000 1.17990000 707.6 583.6400 1.2396e+02 #> 711 455.3000 -9.7103e+01 -1.08560000 -1.14270000 358.2 484.5400 -1.2634e+02 #> 712 384.4000 -6.8000e+01 -0.90050000 -0.95266000 316.4 410.5100 -9.4110e+01 #> 713 293.5900 -5.9884e+00 -0.10383000 -0.15059000 287.6 311.2600 -2.3664e+01 #> 714 240.5200 -5.9518e+01 -1.25970000 -1.14140000 181.0 250.3300 -6.9332e+01 #> 715 206.0700 -6.3673e+01 -1.57290000 -1.37170000 142.4 209.7700 -6.7371e+01 #> 716 181.2300 8.9700e+00 0.25195000 0.41351000 190.2 180.4800 9.7233e+00 #> 717 131.2200 4.7880e+01 1.85740000 2.11770000 179.1 123.5400 5.5561e+01 #> 718 97.3900 3.6099e+00 0.18869000 0.55857000 101.0 87.4770 1.3523e+01 #> 719 72.5320 -2.0532e+01 -1.44100000 -1.01920000 52.0 62.3230 -1.0323e+01 #> 720 54.0570 1.0043e+01 0.94569000 1.32850000 64.1 44.4620 1.9638e+01 #> 721 373.2200 -3.7322e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 722 365.9000 -2.7695e+01 -0.38531000 -0.43138000 338.2 437.5700 -9.9373e+01 #> 723 358.7900 -1.4899e+02 -2.11380000 -1.84650000 209.8 424.9600 -2.1516e+02 #> 724 351.8800 1.2092e+02 1.74920000 1.36660000 472.8 412.8400 5.9963e+01 #> 725 345.1800 -9.5578e+01 -1.40950000 -1.25570000 249.6 401.1900 -1.5159e+02 #> 726 332.3400 -5.4038e+01 -0.82771000 -0.75352000 278.3 379.2300 -1.0093e+02 #> 727 320.2200 -3.2420e+01 -0.51538000 -0.47120000 287.8 358.9300 -7.1131e+01 #> 728 308.7800 3.6021e+01 0.59383000 0.51370000 344.8 340.1600 4.6394e+00 #> 729 297.9700 -7.3973e+01 -1.26370000 -1.10590000 224.0 322.7900 -9.8793e+01 #> 730 278.1100 9.2789e+01 1.69840000 1.59440000 370.9 291.8200 7.9082e+01 #> 731 244.4400 7.2162e+01 1.50280000 1.53590000 316.6 242.2700 7.4332e+01 #> 732 217.3100 2.0988e+01 0.49164000 0.62111000 238.3 205.2600 3.3045e+01 #> 733 177.2000 1.1897e+01 0.34175000 0.51510000 189.1 155.6300 3.3468e+01 #> 734 149.6800 -6.9827e+00 -0.23747000 -0.12800000 142.7 125.1700 1.7534e+01 #> 735 129.9200 1.5824e+00 0.06200200 0.18686000 131.5 104.8900 2.6614e+01 #> 736 115.0200 -1.2519e+01 -0.55406000 -0.56541000 102.5 90.2380 1.2262e+01 #> 737 85.3330 7.5669e+00 0.45140000 0.59666000 92.9 61.7700 3.1130e+01 #> 738 66.0090 3.7910e+00 0.29236000 0.37222000 69.8 43.7390 2.6061e+01 #> 739 51.6580 5.9417e+00 0.58550000 0.74250000 57.6 31.1610 2.6439e+01 #> 740 40.5620 -1.6240e-01 -0.02038100 -0.12696000 40.4 22.2310 1.8169e+01 #> 741 179.0800 -1.7908e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 742 173.7800 3.8919e+01 1.14000000 1.28620000 212.7 145.8600 6.6842e+01 #> 743 168.6900 4.3074e+00 0.12998000 0.14661000 173.0 141.6500 3.1347e+01 #> 744 163.8100 1.5392e+01 0.47830000 0.55183000 179.2 137.6100 4.1588e+01 #> 745 159.1200 -8.0203e+00 -0.25658000 -0.27981000 151.1 133.7300 1.7371e+01 #> 746 150.3000 9.8005e+00 0.33193000 0.40932000 160.1 126.4100 3.3691e+01 #> 747 142.1700 -2.4268e+01 -0.86894000 -0.95682000 117.9 119.6400 -1.7436e+00 #> 748 134.6700 9.3077e-01 0.03518300 0.09809500 135.6 113.3900 2.2213e+01 #> 749 127.7500 -1.1951e+01 -0.47620000 -0.47918000 115.8 107.6000 8.2024e+00 #> 750 115.4700 2.9932e+01 1.31960000 1.62690000 145.4 97.2730 4.8127e+01 #> 751 96.0130 7.8867e+00 0.41814000 0.62539000 103.9 80.7560 2.3144e+01 #> 752 81.7020 -1.9702e+01 -1.22750000 -1.26130000 62.0 68.4180 -6.4184e+00 #> 753 63.0020 7.0983e+00 0.57353000 0.87665000 70.1 51.8770 1.8223e+01 #> 754 51.9680 3.3316e+00 0.32634000 0.61295000 55.3 41.7220 1.3578e+01 #> 755 44.8950 3.9053e+00 0.44281000 0.78239000 48.8 34.9620 1.3838e+01 #> 756 39.9190 -1.2019e+01 -1.53260000 -1.62510000 27.9 30.0790 -2.1795e+00 #> 757 30.2570 -4.0569e+00 -0.68254000 -0.56466000 26.2 20.5900 5.6102e+00 #> 758 23.7040 4.8957e+00 1.05130000 1.86610000 28.6 14.5800 1.4020e+01 #> 759 18.6710 1.5292e+00 0.41693000 0.94720000 20.2 10.3870 9.8129e+00 #> 760 14.7220 1.5784e+00 0.54578000 1.05290000 16.3 7.4103 8.8897e+00 #> 761 189.7300 -1.8973e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 762 184.1900 2.2909e+01 0.63314000 0.85756000 207.1 145.8600 6.1242e+01 #> 763 178.8800 -1.8677e+01 -0.53151000 -0.54751000 160.2 141.6500 1.8547e+01 #> 764 173.7800 5.7239e+00 0.16767000 0.30963000 179.5 137.6100 4.1888e+01 #> 765 168.8800 -2.5879e+01 -0.78006000 -0.84076000 143.0 133.7300 9.2706e+00 #> 766 159.6600 2.0637e+01 0.65796000 0.93604000 180.3 126.4100 5.3891e+01 #> 767 151.1600 2.0359e+00 0.06855800 0.22714000 153.2 119.6400 3.3556e+01 #> 768 143.3200 -7.9233e+00 -0.28141000 -0.19153000 135.4 113.3900 2.2013e+01 #> 769 136.0900 1.5414e+01 0.57657000 0.89029000 151.5 107.6000 4.3902e+01 #> 770 123.2300 4.4071e+01 1.82060000 2.48290000 167.3 97.2730 7.0027e+01 #> 771 102.8300 1.9272e+01 0.95404000 1.46090000 122.1 80.7560 4.1344e+01 #> 772 87.7780 -2.4778e+01 -1.43690000 -1.53460000 63.0 68.4180 -5.4184e+00 #> 773 68.0000 -1.8700e+01 -1.39990000 -1.45760000 49.3 51.8770 -2.5774e+00 #> 774 56.2090 -1.5091e+00 -0.13667000 0.19736000 54.7 41.7220 1.2978e+01 #> 775 48.5560 1.6644e+01 1.74490000 2.72410000 65.2 34.9620 3.0238e+01 #> 776 43.1080 -8.9084e+00 -1.05200000 -1.05390000 34.2 30.0790 4.1205e+00 #> 777 32.3960 -6.9597e-01 -0.10936000 0.21006000 31.7 20.5900 1.1110e+01 #> 778 25.1200 5.7957e-01 0.11745000 0.50179000 25.7 14.5800 1.1120e+01 #> 779 19.5790 3.2212e+00 0.83751000 1.55550000 22.8 10.3870 1.2413e+01 #> 780 15.2750 6.2469e-01 0.20818000 0.45409000 15.9 7.4103 8.4897e+00 #> 781 440.3400 -4.4034e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 782 434.9700 1.1135e+01 0.13031000 -0.63863000 446.1 875.1500 -4.2905e+02 #> 783 429.7300 -7.0266e+00 -0.08323500 -0.74726000 422.7 849.9200 -4.2722e+02 #> 784 424.6200 -1.1512e+02 -1.38010000 -1.49030000 309.5 825.6700 -5.1617e+02 #> 785 419.6500 3.8555e+01 0.46769000 -0.39509000 458.2 802.3800 -3.4418e+02 #> 786 410.0700 -3.5166e+01 -0.43654000 -0.90145000 374.9 758.4600 -3.8356e+02 #> 787 400.9600 -9.1959e+01 -1.16750000 -1.31750000 309.0 717.8600 -4.0886e+02 #> 788 392.3000 4.6604e+01 0.60473000 -0.21899000 438.9 680.3200 -2.4142e+02 #> 789 384.0500 -5.1652e+01 -0.68463000 -0.98432000 332.4 645.5900 -3.1319e+02 #> 790 368.7200 1.3688e+02 1.88970000 0.68141000 505.6 583.6400 -7.8036e+01 #> 791 342.0900 -7.2882e+00 -0.10845000 -0.49405000 334.8 484.5400 -1.4974e+02 #> 792 319.8600 9.1408e+00 0.14547000 -0.24255000 329.0 410.5100 -8.1510e+01 #> 793 285.0800 -1.3771e+00 -0.02458900 -0.22937000 283.7 311.2600 -2.7564e+01 #> 794 259.1000 -3.2202e+01 -0.63266000 -0.61161000 226.9 250.3300 -2.3432e+01 #> 795 238.7200 5.3075e+01 1.13170000 0.93076000 291.8 209.7700 8.2029e+01 #> 796 221.9900 -4.7988e+01 -1.10040000 -0.93948000 174.0 180.4800 -6.4767e+00 #> 797 183.7500 4.6152e+01 1.27860000 1.51030000 229.9 123.5400 1.0636e+02 #> 798 154.7300 -4.1278e+00 -0.13580000 0.11676000 150.6 87.4770 6.3123e+01 #> 799 130.8900 -1.1898e+00 -0.04627300 0.26042000 129.7 62.3230 6.7377e+01 #> 800 110.8700 1.5826e+01 0.72662000 1.50560000 126.7 44.4620 8.2238e+01 #> 801 621.6300 -6.2163e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 802 610.4800 3.5222e+01 0.29370000 -0.14491000 645.7 875.1500 -2.2945e+02 #> 803 599.6300 2.4767e+01 0.21025000 -0.18886000 624.4 849.9200 -2.2552e+02 #> 804 589.0900 -5.7392e+01 -0.49593000 -0.68592000 531.7 825.6700 -2.9397e+02 #> 805 578.8400 -1.1954e+02 -1.05130000 -1.08030000 459.3 802.3800 -3.4308e+02 #> 806 559.1900 1.1561e+02 1.05240000 0.49457000 674.8 758.4600 -8.3656e+01 #> 807 540.6000 -1.3200e+02 -1.24300000 -1.19300000 408.6 717.8600 -3.0926e+02 #> 808 523.0100 6.1870e+00 0.06021800 -0.18969000 529.2 680.3200 -1.5112e+02 #> 809 506.3600 -1.2156e+02 -1.22200000 -1.15510000 384.8 645.5900 -2.6079e+02 #> 810 475.6300 -1.2603e+02 -1.34890000 -1.23820000 349.6 583.6400 -2.3404e+02 #> 811 423.0900 1.8407e+01 0.22147000 0.08052400 441.5 484.5400 -4.3036e+01 #> 812 380.1900 1.9791e+02 2.64990000 2.24240000 578.1 410.5100 1.6759e+02 #> 813 315.2400 4.4759e+01 0.72277000 0.67703000 360.0 311.2600 4.8736e+01 #> 814 268.9500 9.2453e+00 0.17498000 0.19418000 278.2 250.3300 2.7868e+01 #> 815 234.3300 2.3766e+01 0.51627000 0.54337000 258.1 209.7700 4.8329e+01 #> 816 207.2100 -7.0138e+00 -0.17230000 -0.17939000 200.2 180.4800 1.9723e+01 #> 817 150.3800 1.8222e+01 0.61682000 0.61613000 168.6 123.5400 4.5061e+01 #> 818 112.4000 -1.2605e+01 -0.57083000 -0.75013000 99.8 87.4770 1.2323e+01 #> 819 84.7050 1.6495e+01 0.99130000 1.01250000 101.2 62.3230 3.8877e+01 #> 820 63.9850 -1.3785e+01 -1.09670000 -1.35490000 50.2 44.4620 5.7381e+00 #> 821 2199.7000 -2.1997e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 822 2099.0000 -7.3672e+01 -0.17867000 0.03148200 2025.3 1750.3000 2.7501e+02 #> 823 2003.8000 5.4481e-01 0.00138410 0.17510000 2004.3 1699.8000 3.0447e+02 #> 824 1913.8000 1.4621e-01 0.00038891 0.11642000 1913.9 1651.3000 2.6255e+02 #> 825 1828.7000 3.8933e+02 1.08380000 1.23290000 2218.0 1604.8000 6.1325e+02 #> 826 1672.2000 4.7405e+02 1.44310000 1.46870000 2146.2 1516.9000 6.2929e+02 #> 827 1532.2000 -2.1715e+02 -0.72147000 -0.83890000 1315.0 1435.7000 -1.2072e+02 #> 828 1406.8000 -3.0724e+02 -1.11170000 -1.26080000 1099.6 1360.6000 -2.6104e+02 #> 829 1294.6000 -1.8160e+02 -0.71405000 -0.91096000 1113.0 1291.2000 -1.7817e+02 #> 830 1103.7000 2.2819e+02 1.05240000 0.58909000 1331.9 1167.3000 1.6463e+02 #> 831 825.1800 -3.9483e+01 -0.24357000 -0.62360000 785.7 969.0700 -1.8337e+02 #> 832 640.9300 -1.6326e+01 -0.12966000 -0.55941000 624.6 821.0200 -1.9642e+02 #> 833 429.3800 1.8165e+00 0.02153500 -0.43579000 431.2 622.5300 -1.9133e+02 #> 834 320.1000 -2.8505e+01 -0.45330000 -0.69036000 291.6 500.6600 -2.0906e+02 #> 835 254.5900 1.8312e+01 0.36614000 -0.16220000 272.9 419.5400 -1.4664e+02 #> 836 209.5300 3.7573e+01 0.91283000 0.16636000 247.1 360.9500 -1.1385e+02 #> 837 125.2500 -1.6544e+00 -0.06723500 -0.37691000 123.6 247.0800 -1.2348e+02 #> 838 76.5610 -4.5615e+00 -0.30329000 -0.46611000 72.0 174.9500 -1.0295e+02 #> 839 46.8990 2.4012e+00 0.26063000 -0.17813000 49.3 124.6500 -7.5345e+01 #> 840 28.7460 1.6539e+00 0.29288000 -0.14654000 30.4 88.9240 -5.8524e+01 #> 841 190.9300 -1.9093e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 842 182.9800 -8.4750e+00 -0.23578000 0.18960000 174.5 145.8600 2.8642e+01 #> 843 175.4500 2.7650e+01 0.80223000 1.37460000 203.1 141.6500 6.1447e+01 #> 844 168.3300 6.7694e+00 0.20471000 0.61529000 175.1 137.6100 3.7488e+01 #> 845 161.5900 -3.3294e+01 -1.04880000 -0.88494000 128.3 133.7300 -5.4294e+00 #> 846 149.1800 -5.9482e+01 -2.02970000 -2.04620000 89.7 126.4100 -3.6709e+01 #> 847 138.0600 8.5543e+01 3.15410000 3.67830000 223.6 119.6400 1.0396e+02 #> 848 128.0800 -4.2770e+00 -0.16999000 -0.05379900 123.8 113.3900 1.0413e+01 #> 849 119.1200 -2.6916e+01 -1.15030000 -1.13590000 92.2 107.6000 -1.5398e+01 #> 850 103.8200 -1.7320e+01 -0.84921000 -0.85149000 86.5 97.2730 -1.0773e+01 #> 851 81.3050 -9.0046e+00 -0.56378000 -0.59082000 72.3 80.7560 -8.4560e+00 #> 852 66.1870 1.0913e+01 0.83934000 0.72434000 77.1 68.4180 8.6816e+00 #> 853 48.3240 -1.0224e+01 -1.07700000 -0.95086000 38.1 51.8770 -1.3777e+01 #> 854 38.5730 -1.2173e+01 -1.60650000 -1.34690000 26.4 41.7220 -1.5322e+01 #> 855 32.3330 3.6660e-01 0.05771500 0.16452000 32.7 34.9620 -2.2618e+00 #> 856 27.7650 9.5351e+00 1.74820000 1.64420000 37.3 30.0790 7.2205e+00 #> 857 18.4150 -1.1155e+00 -0.30835000 -0.20028000 17.3 20.5900 -3.2898e+00 #> 858 12.3860 1.6136e+00 0.66315000 0.47641000 14.0 14.5800 -5.7955e-01 #> 859 8.3416 2.5842e-01 0.15770000 0.00821290 8.6 10.3870 -1.7871e+00 #> 860 5.6201 -1.2009e-01 -0.10877000 -0.23378000 5.5 7.4103 -1.9103e+00 #> 861 774.6400 -7.7464e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 862 744.0800 1.8262e+02 1.24930000 0.88770000 926.7 875.1500 5.1555e+01 #> 863 714.9800 -3.9080e+01 -0.27824000 -0.41744000 675.9 849.9200 -1.7402e+02 #> 864 687.2500 -1.1775e+02 -0.87219000 -0.93690000 569.5 825.6700 -2.5617e+02 #> 865 660.8300 -1.0534e+01 -0.08114100 -0.32721000 650.3 802.3800 -1.5208e+02 #> 866 611.6600 7.6038e+01 0.63282000 0.17340000 687.7 758.4600 -7.0756e+01 #> 867 566.9800 -5.7580e+01 -0.51696000 -0.78992000 509.4 717.8600 -2.0846e+02 #> 868 526.3500 -4.3652e+01 -0.42217000 -0.76368000 482.7 680.3200 -1.9762e+02 #> 869 489.3800 -7.4684e+01 -0.77684000 -1.07070000 414.7 645.5900 -2.3089e+02 #> 870 425.0400 1.0016e+02 1.19950000 0.29475000 525.2 583.6400 -5.8436e+01 #> 871 326.8400 -3.4839e+01 -0.54261000 -1.03700000 292.0 484.5400 -1.9254e+02 #> 872 257.8500 5.2460e+00 0.10357000 -0.66002000 263.1 410.5100 -1.4741e+02 #> 873 172.4300 1.3275e+01 0.39190000 -0.51803000 185.7 311.2600 -1.2556e+02 #> 874 124.7000 -1.2965e+00 -0.05292900 -0.73485000 123.4 250.3300 -1.2693e+02 #> 875 95.1870 1.1131e+00 0.05952500 -0.64415000 96.3 209.7700 -1.1347e+02 #> 876 75.1280 9.7191e-01 0.06585400 -0.61590000 76.1 180.4800 -1.0438e+02 #> 877 40.2040 8.1956e+00 1.03770000 -0.17833000 48.4 123.5400 -7.5139e+01 #> 878 22.2910 -8.2909e+00 -1.89330000 -1.22160000 14.0 87.4770 -7.3477e+01 #> 879 12.4250 1.0755e+00 0.44062000 -0.35157000 13.5 62.3230 -4.8823e+01 #> 880 6.9339 2.6606e-01 0.19532000 -0.38083000 7.2 44.4620 -3.7262e+01 #> 881 2522.7000 -2.5227e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 882 2388.5000 1.2610e+02 0.26874000 1.08200000 2514.6 1750.3000 7.6431e+02 #> 883 2261.7000 -3.1430e+01 -0.07074000 0.49417000 2230.3 1699.8000 5.3047e+02 #> 884 2142.0000 -6.1628e+02 -1.46460000 -1.31430000 1525.7 1651.3000 -1.2565e+02 #> 885 2028.9000 -4.9106e+02 -1.23210000 -1.10080000 1537.8 1604.8000 -6.6952e+01 #> 886 1821.1000 5.7784e+02 1.61530000 1.81360000 2398.9 1516.9000 8.8199e+02 #> 887 1635.6000 1.1309e+02 0.35197000 0.25453000 1748.7 1435.7000 3.1298e+02 #> 888 1470.1000 1.8970e+02 0.65688000 0.34784000 1659.8 1360.6000 2.9916e+02 #> 889 1322.4000 2.4184e+02 0.93097000 0.40390000 1564.2 1291.2000 2.7303e+02 #> 890 1072.7000 -1.6853e+02 -0.79973000 -1.18230000 904.2 1167.3000 -2.6307e+02 #> 891 714.8900 9.5907e+01 0.68291000 -0.44356000 810.8 969.0700 -1.5827e+02 #> 892 486.7700 -2.0966e+01 -0.21925000 -1.07650000 465.8 821.0200 -3.5522e+02 #> 893 246.6600 -1.3161e+01 -0.27162000 -1.16610000 233.5 622.5300 -3.8903e+02 #> 894 145.3500 2.3545e+00 0.08246100 -1.06570000 147.7 500.6600 -3.5296e+02 #> 895 100.0300 2.6681e+00 0.13578000 -1.05220000 102.7 419.5400 -3.1684e+02 #> 896 77.5910 3.0095e+00 0.19744000 -1.00650000 80.6 360.9500 -2.8035e+02 #> 897 49.5390 -1.1039e+01 -1.13430000 -1.24120000 38.5 247.0800 -2.0858e+02 #> 898 35.3000 5.4001e+00 0.77873000 -0.32339000 40.7 174.9500 -1.3425e+02 #> 899 25.4180 -8.3180e+00 -1.66580000 -0.95632000 17.1 124.6500 -1.0755e+02 #> 900 18.3240 4.3755e+00 1.21550000 0.37500000 22.7 88.9240 -6.6224e+01 #> 901 245.5700 -2.4557e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 902 234.3400 5.7859e+01 1.25680000 2.73690000 292.2 145.8600 1.4634e+02 #> 903 223.8100 -9.8214e+01 -2.23380000 -2.99130000 125.6 141.6500 -1.6053e+01 #> 904 213.9400 3.0058e+01 0.71519000 1.66640000 244.0 137.6100 1.0639e+02 #> 905 204.6800 1.3180e+00 0.03277800 0.53013000 206.0 133.7300 7.2271e+01 #> 906 187.8400 3.8614e+00 0.10464000 0.53801000 191.7 126.4100 6.5291e+01 #> 907 172.9900 1.7808e+01 0.52402000 1.06150000 190.8 119.6400 7.1156e+01 #> 908 159.8900 4.1913e+01 1.33440000 2.11220000 201.8 113.3900 8.8413e+01 #> 909 148.3000 -4.2036e+00 -0.14429000 0.01223500 144.1 107.6000 3.6502e+01 #> 910 128.9500 -2.5551e+01 -1.00860000 -1.14640000 103.4 97.2730 6.1273e+00 #> 911 101.5000 -2.8097e+01 -1.40920000 -1.57720000 73.4 80.7560 -7.3560e+00 #> 912 83.7420 2.4158e+01 1.46850000 1.95810000 107.9 68.4180 3.9482e+01 #> 913 63.0980 4.2023e+00 0.33902000 0.65723000 67.3 51.8770 1.5423e+01 #> 914 51.3750 1.2925e+01 1.28070000 1.76200000 64.3 41.7220 2.2578e+01 #> 915 43.2820 -8.7817e+00 -1.03280000 -1.07960000 34.5 34.9620 -4.6184e-01 #> 916 36.9730 7.6272e+00 1.05010000 1.21180000 44.6 30.0790 1.4521e+01 #> 917 23.5450 -3.0453e+00 -0.65839000 -0.87247000 20.5 20.5900 -8.9834e-02 #> 918 15.0690 1.3097e-01 0.04424200 -0.34226000 15.2 14.5800 6.2045e-01 #> 919 9.6469 1.1531e+00 0.60845000 0.00553770 10.8 10.3870 4.1289e-01 #> 920 6.1782 -3.7819e-01 -0.31161000 -0.64268000 5.8 7.4103 -1.6103e+00 #> 921 265.5300 -2.6553e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 922 261.2100 1.4595e+01 0.28443000 -0.35345000 275.8 437.5700 -1.6177e+02 #> 923 257.0100 5.7589e+01 1.14060000 0.21670000 314.6 424.9600 -1.1036e+02 #> 924 252.9500 -7.1547e+01 -1.43980000 -1.45040000 181.4 412.8400 -2.3144e+02 #> 925 249.0100 -6.9706e+01 -1.42500000 -1.43360000 179.3 401.1900 -2.2189e+02 #> 926 241.4800 -6.2813e+00 -0.13241000 -0.55976000 235.2 379.2300 -1.4403e+02 #> 927 234.4000 6.6796e+01 1.45060000 0.53095000 301.2 358.9300 -5.7731e+01 #> 928 227.7400 -1.9442e+01 -0.43457000 -0.71964000 208.3 340.1600 -1.3186e+02 #> 929 221.4700 -1.0169e+01 -0.23373000 -0.56135000 211.3 322.7900 -1.1149e+02 #> 930 209.9800 4.9219e+01 1.19320000 0.48961000 259.2 291.8200 -3.2618e+01 #> 931 190.6000 -2.9303e+01 -0.78260000 -0.85649000 161.3 242.2700 -8.0968e+01 #> 932 175.0300 -1.9431e+01 -0.56511000 -0.64383000 155.6 205.2600 -4.9655e+01 #> 933 151.8200 1.2976e+01 0.43507000 0.27505000 164.8 155.6300 9.1678e+00 #> 934 135.4000 -2.4403e+01 -0.91742000 -0.82944000 111.0 125.1700 -1.4166e+01 #> 935 122.9900 -1.3289e+01 -0.55001000 -0.46378000 109.7 104.8900 4.8145e+00 #> 936 113.0200 -1.9181e+00 -0.08639400 0.02260300 111.1 90.2380 2.0862e+01 #> 937 90.6420 2.0358e+01 1.14330000 1.50720000 111.0 61.7700 4.9230e+01 #> 938 73.9390 1.5961e+01 1.09880000 1.64760000 89.9 43.7390 4.6161e+01 #> 939 60.5340 -2.3409e-01 -0.01968500 0.16106000 60.3 31.1610 2.9139e+01 #> 940 49.6060 9.9416e-01 0.10202000 0.31022000 50.6 22.2310 2.8369e+01 #> 941 291.4600 -2.9146e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 942 284.5300 -3.8934e+01 -0.69654000 -0.96799000 245.6 437.5700 -1.9197e+02 #> 943 277.8300 4.1066e+01 0.75240000 0.02975900 318.9 424.9600 -1.0606e+02 #> 944 271.3500 3.1548e+01 0.59183000 -0.07325400 302.9 412.8400 -1.0994e+02 #> 945 265.0800 5.1221e+01 0.98363000 0.20459000 316.3 401.1900 -8.4888e+01 #> 946 253.1300 -1.2531e+01 -0.25199000 -0.64179000 240.6 379.2300 -1.3863e+02 #> 947 241.9300 -6.4434e+01 -1.35570000 -1.40970000 177.5 358.9300 -1.8143e+02 #> 948 231.4400 -8.7371e+00 -0.19217000 -0.58555000 222.7 340.1600 -1.1746e+02 #> 949 221.5900 -8.1907e+00 -0.18816000 -0.57656000 213.4 322.7900 -1.0939e+02 #> 950 203.6700 9.7267e+00 0.24310000 -0.25503000 213.4 291.8200 -7.8418e+01 #> 951 173.8700 2.6323e+00 0.07706700 -0.35550000 176.5 242.2700 -6.5768e+01 #> 952 150.4300 7.2743e+00 0.24616000 -0.21510000 157.7 205.2600 -4.7555e+01 #> 953 116.7900 1.2095e+00 0.05271800 -0.33962000 118.0 155.6300 -3.7632e+01 #> 954 94.4610 1.4386e+00 0.07752700 -0.30278000 95.9 125.1700 -2.9266e+01 #> 955 78.7960 -1.2096e+01 -0.78144000 -0.93393000 66.7 104.8900 -3.8186e+01 #> 956 67.1830 -6.4832e+00 -0.49123000 -0.69201000 60.7 90.2380 -2.9538e+01 #> 957 44.6760 3.2244e+00 0.36740000 -0.01088400 47.9 61.7700 -1.3870e+01 #> 958 30.9510 5.5495e+00 0.91273000 0.39825000 36.5 43.7390 -7.2387e+00 #> 959 21.6630 3.6633e-02 0.00860790 -0.19569000 21.7 31.1610 -9.4613e+00 #> 960 15.2050 2.9468e-01 0.09865200 -0.11338000 15.5 22.2310 -6.7309e+00 #> 961 397.4600 -3.9746e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 962 387.2200 6.7175e+01 0.88308000 0.66982000 454.4 437.5700 1.6827e+01 #> 963 377.3100 -9.6714e+01 -1.30480000 -1.20690000 280.6 424.9600 -1.4436e+02 #> 964 367.7200 -9.9916e+01 -1.38320000 -1.27220000 267.8 412.8400 -1.4504e+02 #> 965 358.4200 1.6879e+01 0.23973000 0.14069000 375.3 401.1900 -2.5888e+01 #> 966 340.7000 6.6301e+01 0.99061000 0.81181000 407.0 379.2300 2.7772e+01 #> 967 324.0700 5.6726e+01 0.89104000 0.74039000 380.8 358.9300 2.1869e+01 #> 968 308.4700 -3.8972e+01 -0.64312000 -0.60595000 269.5 340.1600 -7.0661e+01 #> 969 293.8300 -3.3927e+01 -0.58777000 -0.55195000 259.9 322.7900 -6.2893e+01 #> 970 267.1600 -8.0463e+01 -1.53310000 -1.39510000 186.7 291.8200 -1.0512e+02 #> 971 222.8400 1.0786e+02 2.46400000 2.22530000 330.7 242.2700 8.8432e+01 #> 972 188.1400 -4.1636e+01 -1.12660000 -1.04380000 146.5 205.2600 -5.8755e+01 #> 973 139.1200 2.3276e+01 0.85166000 0.67628000 162.4 155.6300 6.7678e+00 #> 974 107.8000 -2.3096e+01 -1.09070000 -1.08330000 84.7 125.1700 -4.0466e+01 #> 975 86.9900 -4.2905e+00 -0.25107000 -0.42304000 82.7 104.8900 -2.2186e+01 #> 976 72.5340 1.1966e+01 0.83977000 0.39912000 84.5 90.2380 -5.7384e+00 #> 977 47.4760 -1.3876e+01 -1.48780000 -1.36130000 33.6 61.7700 -2.8170e+01 #> 978 33.7030 -3.4027e+00 -0.51394000 -0.54330000 30.3 43.7390 -1.3439e+01 #> 979 24.4950 6.0053e+00 1.24800000 0.83381000 30.5 31.1610 -6.6132e-01 #> 980 17.9210 7.9108e-02 0.02247100 0.07533000 18.0 22.2310 -4.2309e+00 #> 981 595.5200 -5.9552e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 982 571.3800 -1.4948e+02 -1.33170000 -1.06790000 421.9 437.5700 -1.5673e+01 #> 983 548.5500 -2.0850e+01 -0.19348000 0.30894000 527.7 424.9600 1.0274e+02 #> 984 526.9600 1.1274e+02 1.08910000 1.83770000 639.7 412.8400 2.2686e+02 #> 985 506.5400 -3.6351e+00 -0.03653100 0.40379000 502.9 401.1900 1.0171e+02 #> 986 468.9000 -6.7301e+01 -0.73063000 -0.51015000 401.6 379.2300 2.2372e+01 #> 987 435.1500 4.8354e+01 0.56566000 0.94848000 483.5 358.9300 1.2457e+02 #> 988 404.8200 1.1958e+02 1.50360000 1.94750000 524.4 340.1600 1.8424e+02 #> 989 377.5500 -1.4075e+02 -1.89770000 -1.96000000 236.8 322.7900 -8.5993e+01 #> 990 330.7700 -4.7672e+01 -0.73366000 -0.70262000 283.1 291.8200 -8.7182e+00 #> 991 260.9800 -4.0485e+01 -0.78965000 -0.80364000 220.5 242.2700 -2.1768e+01 #> 992 212.7700 1.5313e+02 3.66370000 3.50000000 365.9 205.2600 1.6064e+02 #> 993 152.3800 1.1122e+01 0.37153000 0.19902000 163.5 155.6300 7.8678e+00 #> 994 116.2900 -2.3791e+01 -1.04140000 -1.10650000 92.5 125.1700 -3.2666e+01 #> 995 91.7170 1.4825e+00 0.08228200 -0.35915000 93.2 104.8900 -1.1686e+01 #> 996 73.4910 1.1109e+01 0.76950000 -0.05330600 84.6 90.2380 -5.6384e+00 #> 997 38.9690 -2.1693e+00 -0.28337000 -1.06380000 36.8 61.7700 -2.4970e+01 #> 998 20.8550 -8.5503e-01 -0.20870000 -1.12630000 20.0 43.7390 -2.3739e+01 #> 999 11.1700 -9.7031e-01 -0.44218000 -1.19870000 10.2 31.1610 -2.0961e+01 #> 1000 5.9866 2.1341e-01 0.18147000 -0.92273000 6.2 22.2310 -1.6031e+01 #> 1001 1900.9000 -1.9009e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1002 1840.6000 2.0845e+02 0.57649000 0.45652000 2049.1 1750.3000 2.9881e+02 #> 1003 1782.5000 3.7249e+02 1.06370000 0.94884000 2155.0 1699.8000 4.5517e+02 #> 1004 1726.4000 1.0780e+02 0.31786000 0.20826000 1834.2 1651.3000 1.8285e+02 #> 1005 1672.2000 9.1551e+01 0.27869000 0.17458000 1763.8 1604.8000 1.5905e+02 #> 1006 1569.5000 -2.1974e+02 -0.71269000 -0.79897000 1349.8 1516.9000 -1.6711e+02 #> 1007 1473.9000 -1.7547e+02 -0.60603000 -0.67791000 1298.4 1435.7000 -1.3732e+02 #> 1008 1384.7000 -7.9631e+01 -0.29273000 -0.35494000 1305.1 1360.6000 -5.5542e+01 #> 1009 1301.7000 2.7422e+01 0.10724000 0.04794300 1329.1 1291.2000 3.7928e+01 #> 1010 1152.2000 -2.7860e+01 -0.12309000 -0.15449000 1124.3 1167.3000 -4.2973e+01 #> 1011 909.3600 1.4684e+02 0.82201000 0.73805000 1056.2 969.0700 8.7128e+01 #> 1012 725.6900 -1.7829e+02 -1.25060000 -1.09260000 547.4 821.0200 -2.7362e+02 #> 1013 480.2800 -1.7181e+01 -0.18210000 -0.22933000 463.1 622.5300 -1.5943e+02 #> 1014 336.8100 9.0089e+01 1.36160000 0.68608000 426.9 500.6600 -7.3763e+01 #> 1015 250.9200 -5.1423e+01 -1.04320000 -1.01130000 199.5 419.5400 -2.2004e+02 #> 1016 197.7400 2.5064e+01 0.64525000 -0.13172000 222.8 360.9500 -1.3815e+02 #> 1017 122.5400 -3.2239e+01 -1.33930000 -1.27710000 90.3 247.0800 -1.5678e+02 #> 1018 89.5290 -2.9829e+01 -1.69600000 -1.27330000 59.7 174.9500 -1.1525e+02 #> 1019 68.3950 -2.7095e+01 -2.01660000 -1.16940000 41.3 124.6500 -8.3345e+01 #> 1020 52.8160 2.3884e+01 2.30190000 1.61160000 76.7 88.9240 -1.2224e+01 #> 1021 714.8600 -7.1486e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1022 698.4700 -6.7176e-01 -0.00489580 -0.26801000 697.8 875.1500 -1.7735e+02 #> 1023 682.6600 -1.0756e+01 -0.08020500 -0.31812000 671.9 849.9200 -1.7802e+02 #> 1024 667.3900 6.1311e+01 0.46764000 0.12908000 728.7 825.6700 -9.6975e+01 #> 1025 652.6500 -1.4635e+02 -1.14150000 -1.15280000 506.3 802.3800 -2.9608e+02 #> 1026 624.6800 1.7172e+02 1.39930000 0.91963000 796.4 758.4600 3.7944e+01 #> 1027 598.5900 -7.5891e+01 -0.64538000 -0.72909000 522.7 717.8600 -1.9516e+02 #> 1028 574.2500 -1.3425e+02 -1.19000000 -1.16920000 440.0 680.3200 -2.4032e+02 #> 1029 551.5200 2.2228e+02 2.05170000 1.55230000 773.8 645.5900 1.2821e+02 #> 1030 510.4300 -1.9335e+01 -0.19282000 -0.29980000 491.1 583.6400 -9.2536e+01 #> 1031 442.9600 -1.1446e+02 -1.31540000 -1.24460000 328.5 484.5400 -1.5604e+02 #> 1032 390.7500 4.0655e+01 0.52963000 0.45253000 431.4 410.5100 2.0890e+01 #> 1033 317.2000 6.5958e+00 0.10585000 0.14769000 323.8 311.2600 1.2536e+01 #> 1034 269.1100 -7.5012e+01 -1.41890000 -1.32410000 194.1 250.3300 -5.6232e+01 #> 1035 235.3400 1.2628e+00 0.02731600 0.17892000 236.6 209.7700 2.6829e+01 #> 1036 209.8700 -3.4371e+01 -0.83368000 -0.70231000 175.5 180.4800 -4.9767e+00 #> 1037 157.3400 3.6161e+01 1.16990000 1.59480000 193.5 123.5400 6.9961e+01 #> 1038 121.2700 -1.4571e+01 -0.61162000 -0.42129000 106.7 87.4770 1.9223e+01 #> 1039 93.9950 3.2305e+01 1.74950000 2.49950000 126.3 62.3230 6.3977e+01 #> 1040 72.9510 -1.3151e+01 -0.91764000 -0.81264000 59.8 44.4620 1.5338e+01 #> 1041 199.7200 -1.9972e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1042 192.1600 1.7745e+01 0.47008000 0.76418000 209.9 145.8600 6.4042e+01 #> 1043 184.9700 -1.3770e+01 -0.37896000 -0.33193000 171.2 141.6500 2.9547e+01 #> 1044 178.1500 1.5154e+01 0.43303000 0.67028000 193.3 137.6100 5.5688e+01 #> 1045 171.6600 1.6537e+01 0.49039000 0.72087000 188.2 133.7300 5.4471e+01 #> 1046 159.6500 2.3748e+01 0.75721000 1.01020000 183.4 126.4100 5.6991e+01 #> 1047 148.8000 -3.5904e+01 -1.22820000 -1.42420000 112.9 119.6400 -6.7436e+00 #> 1048 139.0000 9.5991e+00 0.35154000 0.45975000 148.6 113.3900 3.5213e+01 #> 1049 130.1400 3.6064e+01 1.41070000 1.68350000 166.2 107.6000 5.8602e+01 #> 1050 114.8500 2.3517e+00 0.10424000 0.13061000 117.2 97.2730 1.9927e+01 #> 1051 91.9280 -9.7280e+00 -0.53868000 -0.58478000 82.2 80.7560 1.4440e+00 #> 1052 76.2020 -1.7102e+01 -1.14250000 -1.20410000 59.1 68.4180 -9.3184e+00 #> 1053 57.2470 -2.4714e-01 -0.02197600 0.03471700 57.0 51.8770 5.1226e+00 #> 1054 46.8220 6.7827e-01 0.07374100 0.16300000 47.5 41.7220 5.7780e+00 #> 1055 40.2170 6.1832e+00 0.78264000 0.95819000 46.4 34.9620 1.1438e+01 #> 1056 35.4330 1.1670e+00 0.16765000 0.29431000 36.6 30.0790 6.5205e+00 #> 1057 25.5300 -7.2997e-01 -0.14555000 -0.04035300 24.8 20.5900 4.2102e+00 #> 1058 18.7100 2.3900e+00 0.65025000 0.86801000 21.1 14.5800 6.5204e+00 #> 1059 13.7360 -1.3560e-01 -0.05025300 0.07197000 13.6 10.3870 3.2129e+00 #> 1060 10.0880 9.1191e-01 0.46015000 0.60299000 11.0 7.4103 3.5897e+00 #> 1061 102.8000 -1.0280e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1062 100.9300 -2.9286e+00 -0.14771000 -0.51070000 98.0 145.8600 -4.7858e+01 #> 1063 99.1080 -4.1408e+01 -2.12680000 -1.91500000 57.7 141.6500 -8.3953e+01 #> 1064 97.3390 2.2561e+01 1.17990000 0.47449000 119.9 137.6100 -1.7712e+01 #> 1065 95.6180 6.0819e+00 0.32379000 -0.12770000 101.7 133.7300 -3.2029e+01 #> 1066 92.3180 -1.6318e+01 -0.89980000 -0.99868000 76.0 126.4100 -5.0409e+01 #> 1067 89.1970 1.7003e+01 0.97033000 0.41302000 106.2 119.6400 -1.3444e+01 #> 1068 86.2440 -3.8444e+00 -0.22691000 -0.45847000 82.4 113.3900 -3.0987e+01 #> 1069 83.4490 1.1751e+01 0.71682000 0.28440000 95.2 107.6000 -1.2398e+01 #> 1070 78.2940 -8.9938e+00 -0.58475000 -0.68197000 69.3 97.2730 -2.7973e+01 #> 1071 69.4920 1.0808e-01 0.00791730 -0.14840000 69.6 80.7560 -1.1156e+01 #> 1072 62.3290 3.5713e+00 0.29167000 0.14634000 65.9 68.4180 -2.5184e+00 #> 1073 51.5660 4.1336e+00 0.40806000 0.33517000 55.7 51.8770 3.8226e+00 #> 1074 44.0060 4.7941e+00 0.55457000 0.52800000 48.8 41.7220 7.0780e+00 #> 1075 38.4460 -1.4459e+00 -0.19144000 -0.18491000 37.0 34.9620 2.0382e+00 #> 1076 34.1620 6.1376e+00 0.91454000 0.96045000 40.3 30.0790 1.0221e+01 #> 1077 25.3730 -2.0732e+00 -0.41593000 -0.42042000 23.3 20.5900 2.7102e+00 #> 1078 19.5310 -3.5308e+00 -0.92025000 -1.00860000 16.0 14.5800 1.4204e+00 #> 1079 15.1870 1.3134e+00 0.44025000 0.59014000 16.5 10.3870 6.1129e+00 #> 1080 11.8440 1.5559e+00 0.66872000 0.87448000 13.4 7.4103 5.9897e+00 #> 1081 1249.8000 -1.2498e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1082 1197.9000 1.3486e+02 0.57306000 1.07990000 1332.8 875.1500 4.5765e+02 #> 1083 1149.0000 -2.0297e+02 -0.89927000 -0.90293000 946.0 849.9200 9.6083e+01 #> 1084 1102.7000 4.4177e+02 2.03930000 2.88990000 1544.5 825.6700 7.1883e+02 #> 1085 1059.1000 2.0494e+00 0.00985080 0.22266000 1061.1 802.3800 2.5872e+02 #> 1086 978.7800 -1.2318e+02 -0.64066000 -0.64850000 855.6 758.4600 9.7144e+01 #> 1087 907.0800 -1.2338e+02 -0.69240000 -0.73863000 783.7 717.8600 6.5838e+01 #> 1088 842.9700 -7.6266e+01 -0.46055000 -0.47771000 766.7 680.3200 8.6379e+01 #> 1089 785.5800 1.7892e+02 1.15940000 1.41130000 964.5 645.5900 3.1891e+02 #> 1090 688.0400 1.9259e+01 0.14249000 0.17648000 707.3 583.6400 1.2366e+02 #> 1091 545.5100 -5.0710e+01 -0.47321000 -0.51143000 494.8 484.5400 1.0264e+01 #> 1092 450.4700 -2.3475e+01 -0.26527000 -0.25620000 427.0 410.5100 1.6490e+01 #> 1093 338.3100 1.7286e+01 0.26009000 0.36600000 355.6 311.2600 4.4336e+01 #> 1094 276.1500 -1.7949e+01 -0.33087000 -0.22409000 258.2 250.3300 7.8683e+00 #> 1095 235.2000 8.5004e+01 1.83980000 2.12000000 320.2 209.7700 1.1043e+02 #> 1096 204.3100 -1.0011e+01 -0.24942000 -0.13421000 194.3 180.4800 1.3823e+01 #> 1097 138.7800 -1.8877e+01 -0.69241000 -0.61540000 119.9 123.5400 -3.6390e+00 #> 1098 95.2050 -1.4705e+01 -0.78625000 -0.68743000 80.5 87.4770 -6.9773e+00 #> 1099 65.3650 1.9435e+01 1.51360000 1.33790000 84.8 62.3230 2.2477e+01 #> 1100 44.8940 -5.3943e+00 -0.61164000 -0.46357000 39.5 44.4620 -4.9619e+00 #> 1101 1004.5000 -1.0045e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1102 991.0400 2.4156e+02 1.24080000 0.14668000 1232.6 1750.3000 -5.1769e+02 #> 1103 977.9600 -9.9358e+01 -0.51718000 -0.93544000 878.6 1699.8000 -8.2123e+02 #> 1104 965.2500 -2.6375e+02 -1.39090000 -1.47410000 701.5 1651.3000 -9.4985e+02 #> 1105 952.8900 4.1606e+01 0.22226000 -0.44100000 994.5 1604.8000 -6.1025e+02 #> 1106 929.2200 -2.2332e+02 -1.22340000 -1.34030000 705.9 1516.9000 -8.1101e+02 #> 1107 906.8400 1.2216e+02 0.68573000 -0.07976300 1029.0 1435.7000 -4.0672e+02 #> 1108 885.6800 -1.7281e+01 -0.09932200 -0.56489000 868.4 1360.6000 -4.9224e+02 #> 1109 865.6600 1.8494e+02 1.08750000 0.25229000 1050.6 1291.2000 -2.4057e+02 #> 1110 828.7600 2.8405e+00 0.01744700 -0.41169000 831.6 1167.3000 -3.3567e+02 #> 1111 765.7700 -3.8266e+01 -0.25438000 -0.51468000 727.5 969.0700 -2.4157e+02 #> 1112 714.4100 2.8285e+01 0.20154000 -0.10120000 742.7 821.0200 -7.8320e+01 #> 1113 636.6800 7.2924e+01 0.58305000 0.35482000 709.6 622.5300 8.7071e+01 #> 1114 580.9400 -6.3745e+01 -0.55855000 -0.49338000 517.2 500.6600 1.6537e+01 #> 1115 538.6200 -9.9215e+01 -0.93768000 -0.78510000 439.4 419.5400 1.9858e+01 #> 1116 504.6100 2.7393e+01 0.27634000 0.42242000 532.0 360.9500 1.7105e+02 #> 1117 428.0400 -5.5339e+01 -0.65812000 -0.43333000 372.7 247.0800 1.2562e+02 #> 1118 369.3400 9.5161e+01 1.31160000 2.17430000 464.5 174.9500 2.8955e+02 #> 1119 319.9900 -3.7388e+01 -0.59478000 -0.53987000 282.6 124.6500 1.5795e+02 #> 1120 277.5300 8.3270e+01 1.52730000 3.24630000 360.8 88.9240 2.7188e+02 #> 1121 2267.1000 -2.2671e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1122 2202.3000 -1.1074e+02 -0.25597000 -0.19865000 2091.6 1750.3000 3.4131e+02 #> 1123 2139.8000 -2.2622e+02 -0.53815000 -0.53266000 1913.6 1699.8000 2.1377e+02 #> 1124 2079.5000 3.7425e+02 0.91614000 1.24320000 2453.7 1651.3000 8.0235e+02 #> 1125 2021.2000 -2.6578e+02 -0.66938000 -0.68080000 1755.4 1604.8000 1.5065e+02 #> 1126 1910.6000 1.8750e+02 0.49956000 0.76713000 2098.1 1516.9000 5.8119e+02 #> 1127 1807.5000 -3.7510e+01 -0.10564000 0.03601200 1770.0 1435.7000 3.3428e+02 #> 1128 1711.4000 1.1502e+02 0.34212000 0.60410000 1826.4 1360.6000 4.6576e+02 #> 1129 1621.7000 9.3877e+01 0.29467000 0.55678000 1715.6 1291.2000 4.2443e+02 #> 1130 1460.0000 2.7416e+02 0.95587000 1.40070000 1734.2 1167.3000 5.6693e+02 #> 1131 1196.4000 6.0439e+01 0.25716000 0.53460000 1256.8 969.0700 2.8773e+02 #> 1132 995.3400 3.8166e+02 1.95190000 2.58450000 1377.0 821.0200 5.5598e+02 #> 1133 722.2100 -2.5131e+02 -1.77140000 -1.90040000 470.9 622.5300 -1.5163e+02 #> 1134 556.7500 -3.7549e+01 -0.34331000 -0.31560000 519.2 500.6600 1.8537e+01 #> 1135 452.2200 -1.3821e+01 -0.15558000 -0.17080000 438.4 419.5400 1.8858e+01 #> 1136 382.5800 3.9624e+01 0.52723000 0.46405000 422.2 360.9500 6.1247e+01 #> 1137 266.4400 1.7859e+01 0.34120000 0.27279000 284.3 247.0800 3.7222e+01 #> 1138 201.6000 -6.4501e+01 -1.62870000 -1.55200000 137.1 174.9500 -3.7855e+01 #> 1139 155.6100 6.5916e+00 0.21563000 0.34967000 162.2 124.6500 3.7555e+01 #> 1140 120.6700 2.4426e+01 1.03040000 1.28380000 145.1 88.9240 5.6176e+01 #> 1141 158.6000 -1.5860e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1142 151.5300 5.6167e+01 1.88680000 2.01560000 207.7 145.8600 6.1842e+01 #> 1143 144.9300 -1.7326e+01 -0.60857000 -0.50832000 127.6 141.6500 -1.4053e+01 #> 1144 138.7400 -2.4342e+01 -0.89312000 -0.83229000 114.4 137.6100 -2.3212e+01 #> 1145 132.9500 3.1748e+01 1.21560000 1.13340000 164.7 133.7300 3.0971e+01 #> 1146 122.4400 -2.1742e+01 -0.90391000 -0.94873000 100.7 126.4100 -2.5709e+01 #> 1147 113.2000 -4.8986e+00 -0.22029000 -0.37206000 108.3 119.6400 -1.1344e+01 #> 1148 105.0500 -1.8551e+01 -0.89892000 -1.02420000 86.5 113.3900 -2.6887e+01 #> 1149 97.8510 -1.8151e+01 -0.94425000 -1.08420000 79.7 107.6000 -2.7898e+01 #> 1150 85.8040 -1.0040e+00 -0.05956300 -0.32594000 84.8 97.2730 -1.2473e+01 #> 1151 68.5410 -9.0405e+00 -0.67143000 -0.81013000 59.5 80.7560 -2.1256e+01 #> 1152 57.0560 1.2444e+01 1.11030000 0.76856000 69.5 68.4180 1.0816e+00 #> 1153 42.8350 6.5123e-02 0.00773920 -0.05375600 42.9 51.8770 -8.9774e+00 #> 1154 33.9920 -3.9920e+00 -0.59781000 -0.54985000 30.0 41.7220 -1.1722e+01 #> 1155 27.5830 6.3172e+00 1.16580000 0.66798000 33.9 34.9620 -1.0618e+00 #> 1156 22.5730 -1.0730e+00 -0.24197000 -0.46479000 21.5 30.0790 -8.5795e+00 #> 1157 12.5250 3.5751e+00 1.45300000 0.22149000 16.1 20.5900 -4.4898e+00 #> 1158 6.9680 6.3201e-01 0.46171000 -0.49510000 7.6 14.5800 -6.9796e+00 #> 1159 3.8770 -8.7704e-01 -1.15150000 -1.19680000 3.0 10.3870 -7.3871e+00 #> 1160 2.1583 -5.8280e-02 -0.13746000 -0.78187000 2.1 7.4103 -5.3103e+00 #> 1161 1411.3000 -1.4113e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1162 1349.0000 9.8524e+01 0.37179000 1.33840000 1447.5 875.1500 5.7235e+02 #> 1163 1289.9000 -8.9453e+01 -0.35303000 0.15137000 1200.4 849.9200 3.5048e+02 #> 1164 1233.7000 -3.7392e+02 -1.54280000 -1.68920000 859.8 825.6700 3.4125e+01 #> 1165 1180.4000 -2.1762e+02 -0.93847000 -0.82604000 962.8 802.3800 1.6042e+02 #> 1166 1081.8000 3.3105e+02 1.55780000 2.62580000 1412.8 758.4600 6.5434e+02 #> 1167 992.7700 9.1733e+01 0.47036000 0.95211000 1084.5 717.8600 3.6664e+02 #> 1168 912.4900 1.7711e+01 0.09880300 0.34298000 930.2 680.3200 2.4988e+02 #> 1169 840.0400 3.3426e+02 2.02550000 2.64630000 1174.3 645.5900 5.2871e+02 #> 1170 715.5900 5.1214e+01 0.36432000 0.39280000 766.8 583.6400 1.8316e+02 #> 1171 530.9300 -1.0053e+02 -0.96389000 -1.18270000 430.4 484.5400 -5.4136e+01 #> 1172 406.9300 -2.1732e+01 -0.27185000 -0.58782000 385.2 410.5100 -2.5310e+01 #> 1173 264.7200 -1.1020e+01 -0.21192000 -0.59315000 253.7 311.2600 -5.7564e+01 #> 1174 194.6500 -5.7482e+00 -0.15033000 -0.52163000 188.9 250.3300 -6.1432e+01 #> 1175 156.3400 1.0761e+01 0.35037000 -0.12044000 167.1 209.7700 -4.2671e+01 #> 1176 132.4600 -3.2554e+00 -0.12511000 -0.38704000 129.2 180.4800 -5.1277e+01 #> 1177 91.0930 -7.3934e+00 -0.41316000 -0.44977000 83.7 123.5400 -3.9839e+01 #> 1178 65.4360 2.6363e-01 0.02050800 -0.05061600 65.7 87.4770 -2.1777e+01 #> 1179 47.2340 1.6466e+01 1.77460000 1.28260000 63.7 62.3230 1.3774e+00 #> 1180 34.1220 -7.2217e+00 -1.07740000 -0.72690000 26.9 44.4620 -1.7562e+01 #> 1181 1880.3000 -1.8803e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1182 1810.7000 -1.2476e+02 -0.35074000 -0.30543000 1685.9 1750.3000 -6.4390e+01 #> 1183 1744.7000 3.0459e+02 0.88870000 0.88431000 2049.3 1699.8000 3.4947e+02 #> 1184 1682.3000 -1.2715e+02 -0.38476000 -0.38941000 1555.1 1651.3000 -9.6249e+01 #> 1185 1623.1000 1.2670e+02 0.39738000 0.34940000 1749.8 1604.8000 1.4505e+02 #> 1186 1513.9000 -2.7932e+02 -0.93918000 -0.98093000 1234.6 1516.9000 -2.8231e+02 #> 1187 1415.8000 2.5151e+02 0.90431000 0.75807000 1667.3 1435.7000 2.3158e+02 #> 1188 1327.5000 2.1792e+02 0.83565000 0.66460000 1545.4 1360.6000 1.8476e+02 #> 1189 1247.9000 2.1589e+02 0.88066000 0.68719000 1463.8 1291.2000 1.7263e+02 #> 1190 1111.2000 -6.9816e+01 -0.31982000 -0.45521000 1041.4 1167.3000 -1.2587e+02 #> 1191 906.7800 -4.5428e+02 -2.55020000 -2.49560000 452.5 969.0700 -5.1657e+02 #> 1192 765.3900 -1.0319e+02 -0.68632000 -0.70505000 662.2 821.0200 -1.5882e+02 #> 1193 588.3700 -7.2569e+01 -0.62785000 -0.52916000 515.8 622.5300 -1.0673e+02 #> 1194 481.8300 2.1472e+01 0.22685000 0.33866000 503.3 500.6600 2.6365e+00 #> 1195 407.3600 7.7139e+01 0.96394000 1.02070000 484.5 419.5400 6.4958e+01 #> 1196 349.5900 -8.1945e+00 -0.11932000 -0.02513500 341.4 360.9500 -1.9553e+01 #> 1197 227.1800 7.3719e+01 1.65180000 1.26490000 300.9 247.0800 5.3822e+01 #> 1198 148.8400 -4.3640e-01 -0.01492600 -0.26165000 148.4 174.9500 -2.6555e+01 #> 1199 97.5780 -7.0777e+00 -0.36923000 -0.59702000 90.5 124.6500 -3.4145e+01 #> 1200 63.9990 -1.9987e+00 -0.15898000 -0.50201000 62.0 88.9240 -2.6924e+01 #> 1201 161.4100 -1.6141e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1202 155.4200 1.3084e+01 0.42855000 0.53067000 168.5 145.8600 2.2642e+01 #> 1203 149.6800 1.4516e+01 0.49367000 0.56932000 164.2 141.6500 2.2547e+01 #> 1204 144.2000 -1.8598e+01 -0.65653000 -0.60804000 125.6 137.6100 -1.2012e+01 #> 1205 138.9500 1.3854e+01 0.50754000 0.53037000 152.8 133.7300 1.9071e+01 #> 1206 129.1100 -4.6308e+01 -1.82580000 -1.80310000 82.8 126.4100 -4.3609e+01 #> 1207 120.0900 3.0410e+01 1.28900000 1.18480000 150.5 119.6400 3.0856e+01 #> 1208 111.8200 -2.0923e+01 -0.95245000 -0.99523000 90.9 113.3900 -2.2487e+01 #> 1209 104.2400 1.8059e+01 0.88191000 0.69246000 122.3 107.6000 1.4702e+01 #> 1210 90.9010 -9.0144e-01 -0.05048000 -0.23511000 90.0 97.2730 -7.2727e+00 #> 1211 70.1670 -9.6693e-01 -0.07014800 -0.34806000 69.2 80.7560 -1.1556e+01 #> 1212 55.3330 8.1667e+00 0.75130000 0.21524000 63.5 68.4180 -4.9184e+00 #> 1213 36.8080 -9.9079e+00 -1.37020000 -1.39910000 26.9 51.8770 -2.4977e+01 #> 1214 26.6680 1.5316e+00 0.29235000 -0.33578000 28.2 41.7220 -1.3522e+01 #> 1215 20.7180 4.8169e-01 0.11835000 -0.46556000 21.2 34.9620 -1.3762e+01 #> 1216 16.9150 9.8462e-01 0.29631000 -0.35667000 17.9 30.0790 -1.2179e+01 #> 1217 10.6480 -5.4832e-01 -0.26213000 -0.55191000 10.1 20.5900 -1.0490e+01 #> 1218 7.1844 1.1557e-01 0.08188800 -0.21192000 7.3 14.5800 -7.2796e+00 #> 1219 4.9061 -6.1498e-03 -0.00638080 -0.11851000 4.9 10.3870 -5.4871e+00 #> 1220 3.3581 4.4189e-01 0.66984000 0.34499000 3.8 7.4103 -3.6103e+00 #> 1221 518.5300 -5.1853e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1222 504.1000 2.1499e+01 0.21710000 0.24440000 525.6 437.5700 8.8027e+01 #> 1223 490.2100 -6.0410e+01 -0.62731000 -0.67475000 429.8 424.9600 4.8414e+00 #> 1224 476.8400 5.4963e+01 0.58676000 0.67547000 531.8 412.8400 1.1896e+02 #> 1225 463.9600 1.8140e+01 0.19903000 0.25714000 482.1 401.1900 8.0912e+01 #> 1226 439.6200 7.3381e+01 0.84970000 1.00590000 513.0 379.2300 1.3377e+02 #> 1227 417.0400 -1.2340e+01 -0.15063000 -0.09701200 404.7 358.9300 4.5769e+01 #> 1228 396.0900 -2.8388e+01 -0.36484000 -0.32425000 367.7 340.1600 2.7539e+01 #> 1229 376.6400 7.7620e+00 0.10491000 0.22482000 384.4 322.7900 6.1607e+01 #> 1230 341.7900 -3.4189e+01 -0.50919000 -0.45365000 307.6 291.8200 1.5782e+01 #> 1231 285.5900 1.3601e+02 2.42430000 3.00140000 421.6 242.2700 1.7933e+02 #> 1232 243.2500 -4.5448e+01 -0.95110000 -0.92424000 197.8 205.2600 -7.4551e+00 #> 1233 186.1200 -1.4423e+01 -0.39448000 -0.27367000 171.7 155.6300 1.6068e+01 #> 1234 151.1400 -1.0037e+01 -0.33805000 -0.23728000 141.1 125.1700 1.5934e+01 #> 1235 128.1700 5.5315e+00 0.21969000 0.38140000 133.7 104.8900 2.8814e+01 #> 1236 111.8900 2.0610e+01 0.93766000 1.19460000 132.5 90.2380 4.2262e+01 #> 1237 80.9250 -1.0425e+01 -0.65577000 -0.71085000 70.5 61.7700 8.7305e+00 #> 1238 61.0010 2.5988e+00 0.21686000 0.34090000 63.6 43.7390 1.9861e+01 #> 1239 46.3540 3.6456e+00 0.40035000 0.57373000 50.0 31.1610 1.8839e+01 #> 1240 35.2860 2.6140e+00 0.37711000 0.53558000 37.9 22.2310 1.5669e+01 #> 1241 321.0900 -3.2109e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1242 315.5800 -1.9679e+01 -0.31743000 -0.60219000 295.9 437.5700 -1.4167e+02 #> 1243 310.2600 9.7335e+01 1.59700000 0.81909000 407.6 424.9600 -1.7359e+01 #> 1244 305.1500 -4.4445e+01 -0.74144000 -0.89303000 260.7 412.8400 -1.5214e+02 #> 1245 300.2100 5.8089e+01 0.98497000 0.40424000 358.3 401.1900 -4.2888e+01 #> 1246 290.8700 -2.9370e+01 -0.51400000 -0.69287000 261.5 379.2300 -1.1773e+02 #> 1247 282.1800 -9.4385e+01 -1.70260000 -1.58250000 187.8 358.9300 -1.7113e+02 #> 1248 274.1000 -5.6703e+01 -1.05310000 -1.07040000 217.4 340.1600 -1.2276e+02 #> 1249 266.5800 4.0523e+01 0.77381000 0.38015000 307.1 322.7900 -1.5693e+01 #> 1250 253.0200 -6.0116e+01 -1.20950000 -1.15620000 192.9 291.8200 -9.8918e+01 #> 1251 230.8300 4.9369e+01 1.08870000 0.83879000 280.2 242.2700 3.7932e+01 #> 1252 213.6600 -4.3564e+01 -1.03790000 -0.93502000 170.1 205.2600 -3.5155e+01 #> 1253 189.1700 8.3098e-01 0.02236100 0.15487000 190.0 155.6300 3.4368e+01 #> 1254 172.4700 1.0134e+01 0.29911000 0.55726000 182.6 125.1700 5.7434e+01 #> 1255 159.9500 5.4751e+01 1.74250000 2.32420000 214.7 104.8900 1.0981e+02 #> 1256 149.7700 -2.8073e+01 -0.95415000 -0.81280000 121.7 90.2380 3.1462e+01 #> 1257 125.8500 8.5470e+00 0.34570000 0.94803000 134.4 61.7700 7.2630e+01 #> 1258 106.7800 1.7220e+01 0.82094000 1.86220000 124.0 43.7390 8.0261e+01 #> 1259 90.7330 5.2667e+00 0.29548000 0.82015000 96.0 31.1610 6.4839e+01 #> 1260 77.1270 9.2732e+00 0.61204000 1.43900000 86.4 22.2310 6.4169e+01 #> 1261 1023.6000 -1.0236e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1262 979.9000 -2.4140e+02 -1.25400000 -1.03310000 738.5 875.1500 -1.3665e+02 #> 1263 938.6700 2.7853e+02 1.51050000 1.82520000 1217.2 849.9200 3.6728e+02 #> 1264 899.7300 -1.1803e+02 -0.66781000 -0.51269000 781.7 825.6700 -4.3975e+01 #> 1265 862.9600 2.0814e+02 1.22780000 1.38400000 1071.1 802.3800 2.6872e+02 #> 1266 795.3600 -2.9664e+01 -0.18985000 -0.16015000 765.7 758.4600 7.2437e+00 #> 1267 734.9500 -1.8855e+02 -1.30590000 -1.32750000 546.4 717.8600 -1.7146e+02 #> 1268 680.8800 2.7324e+01 0.20428000 0.07447300 708.2 680.3200 2.7879e+01 #> 1269 632.4200 -6.8216e+01 -0.54909000 -0.69077000 564.2 645.5900 -8.1386e+01 #> 1270 549.8200 4.1180e+01 0.38126000 0.08105400 591.0 583.6400 7.3635e+00 #> 1271 428.1400 4.5758e+01 0.54404000 0.11474000 473.9 484.5400 -1.0636e+01 #> 1272 345.6700 7.1033e+01 1.04610000 0.47939000 416.7 410.5100 6.1898e+00 #> 1273 245.2500 -1.7852e+01 -0.37054000 -0.61530000 227.4 311.2600 -8.3864e+01 #> 1274 187.2600 -5.1562e+00 -0.14017000 -0.44603000 182.1 250.3300 -6.8232e+01 #> 1275 148.5400 1.5658e+01 0.53659000 -0.04926300 164.2 209.7700 -4.5571e+01 #> 1276 120.0100 1.8594e+01 0.78873000 0.00859550 138.6 180.4800 -4.1877e+01 #> 1277 65.4960 -9.3959e+00 -0.73027000 -1.03830000 56.1 123.5400 -6.7439e+01 #> 1278 36.1130 9.8718e-01 0.13915000 -0.69111000 37.1 87.4770 -5.0377e+01 #> 1279 19.9300 5.3705e+00 1.37170000 -0.24543000 25.3 62.3230 -3.7023e+01 #> 1280 11.0050 -5.1048e+00 -2.36130000 -1.46870000 5.9 44.4620 -3.8562e+01 #> 1281 2124.1000 -2.1241e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1282 2050.2000 7.5110e+01 0.18649000 0.34743000 2125.3 1750.3000 3.7501e+02 #> 1283 1979.4000 -2.6381e+01 -0.06784600 0.05205400 1953.0 1699.8000 2.5317e+02 #> 1284 1911.5000 -5.5823e+01 -0.14866000 -0.04861200 1855.7 1651.3000 2.0435e+02 #> 1285 1846.5000 -6.1286e+01 -0.16895000 -0.08135100 1785.2 1604.8000 1.8045e+02 #> 1286 1724.4000 -3.3947e+00 -0.01002100 0.07338600 1721.0 1516.9000 2.0409e+02 #> 1287 1612.2000 3.1241e+02 0.98642000 1.13400000 1924.6 1435.7000 4.8888e+02 #> 1288 1509.0000 4.8856e+02 1.64810000 1.81350000 1997.6 1360.6000 6.3696e+02 #> 1289 1414.2000 -3.6478e+02 -1.31310000 -1.36230000 1049.4 1291.2000 -2.4177e+02 #> 1290 1246.6000 -1.4657e+02 -0.59853000 -0.62121000 1100.0 1167.3000 -6.7273e+01 #> 1291 983.7100 -2.0321e+02 -1.05150000 -1.08600000 780.5 969.0700 -1.8857e+02 #> 1292 793.1500 3.1765e+02 2.03870000 1.77250000 1110.8 821.0200 2.8978e+02 #> 1293 550.0000 -2.2600e+01 -0.20917000 -0.36079000 527.4 622.5300 -9.5129e+01 #> 1294 412.2100 -3.2407e+01 -0.40020000 -0.55213000 379.8 500.6600 -1.2086e+02 #> 1295 328.1500 2.6955e+01 0.41814000 0.02946200 355.1 419.5400 -6.4442e+01 #> 1296 272.3100 -6.8007e+01 -1.27130000 -1.19620000 204.3 360.9500 -1.5665e+02 #> 1297 175.3500 1.1549e+01 0.33527000 -0.04723500 186.9 247.0800 -6.0178e+01 #> 1298 119.5300 6.7696e+00 0.28830000 -0.03057200 126.3 174.9500 -4.8655e+01 #> 1299 82.3090 1.9591e+01 1.21160000 0.60191000 101.9 124.6500 -2.2745e+01 #> 1300 56.7950 -1.2095e+01 -1.08400000 -0.76849000 44.7 88.9240 -4.4224e+01 #> 1301 106.4400 -1.0644e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1302 102.9900 -8.7909e+00 -0.43450000 -0.61270000 94.2 145.8600 -5.1658e+01 #> 1303 99.7010 -8.9014e+00 -0.45448000 -0.64807000 90.8 141.6500 -5.0853e+01 #> 1304 96.5600 -4.2599e+00 -0.22457000 -0.50244000 92.3 137.6100 -4.5312e+01 #> 1305 93.5590 8.3412e+00 0.45384000 -0.03388700 101.9 133.7300 -3.1829e+01 #> 1306 87.9490 -3.6492e+00 -0.21121000 -0.54804000 84.3 126.4100 -4.2109e+01 #> 1307 82.8190 -3.3190e+00 -0.20400000 -0.57516000 79.5 119.6400 -4.0144e+01 #> 1308 78.1200 2.8797e+00 0.18764000 -0.32528000 81.0 113.3900 -3.2387e+01 #> 1309 73.8100 -4.5102e+00 -0.31106000 -0.70552000 69.3 107.6000 -3.8298e+01 #> 1310 66.2060 -5.6062e+00 -0.43105000 -0.83171000 60.6 97.2730 -3.6673e+01 #> 1311 54.2180 2.4823e+00 0.23306000 -0.42563000 56.7 80.7560 -2.4056e+01 #> 1312 45.3210 1.1579e+01 1.30060000 0.26037000 56.9 68.4180 -1.1518e+01 #> 1313 33.1850 2.7152e+00 0.41650000 -0.39794000 35.9 51.8770 -1.5977e+01 #> 1314 25.3230 9.1767e+00 1.84470000 0.39334000 34.5 41.7220 -7.2220e+00 #> 1315 19.7790 2.2213e+00 0.57171000 -0.46354000 22.0 34.9620 -1.2962e+01 #> 1316 15.6410 -3.5414e+00 -1.15250000 -1.45500000 12.1 30.0790 -1.7979e+01 #> 1317 7.9538 4.4618e-01 0.28555000 -0.87212000 8.4 20.5900 -1.2190e+01 #> 1318 4.0868 -5.8683e-01 -0.73094000 -1.27640000 3.5 14.5800 -1.1080e+01 #> 1319 2.1027 -4.0273e-01 -0.97496000 -1.26570000 1.7 10.3870 -8.6871e+00 #> 1320 1.0827 1.1732e-01 0.55163000 -0.74801000 1.2 7.4103 -6.2103e+00 #> 1321 793.2900 -7.9329e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1322 763.1800 -2.5648e+02 -1.71070000 -1.44130000 506.7 875.1500 -3.6845e+02 #> 1323 734.8300 7.9739e+00 0.05523900 0.01510400 742.8 849.9200 -1.0712e+02 #> 1324 708.1100 -3.9412e+01 -0.28333000 -0.30810000 668.7 825.6700 -1.5697e+02 #> 1325 682.9300 2.3257e+02 1.73350000 1.34590000 915.5 802.3800 1.1312e+02 #> 1326 636.7600 2.2636e+01 0.18096000 -0.01161000 659.4 758.4600 -9.9056e+01 #> 1327 595.6000 -1.8497e+01 -0.15809000 -0.33604000 577.1 717.8600 -1.4076e+02 #> 1328 558.8000 -5.1696e+01 -0.47094000 -0.62405000 507.1 680.3200 -1.7322e+02 #> 1329 525.8100 -1.0031e+02 -0.97112000 -1.05310000 425.5 645.5900 -2.2009e+02 #> 1330 469.4300 9.4170e+01 1.02120000 0.55483000 563.6 583.6400 -2.0036e+01 #> 1331 385.1600 -3.8362e+01 -0.50700000 -0.65838000 346.8 484.5400 -1.3774e+02 #> 1332 325.8700 -3.9472e+01 -0.61660000 -0.68496000 286.4 410.5100 -1.2411e+02 #> 1333 247.5000 -7.4500e+01 -1.53230000 -1.32330000 173.0 311.2600 -1.3826e+02 #> 1334 196.0100 1.9294e+01 0.50109000 0.20158000 215.3 250.3300 -3.5032e+01 #> 1335 157.9900 7.0206e+01 2.26200000 1.27580000 228.2 209.7700 1.8429e+01 #> 1336 128.2700 5.7298e+00 0.22739000 -0.28845000 134.0 180.4800 -4.6477e+01 #> 1337 69.4180 -9.6176e+00 -0.70527000 -1.12730000 59.8 123.5400 -6.3739e+01 #> 1338 37.6700 1.1830e+01 1.59870000 -0.21571000 49.5 87.4770 -3.7977e+01 #> 1339 20.4450 -9.4477e-01 -0.23524000 -1.03350000 19.5 62.3230 -4.2823e+01 #> 1340 11.1020 -4.8020e+00 -2.20180000 -1.63900000 6.3 44.4620 -3.8162e+01 #> 1341 1607.9000 -1.6079e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1342 1567.6000 -9.0940e+01 -0.29530000 -0.22315000 1476.7 1750.3000 -2.7359e+02 #> 1343 1529.3000 -3.5544e+02 -1.18310000 -0.99925000 1173.9 1699.8000 -5.2593e+02 #> 1344 1492.9000 -5.1735e+02 -1.76410000 -1.51370000 975.5 1651.3000 -6.7585e+02 #> 1345 1458.1000 3.5914e+01 0.12538000 0.14577000 1494.0 1604.8000 -1.1075e+02 #> 1346 1393.3000 -6.9626e+01 -0.25438000 -0.18527000 1323.7 1516.9000 -1.9321e+02 #> 1347 1334.4000 4.1285e+02 1.57500000 1.47560000 1747.2 1435.7000 3.1148e+02 #> 1348 1280.5000 -2.0674e+02 -0.82183000 -0.68802000 1073.8 1360.6000 -2.8684e+02 #> 1349 1231.3000 -1.9362e+02 -0.80046000 -0.66323000 1037.7 1291.2000 -2.5347e+02 #> 1350 1144.8000 6.8325e+01 0.30382000 0.40717000 1213.1 1167.3000 4.5827e+01 #> 1351 1008.5000 -1.6871e+02 -0.85156000 -0.66503000 839.8 969.0700 -1.2927e+02 #> 1352 906.4500 -4.1520e+00 -0.02331700 0.24983000 902.3 821.0200 8.1280e+01 #> 1353 761.6800 6.1212e+02 4.09090000 5.15170000 1373.8 622.5300 7.5127e+02 #> 1354 659.0300 -1.0163e+02 -0.78498000 -0.61390000 557.4 500.6600 5.6737e+01 #> 1355 577.9400 -5.2242e+01 -0.46014000 -0.30593000 525.7 419.5400 1.0616e+02 #> 1356 509.9000 1.1040e+02 1.10220000 1.57790000 620.3 360.9500 2.5935e+02 #> 1357 353.9600 2.6339e+01 0.37879000 0.28013000 380.3 247.0800 1.3322e+02 #> 1358 246.4700 3.6530e+01 0.75446000 0.43544000 283.0 174.9500 1.0805e+02 #> 1359 171.6700 -3.0966e+01 -0.91824000 -1.60980000 140.7 124.6500 1.6055e+01 #> 1360 119.6000 -2.0503e+01 -0.87265000 -1.54060000 99.1 88.9240 1.0176e+01 #> 1361 490.2600 -4.9026e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1362 475.5800 -1.8476e+01 -0.19776000 -0.15885000 457.1 437.5700 1.9527e+01 #> 1363 461.4400 2.5659e+01 0.28307000 0.33846000 487.1 424.9600 6.2141e+01 #> 1364 447.8300 -1.4531e+01 -0.16517000 -0.12763000 433.3 412.8400 2.0463e+01 #> 1365 434.7300 -1.0073e+02 -1.17950000 -1.18450000 334.0 401.1900 -6.7188e+01 #> 1366 409.9600 -4.5359e+01 -0.56322000 -0.54709000 364.6 379.2300 -1.4628e+01 #> 1367 386.9900 9.6012e+01 1.26290000 1.35780000 483.0 358.9300 1.2407e+02 #> 1368 365.6800 3.9214e+00 0.05458800 0.09197800 369.6 340.1600 2.9439e+01 #> 1369 345.9000 4.5496e+01 0.66953000 0.73211000 391.4 322.7900 6.8607e+01 #> 1370 310.5100 1.0389e+02 1.70330000 1.80290000 414.4 291.8200 1.2258e+02 #> 1371 253.5700 2.2911e-01 0.00459950 0.01378700 253.8 242.2700 1.1532e+01 #> 1372 210.9200 -4.6161e+00 -0.11141000 -0.11938000 206.3 205.2600 1.0449e+00 #> 1373 154.1400 -3.2441e+00 -0.10713000 -0.13521000 150.9 155.6300 -4.7322e+00 #> 1374 120.3900 -4.2788e+01 -1.80920000 -1.72110000 77.6 125.1700 -4.7566e+01 #> 1375 99.1380 -2.7638e+01 -1.41910000 -1.31520000 71.5 104.8900 -3.3386e+01 #> 1376 84.8010 2.3899e+01 1.43460000 1.24920000 108.7 90.2380 1.8462e+01 #> 1377 59.6830 -9.7831e+00 -0.83441000 -0.65633000 49.9 61.7700 -1.1870e+01 #> 1378 44.6760 2.3242e+00 0.26483000 0.41853000 47.0 43.7390 3.2613e+00 #> 1379 33.8700 8.3010e-01 0.12476000 0.36873000 34.7 31.1610 3.5387e+00 #> 1380 25.7480 4.5520e+00 0.89994000 1.13420000 30.3 22.2310 8.0691e+00 #> 1381 304.0300 -3.0403e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1382 297.6900 -7.2850e+00 -0.12458000 -0.53372000 290.4 437.5700 -1.4717e+02 #> 1383 291.5200 3.1581e+01 0.55146000 -0.04207200 323.1 424.9600 -1.0186e+02 #> 1384 285.5300 -3.8725e+01 -0.69041000 -0.91091000 246.8 412.8400 -1.6604e+02 #> 1385 279.7000 -6.8990e+00 -0.12556000 -0.49638000 272.8 401.1900 -1.2839e+02 #> 1386 268.5300 -3.4528e+01 -0.65454000 -0.85564000 234.0 379.2300 -1.4523e+02 #> 1387 257.9700 3.6334e+01 0.71698000 0.16615000 294.3 358.9300 -6.4631e+01 #> 1388 247.9800 -8.4784e+00 -0.17404000 -0.46513000 239.5 340.1600 -1.0066e+02 #> 1389 238.5300 7.2170e+01 1.54020000 0.83428000 310.7 322.7900 -1.2093e+01 #> 1390 221.1300 -4.4427e+01 -1.02270000 -1.05650000 176.7 291.8200 -1.1512e+02 #> 1391 191.5100 4.3489e+01 1.15590000 0.69121000 235.0 242.2700 -7.2681e+00 #> 1392 167.5600 -7.1460e+01 -2.17100000 -1.92950000 96.1 205.2600 -1.0916e+02 #> 1393 132.0600 -1.3161e+01 -0.50730000 -0.55870000 118.9 155.6300 -3.6732e+01 #> 1394 107.7800 3.0321e+01 1.43210000 1.08580000 138.1 125.1700 1.2934e+01 #> 1395 90.5420 -1.1442e+01 -0.64328000 -0.68946000 79.1 104.8900 -2.5786e+01 #> 1396 77.8010 -9.8012e+00 -0.64128000 -0.69745000 68.0 90.2380 -2.2238e+01 #> 1397 53.6720 -1.7239e-01 -0.01635000 -0.15590000 53.5 61.7700 -8.2695e+00 #> 1398 39.2430 -1.9425e+00 -0.25198000 -0.27000000 37.3 43.7390 -6.4387e+00 #> 1399 29.2270 -2.0271e+00 -0.35307000 -0.24881000 27.2 31.1610 -3.9613e+00 #> 1400 21.8950 4.8050e+00 1.11710000 1.06780000 26.7 22.2310 4.4691e+00 #> 1401 810.9800 -8.1098e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1402 790.4300 1.5767e+02 1.01540000 0.67152000 948.1 875.1500 7.2955e+01 #> 1403 770.6800 -1.0968e+02 -0.72445000 -0.84324000 661.0 849.9200 -1.8892e+02 #> 1404 751.6800 3.1316e+01 0.21207000 -0.01361400 783.0 825.6700 -4.2675e+01 #> 1405 733.4200 5.5083e+01 0.38232000 0.14518000 788.5 802.3800 -1.3876e+01 #> 1406 698.9500 1.3895e+02 1.01200000 0.72427000 837.9 758.4600 7.9444e+01 #> 1407 667.0400 -2.5424e+00 -0.01940200 -0.18054000 664.5 717.8600 -5.3362e+01 #> 1408 637.5000 -2.7499e+01 -0.21958000 -0.34725000 610.0 680.3200 -7.0321e+01 #> 1409 610.1300 -8.9626e+01 -0.74777000 -0.81642000 520.5 645.5900 -1.2509e+02 #> 1410 561.2100 1.1509e+02 1.04400000 0.86288000 676.3 583.6400 9.2664e+01 #> 1411 482.6200 -1.6912e+02 -1.78380000 -1.75500000 313.5 484.5400 -1.7104e+02 #> 1412 423.5500 3.6504e+00 0.04387300 0.04142800 427.2 410.5100 1.6690e+01 #> 1413 343.5300 3.4474e+01 0.51084000 0.61069000 378.0 311.2600 6.6736e+01 #> 1414 293.4600 -4.3665e+01 -0.75741000 -0.67792000 249.8 250.3300 -5.3174e-01 #> 1415 259.2900 -5.6388e+01 -1.10700000 -1.05680000 202.9 209.7700 -6.8711e+00 #> 1416 233.8100 3.0089e+01 0.65508000 1.00790000 263.9 180.4800 8.3423e+01 #> 1417 180.6900 -1.4989e+01 -0.42228000 -0.22794000 165.7 123.5400 4.2161e+01 #> 1418 142.9100 1.8390e+01 0.65504000 1.25360000 161.3 87.4770 7.3823e+01 #> 1419 113.4700 2.8331e+01 1.27100000 2.19110000 141.8 62.3230 7.9477e+01 #> 1420 90.1670 -1.2667e+00 -0.07151300 0.11106000 88.9 44.4620 4.4438e+01 #> 1421 251.5200 -2.5152e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1422 242.1100 2.2992e+01 0.48342000 1.56810000 265.1 145.8600 1.1924e+02 #> 1423 233.1800 -2.3780e+01 -0.51913000 -0.18902000 209.4 141.6500 6.7747e+01 #> 1424 224.7100 -7.8211e+01 -1.77170000 -2.33960000 146.5 137.6100 8.8876e+00 #> 1425 216.6800 2.4523e+01 0.57612000 1.58780000 241.2 133.7300 1.0747e+02 #> 1426 201.8200 -4.9223e+01 -1.24150000 -1.48910000 152.6 126.4100 2.6191e+01 #> 1427 188.4400 5.2255e+01 1.41160000 2.78960000 240.7 119.6400 1.2106e+02 #> 1428 176.3900 1.0151e+02 2.92950000 5.12060000 277.9 113.3900 1.6451e+02 #> 1429 165.5200 -8.1201e+00 -0.24973000 0.03295400 157.4 107.6000 4.9802e+01 #> 1430 146.8600 -5.1589e+00 -0.17882000 0.10285000 141.7 97.2730 4.4427e+01 #> 1431 119.1400 -1.8038e+01 -0.77072000 -0.77985000 101.1 80.7560 2.0344e+01 #> 1432 100.3700 -8.8742e+00 -0.45005000 -0.27417000 91.5 68.4180 2.3082e+01 #> 1433 78.2060 -1.6406e+01 -1.06790000 -1.08250000 61.8 51.8770 9.9226e+00 #> 1434 66.3190 -1.8219e+01 -1.39840000 -1.58000000 48.1 41.7220 6.3780e+00 #> 1435 58.8890 2.8011e+01 2.42130000 4.89360000 86.9 34.9620 5.1938e+01 #> 1436 53.4890 -4.8894e+00 -0.46531000 -0.04102000 48.6 30.0790 1.8521e+01 #> 1437 41.8700 -7.3700e+00 -0.89602000 -1.10300000 34.5 20.5900 1.3910e+01 #> 1438 33.2100 5.1901e+00 0.79554000 2.29470000 38.4 14.5800 2.3820e+01 #> 1439 26.3720 1.7276e+00 0.33347000 0.97690000 28.1 10.3870 1.7713e+01 #> 1440 20.9490 2.3512e+00 0.57132000 1.13810000 23.3 7.4103 1.5890e+01 #> 1441 487.1400 -4.8714e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1442 479.0100 -7.6110e+01 -0.80882000 -1.10540000 402.9 875.1500 -4.7225e+02 #> 1443 471.1000 -2.8898e+01 -0.31226000 -0.78934000 442.2 849.9200 -4.0772e+02 #> 1444 463.3900 -9.8793e+01 -1.08530000 -1.25570000 364.6 825.6700 -4.6107e+02 #> 1445 455.8900 1.8921e+02 2.11270000 0.74519000 645.1 802.3800 -1.5728e+02 #> 1446 441.4600 3.4438e+01 0.39710000 -0.29515000 475.9 758.4600 -2.8256e+02 #> 1447 427.7700 -1.3857e+02 -1.64900000 -1.57370000 289.2 717.8600 -4.2866e+02 #> 1448 414.7700 -1.8745e+00 -0.02300600 -0.51326000 412.9 680.3200 -2.6742e+02 #> 1449 402.4300 5.3696e+00 0.06792100 -0.43211000 407.8 645.5900 -2.3779e+02 #> 1450 379.5500 5.9447e+01 0.79729000 0.09704100 439.0 583.6400 -1.4464e+02 #> 1451 340.1200 -1.1815e+01 -0.17683000 -0.48891000 328.3 484.5400 -1.5624e+02 #> 1452 307.6100 5.8892e+01 0.97457000 0.39756000 366.5 410.5100 -4.4010e+01 #> 1453 257.9000 -3.3505e+01 -0.66131000 -0.73695000 224.4 311.2600 -8.6864e+01 #> 1454 222.2200 -2.7125e+01 -0.62134000 -0.67531000 195.1 250.3300 -5.5232e+01 #> 1455 195.5100 -4.6514e+01 -1.21110000 -1.15480000 149.0 209.7700 -6.0771e+01 #> 1456 174.6600 -9.4556e+00 -0.27559000 -0.33966000 165.2 180.4800 -1.5277e+01 #> 1457 131.2200 3.6811e+00 0.14280000 0.10632000 134.9 123.5400 1.1361e+01 #> 1458 102.0200 4.0802e+00 0.20359000 0.22953000 106.1 87.4770 1.8623e+01 #> 1459 80.1400 9.9600e+00 0.63266000 0.72711000 90.1 62.3230 2.7777e+01 #> 1460 63.1550 7.1448e+00 0.57589000 0.70905000 70.3 44.4620 2.5838e+01 #> 1461 185.4200 -1.8542e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1462 178.2000 1.8595e+01 0.53118000 0.78716000 196.8 145.8600 5.0942e+01 #> 1463 171.3200 -2.9423e+01 -0.87423000 -0.87163000 141.9 141.6500 2.4714e-01 #> 1464 164.7600 1.6143e+01 0.49875000 0.68653000 180.9 137.6100 4.3288e+01 #> 1465 158.4900 -1.8593e+01 -0.59718000 -0.58914000 139.9 133.7300 6.1706e+00 #> 1466 146.8100 1.9487e+01 0.67566000 0.79802000 166.3 126.4100 3.9891e+01 #> 1467 136.1800 2.3242e+00 0.08688100 0.09851200 138.5 119.6400 1.8856e+01 #> 1468 126.4800 3.4616e+01 1.39310000 1.45810000 161.1 113.3900 4.7713e+01 #> 1469 117.6500 4.8487e+00 0.20979000 0.15363000 122.5 107.6000 1.4902e+01 #> 1470 102.2500 1.1500e+00 0.05725000 -0.06495500 103.4 97.2730 6.1273e+00 #> 1471 78.7120 -8.7123e+00 -0.56344000 -0.72307000 70.0 80.7560 -1.0756e+01 #> 1472 62.2300 4.6698e+00 0.38199000 0.06737300 66.9 68.4180 -1.5184e+00 #> 1473 42.1460 -1.0546e+01 -1.27380000 -1.28490000 31.6 51.8770 -2.0277e+01 #> 1474 31.3750 -9.7478e-01 -0.15815000 -0.45355000 30.4 41.7220 -1.1322e+01 #> 1475 25.0410 4.1589e+00 0.84545000 0.23440000 29.2 34.9620 -5.7618e+00 #> 1476 20.8990 4.4015e+00 1.07210000 0.39081000 25.3 30.0790 -4.7795e+00 #> 1477 13.6260 -2.8260e+00 -1.05570000 -0.90700000 10.8 20.5900 -9.7898e+00 #> 1478 9.3156 -5.1556e-01 -0.28173000 -0.28069000 8.8 14.5800 -5.7796e+00 #> 1479 6.4120 -1.3120e+00 -1.04160000 -0.63384000 5.1 10.3870 -5.2871e+00 #> 1480 4.4190 1.0810e+00 1.24520000 0.82785000 5.5 7.4103 -1.9103e+00 #> 1481 1785.8000 -1.7858e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1482 1722.8000 -4.3160e+02 -1.27530000 -1.14050000 1291.2 1750.3000 -4.5909e+02 #> 1483 1662.6000 -1.2488e+02 -0.38237000 -0.32467000 1537.7 1699.8000 -1.6213e+02 #> 1484 1605.0000 4.7576e+02 1.50890000 1.41850000 2080.8 1651.3000 4.2945e+02 #> 1485 1550.0000 -1.6385e+02 -0.53809000 -0.51741000 1386.2 1604.8000 -2.1855e+02 #> 1486 1447.2000 -2.7362e+00 -0.00962430 -0.07249800 1444.5 1516.9000 -7.2413e+01 #> 1487 1353.3000 -8.1505e+00 -0.03065900 -0.13480000 1345.1 1435.7000 -9.0623e+01 #> 1488 1267.3000 2.1832e+02 0.87697000 0.64737000 1485.6 1360.6000 1.2496e+02 #> 1489 1188.6000 -9.1080e+01 -0.39008000 -0.53137000 1097.5 1291.2000 -1.9367e+02 #> 1490 1050.4000 2.9140e+02 1.41220000 0.99606000 1341.8 1167.3000 1.7453e+02 #> 1491 835.8200 -6.5520e+01 -0.39904000 -0.66371000 770.3 969.0700 -1.9877e+02 #> 1492 681.5100 -9.0407e+01 -0.67529000 -0.92011000 591.1 821.0200 -2.2992e+02 #> 1493 484.1100 -2.6509e+01 -0.27875000 -0.61070000 457.6 622.5300 -1.6493e+02 #> 1494 368.9300 9.5767e+01 1.32140000 0.54428000 464.7 500.6600 -3.5963e+01 #> 1495 294.8200 -5.5183e+00 -0.09528100 -0.45427000 289.3 419.5400 -1.3024e+02 #> 1496 242.5400 -3.6137e+01 -0.75846000 -0.88764000 206.4 360.9500 -1.5455e+02 #> 1497 145.3900 1.8313e+01 0.64120000 -0.07030600 163.7 247.0800 -8.3378e+01 #> 1498 89.9220 5.3776e+00 0.30442000 -0.32809000 95.3 174.9500 -7.9655e+01 #> 1499 55.8860 -1.8638e-01 -0.01697700 -0.51667000 55.7 124.6500 -6.8945e+01 #> 1500 34.7720 -5.7212e-01 -0.08375500 -0.54735000 34.2 88.9240 -5.4724e+01 #> 1501 1836.7000 -1.8367e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1502 1782.8000 8.8633e+01 0.25308000 0.18009000 1871.4 1750.3000 1.2111e+02 #> 1503 1731.0000 -1.2856e+02 -0.37807000 -0.43355000 1602.4 1699.8000 -9.7434e+01 #> 1504 1681.2000 1.2028e+02 0.36418000 0.29195000 1801.5 1651.3000 1.5015e+02 #> 1505 1633.5000 -2.2787e+02 -0.71011000 -0.75785000 1405.6 1604.8000 -1.9915e+02 #> 1506 1543.6000 5.4613e+02 1.80110000 1.71020000 2089.7 1516.9000 5.7279e+02 #> 1507 1460.6000 9.8570e+01 0.34353000 0.28187000 1559.2 1435.7000 1.2348e+02 #> 1508 1384.1000 -2.0017e+02 -0.73621000 -0.78207000 1183.9 1360.6000 -1.7674e+02 #> 1509 1313.4000 7.8735e+01 0.30517000 0.25234000 1392.1 1291.2000 1.0093e+02 #> 1510 1187.6000 3.1207e+01 0.13377000 0.08995700 1218.8 1167.3000 5.1527e+01 #> 1511 987.4000 -1.7740e+02 -0.91459000 -0.94580000 810.0 969.0700 -1.5907e+02 #> 1512 838.8200 -4.0717e+01 -0.24709000 -0.26426000 798.1 821.0200 -2.2920e+01 #> 1513 641.0900 1.6071e+02 1.27610000 1.29000000 801.8 622.5300 1.7927e+02 #> 1514 520.4600 1.5364e+00 0.01502700 0.03298700 522.0 500.6600 2.1337e+01 #> 1515 440.2200 -9.4716e+01 -1.09530000 -1.07260000 345.5 419.5400 -7.4042e+01 #> 1516 381.9900 4.5209e+01 0.60246000 0.63361000 427.2 360.9500 6.6247e+01 #> 1517 267.0400 -1.1401e+00 -0.02173300 0.01714200 265.9 247.0800 1.8822e+01 #> 1518 192.4400 -8.7370e+00 -0.23112000 -0.18409000 183.7 174.9500 8.7453e+00 #> 1519 139.3900 4.1208e+01 1.50490000 1.45320000 180.6 124.6500 5.5955e+01 #> 1520 101.0800 -1.7682e+01 -0.89047000 -0.77241000 83.4 88.9240 -5.5238e+00 #> 1521 210.6900 -2.1069e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1522 201.1300 -1.0731e+01 -0.27159000 0.32180000 190.4 145.8600 4.4542e+01 #> 1523 192.1100 -4.6413e+01 -1.22980000 -1.01910000 145.7 141.6500 4.0471e+00 #> 1524 183.6100 7.9292e+01 2.19830000 3.36070000 262.9 137.6100 1.2529e+02 #> 1525 175.5800 -1.5484e+01 -0.44890000 -0.12496000 160.1 133.7300 2.6371e+01 #> 1526 160.8700 -6.7167e+01 -2.12540000 -2.28890000 93.7 126.4100 -3.2709e+01 #> 1527 147.7500 3.8945e+01 1.34180000 1.78000000 186.7 119.6400 6.7056e+01 #> 1528 136.0600 1.1638e+01 0.43542000 0.59655000 147.7 113.3900 3.4313e+01 #> 1529 125.6300 -1.8250e+00 -0.07395100 -0.06204400 123.8 107.6000 1.6202e+01 #> 1530 107.9600 -1.1603e+00 -0.05471000 -0.15888000 106.8 97.2730 9.5273e+00 #> 1531 82.3790 6.7214e+00 0.41534000 0.16494000 89.1 80.7560 8.3440e+00 #> 1532 65.5580 -2.0580e+00 -0.15980000 -0.39524000 63.5 68.4180 -4.9184e+00 #> 1533 46.1730 3.4268e+00 0.37779000 0.12115000 49.6 51.8770 -2.2774e+00 #> 1534 35.8580 -1.5793e-01 -0.02242000 -0.13958000 35.7 41.7220 -6.0220e+00 #> 1535 29.3560 -6.2564e+00 -1.08490000 -0.95018000 23.1 34.9620 -1.1862e+01 #> 1536 24.6530 6.4745e-01 0.13369000 -0.02135700 25.3 30.0790 -4.7795e+00 #> 1537 15.3050 3.1953e+00 1.06280000 0.44893000 18.5 20.5900 -2.0898e+00 #> 1538 9.6311 2.3689e+00 1.25210000 0.35215000 12.0 14.5800 -2.5796e+00 #> 1539 6.0675 -1.6747e-01 -0.14050000 -0.57947000 5.9 10.3870 -4.4871e+00 #> 1540 3.8242 -7.2425e-01 -0.96405000 -1.03060000 3.1 7.4103 -4.3103e+00 #> 1541 518.6300 -5.1863e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1542 501.3800 -1.4588e+02 -1.48110000 -1.32270000 355.5 437.5700 -8.2073e+01 #> 1543 484.8500 -2.8459e+00 -0.02988000 0.24021000 482.0 424.9600 5.7041e+01 #> 1544 469.0000 -2.1027e+00 -0.02282200 0.22748000 466.9 412.8400 5.4063e+01 #> 1545 453.8200 3.5281e+01 0.39575000 0.66230000 489.1 401.1900 8.7912e+01 #> 1546 425.3200 -1.0012e+02 -1.19820000 -1.10400000 325.2 379.2300 -5.4028e+01 #> 1547 399.1200 -4.4719e+01 -0.57036000 -0.45879000 354.4 358.9300 -4.5309e+00 #> 1548 375.0300 1.8867e+02 2.56080000 2.86370000 563.7 340.1600 2.2354e+02 #> 1549 352.8800 3.8522e+01 0.55570000 0.67803000 391.4 322.7900 6.8607e+01 #> 1550 313.7100 5.2387e+01 0.85006000 0.91736000 366.1 291.8200 7.4282e+01 #> 1551 252.1900 9.2137e+00 0.18598000 0.11602000 261.4 242.2700 1.9132e+01 #> 1552 207.4100 -2.7908e+01 -0.68496000 -0.81283000 179.5 205.2600 -2.5755e+01 #> 1553 149.7100 -3.9087e+00 -0.13290000 -0.32609000 145.8 155.6300 -9.8322e+00 #> 1554 116.2700 -1.1068e+01 -0.48459000 -0.63970000 105.2 125.1700 -1.9966e+01 #> 1555 95.2010 -2.6012e+00 -0.13909000 -0.31927000 92.6 104.8900 -1.2286e+01 #> 1556 80.6740 5.1255e+00 0.32341000 0.08500200 85.8 90.2380 -4.4384e+00 #> 1557 53.8820 1.4518e+01 1.37150000 0.93747000 68.4 61.7700 6.6305e+00 #> 1558 37.5370 -6.1372e+00 -0.83227000 -0.81957000 31.4 43.7390 -1.2339e+01 #> 1559 26.3360 -1.7364e+00 -0.33562000 -0.43213000 24.6 31.1610 -6.5613e+00 #> 1560 18.5050 1.9953e+00 0.54889000 0.20651000 20.5 22.2310 -1.7309e+00 #> 1561 598.0200 -5.9802e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1562 574.2800 1.0032e+02 0.88927000 1.48480000 674.6 437.5700 2.3703e+02 #> 1563 551.8900 7.0725e-01 0.00652340 0.32635000 552.6 424.9600 1.2764e+02 #> 1564 530.7900 -3.9586e+01 -0.37964000 -0.19126000 491.2 412.8400 7.8363e+01 #> 1565 510.8800 1.3352e+02 1.33040000 1.88660000 644.4 401.1900 2.4321e+02 #> 1566 474.3700 -1.9327e+02 -2.07400000 -2.32560000 281.1 379.2300 -9.8128e+01 #> 1567 441.8400 3.7059e+01 0.42696000 0.65850000 478.9 358.9300 1.1997e+02 #> 1568 412.8100 -9.3411e+01 -1.15190000 -1.24510000 319.4 340.1600 -2.0761e+01 #> 1569 386.8700 1.2933e+01 0.17017000 0.29363000 399.8 322.7900 7.7007e+01 #> 1570 342.8300 7.4274e+01 1.10290000 1.34590000 417.1 291.8200 1.2528e+02 #> 1571 278.3900 2.8707e+01 0.52491000 0.69903000 307.1 242.2700 6.4832e+01 #> 1572 235.0000 -5.2992e+00 -0.11479000 0.03372000 229.7 205.2600 2.4445e+01 #> 1573 182.0600 -3.6759e+01 -1.02780000 -0.92761000 145.3 155.6300 -1.0332e+01 #> 1574 150.6100 2.5921e+00 0.08761000 0.42026000 153.2 125.1700 2.8034e+01 #> 1575 128.4500 4.4852e+01 1.77750000 2.37550000 173.3 104.8900 6.8414e+01 #> 1576 111.0100 -1.2805e+01 -0.58722000 -0.48183000 98.2 90.2380 7.9616e+00 #> 1577 73.2560 -3.2556e+00 -0.22623000 -0.29691000 70.0 61.7700 8.2305e+00 #> 1578 48.6230 1.9177e+01 2.00770000 1.59560000 67.8 43.7390 2.4061e+01 #> 1579 32.2860 -8.1856e+00 -1.29060000 -1.39320000 24.1 31.1610 -7.0613e+00 #> 1580 21.4460 -2.8457e+00 -0.67546000 -0.87496000 18.6 22.2310 -3.6309e+00 #> 1581 787.6900 -7.8769e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1582 766.1200 -1.0516e+01 -0.06987300 -0.29335000 755.6 875.1500 -1.1955e+02 #> 1583 745.3900 -1.3908e+00 -0.00949790 -0.23863000 744.0 849.9200 -1.0592e+02 #> 1584 725.4800 2.2692e+02 1.59220000 1.13760000 952.4 825.6700 1.2673e+02 #> 1585 706.3500 9.1953e+01 0.66268000 0.34599000 798.3 802.3800 -4.0762e+00 #> 1586 670.2900 5.3710e+01 0.40789000 0.13589000 724.0 758.4600 -3.4456e+01 #> 1587 636.9700 -3.6273e+01 -0.28988000 -0.46216000 600.7 717.8600 -1.1716e+02 #> 1588 606.1700 -7.9869e+01 -0.67072000 -0.78975000 526.3 680.3200 -1.5402e+02 #> 1589 577.6700 -1.3687e+02 -1.20610000 -1.25680000 440.8 645.5900 -2.0479e+02 #> 1590 526.8500 2.1753e+01 0.21018000 0.00508760 548.6 583.6400 -3.5036e+01 #> 1591 445.5000 -1.6599e+01 -0.18966000 -0.32557000 428.9 484.5400 -5.5636e+01 #> 1592 384.6000 -2.5800e+01 -0.34148000 -0.44163000 358.8 410.5100 -5.1710e+01 #> 1593 302.3800 1.4716e+01 0.24774000 0.15632000 317.1 311.2600 5.8356e+00 #> 1594 251.0400 -2.1142e+01 -0.42871000 -0.45215000 229.9 250.3300 -2.0432e+01 #> 1595 216.0100 3.5588e+01 0.83865000 0.82179000 251.6 209.7700 4.1829e+01 #> 1596 189.9800 1.2238e+00 0.03279100 0.05970200 191.2 180.4800 1.0723e+01 #> 1597 136.7700 -1.7972e+01 -0.66889000 -0.58802000 118.8 123.5400 -4.7390e+00 #> 1598 100.9800 -1.0766e+00 -0.05427300 0.06661600 99.9 87.4770 1.2423e+01 #> 1599 74.8650 2.1935e+01 1.49150000 1.63710000 96.8 62.3230 3.4477e+01 #> 1600 55.5580 -4.7575e+00 -0.43591000 -0.30108000 50.8 44.4620 6.3381e+00 #> 1601 1112.7000 -1.1127e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1602 1069.3000 3.4492e+02 1.64200000 2.26320000 1414.2 875.1500 5.3905e+02 #> 1603 1028.0000 -1.6393e+02 -0.81173000 -0.62483000 864.1 849.9200 1.4183e+01 #> 1604 988.8400 6.7860e+01 0.34934000 0.68726000 1056.7 825.6700 2.3103e+02 #> 1605 951.6000 -3.2610e+02 -1.74440000 -1.72870000 625.5 802.3800 -1.7688e+02 #> 1606 882.5900 2.7951e+02 1.61210000 2.01430000 1162.1 758.4600 4.0364e+02 #> 1607 820.2300 -3.6173e+02 -2.24490000 -2.30700000 458.5 717.8600 -2.5936e+02 #> 1608 763.8600 -3.0656e+01 -0.20430000 -0.09430900 733.2 680.3200 5.2879e+01 #> 1609 712.8500 1.3115e+02 0.93651000 1.09100000 844.0 645.5900 1.9841e+02 #> 1610 624.8400 -4.5542e+01 -0.37102000 -0.34135000 579.3 583.6400 -4.3365e+00 #> 1611 492.7300 2.7070e+01 0.27967000 0.24958000 519.8 484.5400 3.5264e+01 #> 1612 401.9600 -3.4958e+01 -0.44271000 -0.46946000 367.0 410.5100 -4.3510e+01 #> 1613 292.4600 -9.6963e+01 -1.68770000 -1.58370000 195.5 311.2600 -1.1576e+02 #> 1614 232.4200 4.5585e+01 0.99841000 0.83727000 278.0 250.3300 2.7668e+01 #> 1615 194.7400 3.7257e+01 0.97386000 0.83047000 232.0 209.7700 2.2229e+01 #> 1616 167.8900 -2.6865e+00 -0.08145700 -0.08397700 165.2 180.4800 -1.5277e+01 #> 1617 114.2700 -8.9746e+00 -0.39978000 -0.30822000 105.3 123.5400 -1.8239e+01 #> 1618 79.3950 -9.6947e+00 -0.62158000 -0.44382000 69.7 87.4770 -1.7777e+01 #> 1619 55.2840 9.0164e+00 0.83022000 0.72989000 64.3 62.3230 1.9774e+00 #> 1620 38.5150 2.3846e+00 0.31516000 0.32048000 40.9 44.4620 -3.5619e+00 #> 1621 2463.1000 -2.4631e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1622 2354.2000 -3.9870e+02 -0.86210000 -0.52125000 1955.5 1750.3000 2.0521e+02 #> 1623 2250.7000 -1.1548e+02 -0.26118000 0.18012000 2135.2 1699.8000 4.3537e+02 #> 1624 2152.3000 -1.5509e+02 -0.36681000 -0.02650300 1997.2 1651.3000 3.4585e+02 #> 1625 2058.8000 1.2413e+02 0.30691000 0.73071000 2182.9 1604.8000 5.7815e+02 #> 1626 1885.4000 -2.0908e+02 -0.56450000 -0.45227000 1676.3 1516.9000 1.5939e+02 #> 1627 1728.7000 4.3214e+02 1.27250000 1.51900000 2160.8 1435.7000 7.2508e+02 #> 1628 1587.0000 4.1602e+02 1.33440000 1.41200000 2003.0 1360.6000 6.4236e+02 #> 1629 1458.9000 1.0824e+02 0.37770000 0.25758000 1567.1 1291.2000 2.7593e+02 #> 1630 1238.0000 1.2657e+02 0.52043000 0.19160000 1364.6 1167.3000 1.9733e+02 #> 1631 908.3300 1.0047e+02 0.56305000 -0.07951700 1008.8 969.0700 3.9728e+01 #> 1632 684.9900 2.6308e+01 0.19550000 -0.53725000 711.3 821.0200 -1.0972e+02 #> 1633 425.9000 1.6302e+01 0.19485000 -0.65933000 442.2 622.5300 -1.8033e+02 #> 1634 296.6500 -4.8554e+01 -0.83317000 -1.21980000 248.1 500.6600 -2.5256e+02 #> 1635 225.8800 -1.3811e+00 -0.03112500 -0.73163000 224.5 419.5400 -1.9504e+02 #> 1636 182.3800 -1.1877e+01 -0.33151000 -0.83389000 170.5 360.9500 -1.9045e+02 #> 1637 111.4700 1.1434e+01 0.52219000 -0.31567000 122.9 247.0800 -1.2418e+02 #> 1638 72.2600 1.2640e+01 0.89041000 -0.10857000 84.9 174.9500 -9.0055e+01 #> 1639 47.2040 -1.6037e+00 -0.17294000 -0.59398000 45.6 124.6500 -7.9045e+01 #> 1640 30.8760 -1.2758e+00 -0.21034000 -0.58811000 29.6 88.9240 -5.9324e+01 #> 1641 977.4100 -9.7741e+02 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1642 958.8300 4.2773e+01 0.22708000 -0.46142000 1001.6 1750.3000 -7.4869e+02 #> 1643 940.8200 7.8176e+01 0.42298000 -0.32994000 1019.0 1699.8000 -6.8083e+02 #> 1644 923.3800 -5.0984e+01 -0.28106000 -0.75446000 872.4 1651.3000 -7.7895e+02 #> 1645 906.4800 2.5816e+01 0.14497000 -0.48052000 932.3 1604.8000 -6.7245e+02 #> 1646 874.2300 -2.8863e+02 -1.68060000 -1.60980000 585.6 1516.9000 -9.3131e+02 #> 1647 843.9100 7.8993e+01 0.47649000 -0.23073000 922.9 1435.7000 -5.1282e+02 #> 1648 815.3800 1.3622e+02 0.85044000 0.03037600 951.6 1360.6000 -4.0904e+02 #> 1649 788.5200 -6.4116e+01 -0.41392000 -0.76891000 724.4 1291.2000 -5.6677e+02 #> 1650 739.3200 -8.5117e+01 -0.58606000 -0.85719000 654.2 1167.3000 -5.1307e+02 #> 1651 656.2000 -1.0520e+02 -0.81611000 -0.97484000 551.0 969.0700 -4.1807e+02 #> 1652 589.1200 -1.5052e+02 -1.30060000 -1.29210000 438.6 821.0200 -3.8242e+02 #> 1653 488.1800 5.0825e+01 0.52997000 0.10803000 539.0 622.5300 -8.3529e+01 #> 1654 415.6600 1.9374e+02 2.37270000 1.61360000 609.4 500.6600 1.0874e+02 #> 1655 360.2800 -5.9285e+01 -0.83763000 -0.89252000 301.0 419.5400 -1.1854e+02 #> 1656 315.8300 2.2471e+01 0.36218000 0.08337800 338.3 360.9500 -2.2653e+01 #> 1657 219.6600 9.3406e+00 0.21646000 -0.06599200 229.0 247.0800 -1.8078e+01 #> 1658 155.2900 -3.8935e+00 -0.12763000 -0.40535000 151.4 174.9500 -2.3555e+01 #> 1659 110.1700 1.5426e+01 0.71275000 0.23102000 125.6 124.6500 9.5474e-01 #> 1660 78.2440 -1.4744e+01 -0.95921000 -1.11820000 63.5 88.9240 -2.5424e+01 #> 1661 857.9200 -8.5792e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1662 836.6200 2.5558e+02 1.55510000 1.30910000 1092.2 875.1500 2.1705e+02 #> 1663 816.0500 9.2854e+01 0.57922000 0.43105000 908.9 849.9200 5.8983e+01 #> 1664 796.1700 -5.1275e+01 -0.32783000 -0.39322000 744.9 825.6700 -8.0775e+01 #> 1665 776.9800 6.3320e+01 0.41485000 0.31176000 840.3 802.3800 3.7924e+01 #> 1666 740.5200 -1.6552e+02 -1.13780000 -1.12010000 575.0 758.4600 -1.8346e+02 #> 1667 706.4800 -5.8466e-01 -0.00421260 -0.02655600 705.9 717.8600 -1.1962e+01 #> 1668 674.7000 -1.1810e+02 -0.89102000 -0.85401000 556.6 680.3200 -1.2372e+02 #> 1669 645.0000 1.0003e+01 0.07894800 0.10070000 655.0 645.5900 9.4142e+00 #> 1670 591.2800 -1.9748e+02 -1.70010000 -1.60950000 393.8 583.6400 -1.8984e+02 #> 1671 503.0300 1.3077e+02 1.32340000 1.46750000 633.8 484.5400 1.4926e+02 #> 1672 434.8700 -9.7666e+01 -1.14330000 -1.01500000 337.2 410.5100 -7.3310e+01 #> 1673 339.7500 1.5655e+02 2.34550000 2.68530000 496.3 311.2600 1.8504e+02 #> 1674 279.0400 -4.9035e+01 -0.89455000 -0.77908000 230.0 250.3300 -2.0332e+01 #> 1675 237.9000 -4.2701e+01 -0.91368000 -0.82667000 195.2 209.7700 -1.4571e+01 #> 1676 208.1700 -2.2465e+01 -0.54936000 -0.45181000 185.7 180.4800 5.2233e+00 #> 1677 151.0400 8.6634e+00 0.29198000 0.46556000 159.7 123.5400 3.6161e+01 #> 1678 114.4300 1.5671e+00 0.06971300 0.24587000 116.0 87.4770 2.8523e+01 #> 1679 87.5440 8.9557e+00 0.52075000 0.78103000 96.5 62.3230 3.4177e+01 #> 1680 67.1290 5.8706e+00 0.44517000 0.68258000 73.0 44.4620 2.8538e+01 #> 1681 114.2400 -1.1424e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1682 110.9900 3.3909e+01 1.55520000 0.91917000 144.9 145.8600 -9.5752e-01 #> 1683 107.8600 9.3614e-01 0.04418000 -0.23884000 108.8 141.6500 -3.2853e+01 #> 1684 104.8600 -4.5580e+00 -0.22127000 -0.44649000 100.3 137.6100 -3.7312e+01 #> 1685 101.9700 -3.0268e+01 -1.51110000 -1.44140000 71.7 133.7300 -6.2029e+01 #> 1686 96.5180 -1.4918e+01 -0.78679000 -0.89538000 81.6 126.4100 -4.4809e+01 #> 1687 91.4760 -1.1876e+01 -0.66088000 -0.80759000 79.6 119.6400 -4.0044e+01 #> 1688 86.8090 -9.4089e+00 -0.55174000 -0.73154000 77.4 113.3900 -3.5987e+01 #> 1689 82.4860 2.5114e+01 1.54990000 0.89399000 107.6 107.6000 2.3615e-03 #> 1690 74.7600 4.5396e+00 0.30910000 -0.08016500 79.3 97.2730 -1.7973e+01 #> 1691 62.3430 5.5572e+00 0.45376000 0.02153300 67.9 80.7560 -1.2856e+01 #> 1692 52.9880 -7.8876e+00 -0.75775000 -0.93180000 45.1 68.4180 -2.3318e+01 #> 1693 40.2380 -3.9381e+00 -0.49821000 -0.70543000 36.3 51.8770 -1.5577e+01 #> 1694 32.1900 9.5149e-03 0.00150460 -0.28267000 32.2 41.7220 -9.5220e+00 #> 1695 26.6820 -6.0816e+00 -1.16030000 -1.13510000 20.6 34.9620 -1.4362e+01 #> 1696 22.6170 2.6831e+00 0.60389000 0.21055000 25.3 30.0790 -4.7795e+00 #> 1697 14.6430 3.0574e+00 1.06290000 0.51122000 17.7 20.5900 -2.8898e+00 #> 1698 9.7563 1.2437e+00 0.64891000 0.17995000 11.0 14.5800 -3.5796e+00 #> 1699 6.5350 -1.4350e+00 -1.11780000 -0.93494000 5.1 10.3870 -5.2871e+00 #> 1700 4.3829 3.1712e-01 0.36832000 -0.04938400 4.7 7.4103 -2.7103e+00 #> 1701 529.1100 -5.2911e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1702 513.6800 5.7224e+01 0.56709000 0.68818000 570.9 437.5700 1.3333e+02 #> 1703 498.8600 -8.5821e-01 -0.00875740 0.04744300 498.0 424.9600 7.3041e+01 #> 1704 484.6300 -3.4327e+01 -0.36057000 -0.34514000 450.3 412.8400 3.7463e+01 #> 1705 470.9600 -4.2577e+00 -0.04602000 0.01257900 466.7 401.1900 6.5512e+01 #> 1706 445.2100 1.7390e+01 0.19883000 0.29773000 462.6 379.2300 8.3372e+01 #> 1707 421.4400 4.7361e+01 0.57207000 0.73220000 468.8 358.9300 1.0987e+02 #> 1708 399.4800 -1.0081e+01 -0.12845000 -0.06068600 389.4 340.1600 4.9239e+01 #> 1709 379.1900 -9.1887e+01 -1.23350000 -1.32590000 287.3 322.7900 -3.5493e+01 #> 1710 343.0600 8.6542e+01 1.28420000 1.59530000 429.6 291.8200 1.3778e+02 #> 1711 285.4700 7.3327e+01 1.30750000 1.66140000 358.8 242.2700 1.1653e+02 #> 1712 242.6800 3.4916e+01 0.73239000 1.01590000 277.6 205.2600 7.2345e+01 #> 1713 185.7600 -5.2661e+01 -1.44310000 -1.50830000 133.1 155.6300 -2.2532e+01 #> 1714 151.1700 -2.1567e+01 -0.72624000 -0.64879000 129.6 125.1700 4.4341e+00 #> 1715 128.3000 3.6199e+01 1.43620000 1.89270000 164.5 104.8900 5.9614e+01 #> 1716 111.8200 -2.0424e+01 -0.92973000 -0.89501000 91.4 90.2380 1.1616e+00 #> 1717 79.4810 1.2019e+01 0.76980000 1.03780000 91.5 61.7700 2.9730e+01 #> 1718 58.3440 -1.1443e+00 -0.09983500 -0.05891200 57.2 43.7390 1.3461e+01 #> 1719 43.0680 6.1325e+00 0.72484000 0.80397000 49.2 31.1610 1.8039e+01 #> 1720 31.8290 -2.1287e+00 -0.34044000 -0.46022000 29.7 22.2310 7.4691e+00 #> 1721 144.1700 -1.4417e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1722 139.6800 3.1717e+01 1.15590000 1.00760000 171.4 145.8600 2.5542e+01 #> 1723 135.3500 -2.8055e+01 -1.05510000 -1.03110000 107.3 141.6500 -3.4353e+01 #> 1724 131.1800 -1.6581e+01 -0.64342000 -0.66127000 114.6 137.6100 -2.3012e+01 #> 1725 127.1600 2.9446e+00 0.11788000 0.02763000 130.1 133.7300 -3.6294e+00 #> 1726 119.5300 1.4872e+01 0.63337000 0.47974000 134.4 126.4100 7.9906e+00 #> 1727 112.4300 -7.4309e+00 -0.33644000 -0.42101000 105.0 119.6400 -1.4644e+01 #> 1728 105.8300 -1.2226e+01 -0.58811000 -0.66436000 93.6 113.3900 -1.9787e+01 #> 1729 99.6790 -1.5787e+00 -0.08062400 -0.22362000 98.1 107.6000 -9.4976e+00 #> 1730 88.6250 2.1075e+01 1.21050000 0.88234000 109.7 97.2730 1.2427e+01 #> 1731 70.7050 3.9479e-01 0.02842300 -0.23438000 71.1 80.7560 -9.6560e+00 #> 1732 57.1560 7.5443e+00 0.67191000 0.21690000 64.7 68.4180 -3.7184e+00 #> 1733 38.9730 -2.7325e-01 -0.03569100 -0.48108000 38.7 51.8770 -1.3177e+01 #> 1734 28.1650 3.7349e+00 0.67503000 -0.10742000 31.9 41.7220 -9.8220e+00 #> 1735 21.4860 2.4137e+00 0.57185000 -0.27305000 23.9 34.9620 -1.1062e+01 #> 1736 17.1510 -4.7515e+00 -1.41020000 -1.47400000 12.4 30.0790 -1.7679e+01 #> 1737 10.3470 -9.4707e-01 -0.46593000 -0.86812000 9.4 20.5900 -1.1190e+01 #> 1738 6.9695 7.3047e-01 0.53353000 -0.20947000 7.7 14.5800 -6.8796e+00 #> 1739 4.8324 -4.3239e-01 -0.45548000 -0.56138000 4.4 10.3870 -5.9871e+00 #> 1740 3.3750 4.2499e-01 0.64100000 0.14101000 3.8 7.4103 -3.6103e+00 #> 1741 369.0900 -3.6909e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1742 361.3200 1.1977e+01 0.16874000 -0.07838500 373.3 437.5700 -6.4273e+01 #> 1743 353.8000 -2.7300e+01 -0.39279000 -0.52413000 326.5 424.9600 -9.8459e+01 #> 1744 346.5100 -1.9712e+01 -0.28958000 -0.42956000 326.8 412.8400 -8.6037e+01 #> 1745 339.4500 -5.6150e+01 -0.84203000 -0.87727000 283.3 401.1900 -1.1789e+02 #> 1746 325.9700 3.0727e+01 0.47984000 0.24450000 356.7 379.2300 -2.2528e+01 #> 1747 313.3100 -3.8211e+01 -0.62082000 -0.66567000 275.1 358.9300 -8.3831e+01 #> 1748 301.4100 -8.6707e+01 -1.46440000 -1.37980000 214.7 340.1600 -1.2546e+02 #> 1749 290.2100 4.6790e+01 0.82073000 0.61337000 337.0 322.7900 1.4207e+01 #> 1750 269.7500 8.8551e+01 1.67110000 1.41980000 358.3 291.8200 6.6482e+01 #> 1751 235.4100 1.8091e+01 0.39121000 0.33809000 253.5 242.2700 1.1232e+01 #> 1752 208.0500 -2.1649e+01 -0.52970000 -0.51220000 186.4 205.2600 -1.8855e+01 #> 1753 167.9700 4.9827e+01 1.51000000 1.55940000 217.8 155.6300 6.2168e+01 #> 1754 140.5200 1.2479e+01 0.45205000 0.47012000 153.0 125.1700 2.7834e+01 #> 1755 120.6100 1.6086e+01 0.67890000 0.68652000 136.7 104.8900 3.1814e+01 #> 1756 105.3700 6.6323e+00 0.32042000 0.25727000 112.0 90.2380 2.1762e+01 #> 1757 74.2090 1.8915e+00 0.12975000 -0.07214600 76.1 61.7700 1.4330e+01 #> 1758 53.9150 1.0853e+00 0.10247000 -0.18474000 55.0 43.7390 1.1261e+01 #> 1759 39.4700 -2.9698e+00 -0.38302000 -0.74445000 36.5 31.1610 5.3387e+00 #> 1760 28.9550 2.4490e-01 0.04305500 -0.30661000 29.2 22.2310 6.9691e+00 #> 1761 297.6300 -2.9763e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1762 292.0000 3.7803e+01 0.65903000 0.02165000 329.8 437.5700 -1.0777e+02 #> 1763 286.5500 -6.6546e+01 -1.18220000 -1.24950000 220.0 424.9600 -2.0496e+02 #> 1764 281.2700 2.4031e+01 0.43491000 -0.10543000 305.3 412.8400 -1.0754e+02 #> 1765 276.1600 8.4739e+01 1.56200000 0.70619000 360.9 401.1900 -4.0288e+01 #> 1766 266.4300 -7.7326e+01 -1.47740000 -1.43480000 189.1 379.2300 -1.9013e+02 #> 1767 257.2900 -6.1926e+00 -0.12252000 -0.44222000 251.1 358.9300 -1.0783e+02 #> 1768 248.7200 -3.2119e+01 -0.65737000 -0.81459000 216.6 340.1600 -1.2356e+02 #> 1769 240.6700 -4.1766e+01 -0.88341000 -0.96767000 198.9 322.7900 -1.2389e+02 #> 1770 225.9700 1.9427e+01 0.43764000 0.06319200 245.4 291.8200 -4.6418e+01 #> 1771 201.3700 2.0933e+01 0.52918000 0.22416000 222.3 242.2700 -1.9968e+01 #> 1772 181.7700 1.1125e+01 0.31156000 0.12408000 192.9 205.2600 -1.2355e+01 #> 1773 152.9300 2.4670e+00 0.08211500 0.03986800 155.4 155.6300 -2.3222e-01 #> 1774 132.8300 -2.8533e+01 -1.09350000 -0.99877000 104.3 125.1700 -2.0866e+01 #> 1775 117.8500 8.0530e+00 0.34785000 0.44191000 125.9 104.8900 2.1014e+01 #> 1776 105.9700 3.3828e+01 1.62490000 1.81490000 139.8 90.2380 4.9562e+01 #> 1777 80.0650 -2.1465e+01 -1.36470000 -1.36170000 58.6 61.7700 -3.1695e+00 #> 1778 61.6830 5.0174e+00 0.41407000 0.67098000 66.7 43.7390 2.2961e+01 #> 1779 47.7170 1.0383e+01 1.10770000 1.53750000 58.1 31.1610 2.6939e+01 #> 1780 36.9530 -5.1527e+00 -0.70982000 -0.80035000 31.8 22.2310 9.5691e+00 #> 1781 111.8400 -1.1184e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1782 109.1300 -4.0529e+01 -1.89050000 -1.71330000 68.6 145.8600 -7.7258e+01 #> 1783 106.5200 -5.9186e+00 -0.28285000 -0.49730000 100.6 141.6500 -4.1053e+01 #> 1784 104.0000 2.6599e+01 1.30190000 0.71218000 130.6 137.6100 -7.0124e+00 #> 1785 101.5700 1.5527e+01 0.77815000 0.32137000 117.1 133.7300 -1.6629e+01 #> 1786 96.9720 2.1428e+01 1.12480000 0.60326000 118.4 126.4100 -8.0094e+00 #> 1787 92.6890 7.9107e+00 0.43445000 0.08280700 100.6 119.6400 -1.9044e+01 #> 1788 88.7010 -1.4501e+01 -0.83217000 -0.89920000 74.2 113.3900 -3.9187e+01 #> 1789 84.9830 4.8167e+00 0.28852000 -0.01063300 89.8 107.6000 -1.7798e+01 #> 1790 78.2830 -3.0283e+01 -1.96920000 -1.80570000 48.0 97.2730 -4.9273e+01 #> 1791 67.3320 3.4681e+00 0.26220000 0.01966000 70.8 80.7560 -9.9560e+00 #> 1792 58.9060 2.9363e-01 0.02537400 -0.15096000 59.2 68.4180 -9.2184e+00 #> 1793 47.1180 -3.1177e+00 -0.33683000 -0.42329000 44.0 51.8770 -7.8774e+00 #> 1794 39.4520 -3.2517e+00 -0.41956000 -0.46355000 36.2 41.7220 -5.5220e+00 #> 1795 34.0810 -3.3808e+00 -0.50496000 -0.51229000 30.7 34.9620 -4.2618e+00 #> 1796 30.0360 -3.3359e+00 -0.56537000 -0.54477000 26.7 30.0790 -3.3795e+00 #> 1797 21.7430 5.9570e+00 1.39470000 1.38760000 27.7 20.5900 7.1102e+00 #> 1798 16.1770 8.2294e-01 0.25896000 0.30587000 17.0 14.5800 2.4204e+00 #> 1799 12.1010 -2.0082e-01 -0.08448000 -0.04376500 11.9 10.3870 1.5129e+00 #> 1800 9.0633 7.3675e-01 0.41380000 0.41710000 9.8 7.4103 2.3897e+00 #> 1801 1643.7000 -1.6437e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1802 1583.7000 1.7847e+02 0.57364000 1.49190000 1762.2 875.1500 8.8705e+02 #> 1803 1526.3000 -1.8211e+02 -0.60735000 -0.81014000 1344.2 849.9200 4.9428e+02 #> 1804 1471.4000 8.7032e+01 0.30110000 0.99412000 1558.4 825.6700 7.3273e+02 #> 1805 1418.8000 3.8020e+02 1.36410000 3.09050000 1799.0 802.3800 9.9662e+02 #> 1806 1320.4000 -3.7668e+01 -0.14522000 0.17896000 1282.7 758.4600 5.2424e+02 #> 1807 1230.2000 -2.7392e+02 -1.13340000 -1.67150000 956.3 717.8600 2.3844e+02 #> 1808 1147.7000 1.3480e+00 0.00597900 0.53434000 1149.0 680.3200 4.6868e+02 #> 1809 1072.0000 4.9260e+02 2.33920000 4.85140000 1564.6 645.5900 9.1901e+02 #> 1810 939.1000 -3.8770e+02 -2.10160000 -3.10950000 551.4 583.6400 -3.2236e+01 #> 1811 733.2500 1.0815e+02 0.75078000 1.77130000 841.4 484.5400 3.5686e+02 #> 1812 586.8500 1.5955e+01 0.13840000 0.73234000 602.8 410.5100 1.9229e+02 #> 1813 405.9400 -1.4636e+01 -0.18354000 0.13502000 391.3 311.2600 8.0036e+01 #> 1814 308.7400 7.2458e+01 1.19470000 1.51170000 381.2 250.3300 1.3087e+02 #> 1815 252.8100 1.2992e+01 0.26161000 0.32443000 265.8 209.7700 5.6029e+01 #> 1816 217.5400 -2.5739e+01 -0.60229000 -0.67925000 191.8 180.4800 1.1323e+01 #> 1817 158.5100 -3.8709e+01 -1.24310000 -1.45230000 119.8 123.5400 -3.7390e+00 #> 1818 122.4100 1.1995e+01 0.49883000 0.61815000 134.4 87.4770 4.6923e+01 #> 1819 95.3620 9.7382e+00 0.51983000 0.75591000 105.1 62.3230 4.2777e+01 #> 1820 74.4040 6.9957e+00 0.47862000 0.76967000 81.4 44.4620 3.6938e+01 #> 1821 2191.8000 -2.1918e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1822 2109.8000 -1.8811e+02 -0.45387000 -0.32518000 1921.7 1750.3000 1.7141e+02 #> 1823 2032.2000 4.7927e+02 1.20050000 1.54160000 2511.5 1699.8000 8.1167e+02 #> 1824 1958.8000 -2.1216e+02 -0.55137000 -0.48502000 1746.6 1651.3000 9.5251e+01 #> 1825 1889.2000 -6.7376e+01 -0.18155000 -0.08665000 1821.8 1604.8000 2.1705e+02 #> 1826 1760.8000 1.9283e+02 0.55747000 0.70331000 1953.6 1516.9000 4.3669e+02 #> 1827 1645.4000 4.0990e+02 1.26810000 1.45480000 2055.3 1435.7000 6.1958e+02 #> 1828 1541.6000 -4.0912e+02 -1.35090000 -1.46090000 1132.5 1360.6000 -2.2814e+02 #> 1829 1448.1000 2.5525e+02 0.89725000 0.98795000 1703.4 1291.2000 4.1223e+02 #> 1830 1287.7000 -9.3419e+01 -0.36929000 -0.40600000 1194.3 1167.3000 2.7027e+01 #> 1831 1048.4000 -1.9007e+02 -0.92292000 -0.97841000 858.3 969.0700 -1.1077e+02 #> 1832 883.6200 1.1368e+02 0.65488000 0.74694000 997.3 821.0200 1.7628e+02 #> 1833 679.2200 -1.4972e+02 -1.12210000 -1.08300000 529.5 622.5300 -9.3029e+01 #> 1834 557.9100 1.2069e+02 1.10120000 1.35580000 678.6 500.6600 1.7794e+02 #> 1835 473.9500 -2.4153e+01 -0.25942000 -0.14900000 449.8 419.5400 3.0258e+01 #> 1836 409.0800 1.3012e+02 1.61920000 1.79510000 539.2 360.9500 1.7825e+02 #> 1837 270.9100 -1.0308e+01 -0.19369000 -0.29099000 260.6 247.0800 1.3522e+01 #> 1838 180.9700 -8.2668e+00 -0.23254000 -0.43477000 172.7 174.9500 -2.2547e+00 #> 1839 120.9800 -5.5762e+00 -0.23464000 -0.48755000 115.4 124.6500 -9.2453e+00 #> 1840 80.9050 5.7951e+00 0.36462000 -0.07211300 86.7 88.9240 -2.2238e+00 #> 1841 719.5900 -7.1959e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1842 702.6800 -2.3248e+02 -1.68410000 -1.54320000 470.2 875.1500 -4.0495e+02 #> 1843 686.3500 -7.6251e+01 -0.56553000 -0.64922000 610.1 849.9200 -2.3982e+02 #> 1844 670.6000 2.3104e+01 0.17538000 -0.04936000 693.7 825.6700 -1.3197e+02 #> 1845 655.3900 1.7021e+02 1.32200000 0.88407000 825.6 802.3800 2.3224e+01 #> 1846 626.5400 1.0276e+02 0.83493000 0.51137000 729.3 758.4600 -2.9156e+01 #> 1847 599.6400 -7.1336e+01 -0.60559000 -0.65550000 528.3 717.8600 -1.8956e+02 #> 1848 574.5400 2.0436e+02 1.81060000 1.36200000 778.9 680.3200 9.8579e+01 #> 1849 551.1200 -8.0221e+01 -0.74096000 -0.75475000 470.9 645.5900 -1.7469e+02 #> 1850 508.8000 -1.8780e+02 -1.87890000 -1.71750000 321.0 583.6400 -2.6264e+02 #> 1851 439.3400 4.4261e+01 0.51283000 0.38467000 483.6 484.5400 -9.3615e-01 #> 1852 385.5900 6.4079e+00 0.08459500 0.04547800 392.0 410.5100 -1.8510e+01 #> 1853 309.8600 8.1414e+00 0.13375000 0.16597000 318.0 311.2600 6.7356e+00 #> 1854 260.2400 -4.6839e+01 -0.91620000 -0.80462000 213.4 250.3300 -3.6932e+01 #> 1855 225.3200 1.3882e+01 0.31362000 0.47216000 239.2 209.7700 2.9429e+01 #> 1856 198.9700 -2.1656e+00 -0.05540600 0.14087000 196.8 180.4800 1.6323e+01 #> 1857 144.8900 -6.0292e+01 -2.11820000 -1.98270000 84.6 123.5400 -3.8939e+01 #> 1858 108.5200 4.5983e+01 2.15700000 2.63370000 154.5 87.4770 6.7023e+01 #> 1859 81.7380 8.2619e+00 0.51453000 0.84829000 90.0 62.3230 2.7677e+01 #> 1860 61.6520 -1.3552e+01 -1.11890000 -0.94448000 48.1 44.4620 3.6381e+00 #> 1861 95.8640 -9.5864e+01 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1862 94.3860 1.8145e+00 0.09785800 -0.47059000 96.2 145.8600 -4.9658e+01 #> 1863 92.9540 7.9463e+00 0.43516000 -0.22426000 100.9 141.6500 -4.0753e+01 #> 1864 91.5670 -6.6670e+00 -0.37063000 -0.76141000 84.9 137.6100 -5.2712e+01 #> 1865 90.2240 -3.1236e+00 -0.17624000 -0.61344000 87.1 133.7300 -4.6629e+01 #> 1866 87.6610 9.7390e+00 0.56554000 -0.06484700 97.4 126.4100 -2.9009e+01 #> 1867 85.2540 -7.5415e-01 -0.04502900 -0.46499000 84.5 119.6400 -3.5144e+01 #> 1868 82.9920 -1.7992e+01 -1.10360000 -1.20030000 65.0 113.3900 -4.8387e+01 #> 1869 80.8650 -1.9649e+00 -0.12369000 -0.46769000 78.9 107.6000 -2.8698e+01 #> 1870 76.9770 2.5123e+01 1.66130000 0.92070000 102.1 97.2730 4.8273e+00 #> 1871 70.4470 -8.0471e+00 -0.58147000 -0.68582000 62.4 80.7560 -1.8356e+01 #> 1872 65.2260 -5.7261e+00 -0.44688000 -0.51055000 59.5 68.4180 -8.9184e+00 #> 1873 57.4940 -8.7943e+00 -0.77864000 -0.69914000 48.7 51.8770 -3.1774e+00 #> 1874 52.0540 -4.0539e+00 -0.39644000 -0.26913000 48.0 41.7220 6.2780e+00 #> 1875 47.9450 1.2555e+01 1.33310000 1.59570000 60.5 34.9620 2.5538e+01 #> 1876 44.6320 1.1068e+01 1.26240000 1.67930000 55.7 30.0790 2.5621e+01 #> 1877 37.0730 1.0266e+00 0.14096000 0.61858000 38.1 20.5900 1.7510e+01 #> 1878 31.2430 -3.9434e+00 -0.64249000 -0.50042000 27.3 14.5800 1.2720e+01 #> 1879 26.4080 -3.8075e+00 -0.73396000 -0.88018000 22.6 10.3870 1.2213e+01 #> 1880 22.3360 6.5635e+00 1.49580000 3.56680000 28.9 7.4103 2.1490e+01 #> 1881 1724.9000 -1.7249e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1882 1695.8000 -5.0189e+02 -1.50660000 -1.41990000 1193.9 1750.3000 -5.5639e+02 #> 1883 1667.4000 -1.7902e+02 -0.54653000 -0.51506000 1488.4 1699.8000 -2.1143e+02 #> 1884 1639.7000 -6.8640e+01 -0.21309000 -0.18480000 1571.1 1651.3000 -8.0249e+01 #> 1885 1612.7000 -1.7323e+02 -0.54679000 -0.48475000 1439.5 1604.8000 -1.6525e+02 #> 1886 1560.7000 -4.4706e+02 -1.45820000 -1.34160000 1113.6 1516.9000 -4.0331e+02 #> 1887 1511.1000 9.5229e+00 0.03208000 0.14270000 1520.6 1435.7000 8.4877e+01 #> 1888 1463.8000 -2.5184e+02 -0.87577000 -0.73813000 1212.0 1360.6000 -1.4864e+02 #> 1889 1418.8000 3.2526e+02 1.16700000 1.37560000 1744.1 1291.2000 4.5293e+02 #> 1890 1335.0000 2.8485e+02 1.08610000 1.39080000 1619.9 1167.3000 4.5263e+02 #> 1891 1189.5000 1.3683e+02 0.58557000 0.99066000 1326.3 969.0700 3.5723e+02 #> 1892 1068.5000 5.9943e+02 2.85590000 3.84650000 1667.9 821.0200 8.4688e+02 #> 1893 882.2300 -1.6583e+02 -0.95685000 -0.87364000 716.4 622.5300 9.3871e+01 #> 1894 748.7000 3.2840e+02 2.23280000 3.62480000 1077.1 500.6600 5.7644e+02 #> 1895 650.0200 -5.8820e+01 -0.46063000 -0.38759000 591.2 419.5400 1.7166e+02 #> 1896 574.6500 -2.1452e+01 -0.19003000 -0.05960700 553.2 360.9500 1.9225e+02 #> 1897 425.7300 1.9974e+01 0.23883000 0.44958000 445.7 247.0800 1.9862e+02 #> 1898 332.2200 4.2280e+01 0.64784000 1.07700000 374.5 174.9500 1.9955e+02 #> 1899 264.0900 -4.2906e+00 -0.08270300 -0.20042000 259.8 124.6500 1.3515e+02 #> 1900 211.2900 -2.2894e+01 -0.55155000 -0.99783000 188.4 88.9240 9.9476e+01 #> 1901 492.6200 -4.9262e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1902 476.5400 5.3060e+01 0.56680000 0.68442000 529.6 437.5700 9.2027e+01 #> 1903 461.1800 -5.8675e+01 -0.64766000 -0.58674000 402.5 424.9600 -2.2459e+01 #> 1904 446.4900 -1.1929e+02 -1.36000000 -1.33580000 327.2 412.8400 -8.5637e+01 #> 1905 432.4600 1.2264e+02 1.44370000 1.55690000 555.1 401.1900 1.5391e+02 #> 1906 406.2100 2.1893e+01 0.27436000 0.32654000 428.1 379.2300 4.8872e+01 #> 1907 382.2000 2.0990e+00 0.02795600 0.05501500 384.3 358.9300 2.5369e+01 #> 1908 360.2300 8.1370e+01 1.14980000 1.19600000 441.6 340.1600 1.0144e+02 #> 1909 340.1100 -1.7208e+01 -0.25755000 -0.26447000 322.9 322.7900 1.0708e-01 #> 1910 304.7400 -7.4441e+01 -1.24350000 -1.28840000 230.3 291.8200 -6.1518e+01 #> 1911 249.6800 5.0193e+00 0.10233000 0.07639100 254.7 242.2700 1.2432e+01 #> 1912 209.8900 5.7077e+00 0.13843000 0.12342000 215.6 205.2600 1.0345e+01 #> 1913 158.4300 5.3871e+01 1.73090000 1.75670000 212.3 155.6300 5.6668e+01 #> 1914 127.6600 -2.8459e+01 -1.13480000 -1.02960000 99.2 125.1700 -2.5966e+01 #> 1915 107.1600 -2.3559e+01 -1.11910000 -0.97792000 83.6 104.8900 -2.1286e+01 #> 1916 92.0890 -7.5885e+00 -0.41948000 -0.29551000 84.5 90.2380 -5.7384e+00 #> 1917 61.7900 1.2110e+01 0.99770000 0.91415000 73.9 61.7700 1.2130e+01 #> 1918 42.3780 1.2522e+01 1.50420000 1.16170000 54.9 43.7390 1.1161e+01 #> 1919 29.1530 -2.0527e+00 -0.35842000 -0.50778000 27.1 31.1610 -4.0613e+00 #> 1920 20.0690 -3.0694e+00 -0.77853000 -0.87887000 17.0 22.2310 -5.2309e+00 #> 1921 3382.5000 -3.3825e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 1922 3218.3000 -2.2013e+02 -0.34818000 0.11535000 2998.2 1750.3000 1.2479e+03 #> 1923 3063.1000 -2.1406e+00 -0.00355740 0.72829000 3061.0 1699.8000 1.3612e+03 #> 1924 2916.4000 6.6181e+01 0.11552000 0.88018000 2982.6 1651.3000 1.3313e+03 #> 1925 2777.7000 4.2404e+01 0.07771100 0.73292000 2820.1 1604.8000 1.2153e+03 #> 1926 2522.5000 -4.5740e+02 -0.92304000 -1.14190000 2065.1 1516.9000 5.4819e+02 #> 1927 2294.3000 1.2815e+03 2.84340000 4.96370000 3575.8 1435.7000 2.1401e+03 #> 1928 2090.1000 -1.1894e+02 -0.28967000 -0.18836000 1971.2 1360.6000 6.1056e+02 #> 1929 1907.5000 4.2332e+02 1.12970000 1.76840000 2330.8 1291.2000 1.0396e+03 #> 1930 1597.6000 -2.1609e+02 -0.68855000 -0.83273000 1381.5 1167.3000 2.1423e+02 #> 1931 1149.1000 -1.0360e+02 -0.45893000 -0.61969000 1045.5 969.0700 7.6428e+01 #> 1932 858.0600 1.3137e+01 0.07793400 -0.19336000 871.2 821.0200 5.0180e+01 #> 1933 539.7000 -3.9798e+01 -0.37538000 -0.61858000 499.9 622.5300 -1.2263e+02 #> 1934 392.2600 6.6538e+01 0.86347000 0.23490000 458.8 500.6600 -4.1863e+01 #> 1935 315.3100 -7.1108e+01 -1.14800000 -1.10170000 244.2 419.5400 -1.7534e+02 #> 1936 268.4000 5.2898e+01 1.00320000 0.40550000 321.3 360.9500 -3.9653e+01 #> 1937 186.6800 -2.8882e+01 -0.78755000 -0.73942000 157.8 247.0800 -8.9278e+01 #> 1938 134.8200 7.3762e+00 0.27850000 0.11235000 142.2 174.9500 -3.2755e+01 #> 1939 97.7050 -7.5049e+00 -0.39101000 -0.33588000 90.2 124.6500 -3.4445e+01 #> 1940 70.8460 1.2054e+01 0.86612000 0.63391000 82.9 88.9240 -6.0238e+00 #> 1941 731.1400 -7.3114e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 1942 693.1400 -1.1084e+02 -0.81401000 -0.52957000 582.3 437.5700 1.4473e+02 #> 1943 657.6300 -2.9327e+01 -0.22701000 0.30263000 628.3 424.9600 2.0334e+02 #> 1944 624.4400 2.5496e+02 2.07850000 3.66410000 879.4 412.8400 4.6656e+02 #> 1945 593.4100 -1.4031e+02 -1.20360000 -1.29680000 453.1 401.1900 5.1912e+01 #> 1946 537.2800 5.1819e+01 0.49096000 0.95596000 589.1 379.2300 2.0987e+02 #> 1947 488.1800 1.7892e+02 1.86570000 2.55310000 667.1 358.9300 3.0817e+02 #> 1948 445.1900 -6.7893e+01 -0.77631000 -0.88380000 377.3 340.1600 3.7139e+01 #> 1949 407.5200 -4.7422e+01 -0.59236000 -0.70099000 360.1 322.7900 3.7307e+01 #> 1950 345.4500 -6.6046e+01 -0.97325000 -1.14700000 279.4 291.8200 -1.2418e+01 #> 1951 260.0700 3.8728e+01 0.75804000 0.57432000 298.8 242.2700 5.6532e+01 #> 1952 207.6200 -3.9721e+01 -0.97388000 -0.98592000 167.9 205.2600 -3.7355e+01 #> 1953 151.7300 -5.1825e+01 -1.73880000 -1.50360000 99.9 155.6300 -5.5732e+01 #> 1954 123.7300 -5.6260e+00 -0.23147000 0.02116900 118.1 125.1700 -7.0659e+00 #> 1955 105.9300 3.4367e+01 1.65150000 1.91660000 140.3 104.8900 3.5414e+01 #> 1956 92.4700 -1.6770e+01 -0.92320000 -0.59753000 75.7 90.2380 -1.4538e+01 #> 1957 63.2780 6.2223e+00 0.50056000 0.68601000 69.5 61.7700 7.7305e+00 #> 1958 43.5690 1.0231e+01 1.19540000 1.15480000 53.8 43.7390 1.0061e+01 #> 1959 30.0070 -3.0740e-01 -0.05214800 -0.06885800 29.7 31.1610 -1.4613e+00 #> 1960 20.6740 -1.1740e+00 -0.28908000 -0.34762000 19.5 22.2310 -2.7309e+00 #> 1961 170.0700 -1.7007e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 1962 162.5600 2.2641e+01 0.70898000 0.95326000 185.2 145.8600 3.9342e+01 #> 1963 155.4900 -3.4489e+01 -1.12910000 -1.03370000 121.0 141.6500 -2.0653e+01 #> 1964 148.8300 2.0369e+01 0.69669000 0.80980000 169.2 137.6100 3.1588e+01 #> 1965 142.5600 1.8241e+01 0.65135000 0.70634000 160.8 133.7300 2.7071e+01 #> 1966 131.0800 -2.4281e+01 -0.94292000 -0.96968000 106.8 126.4100 -1.9609e+01 #> 1967 120.8800 3.2220e+01 1.35680000 1.20640000 153.1 119.6400 3.3456e+01 #> 1968 111.8000 1.7396e+01 0.79203000 0.59267000 129.2 113.3900 1.5813e+01 #> 1969 103.7200 -3.3719e+01 -1.65490000 -1.72000000 70.0 107.6000 -3.7598e+01 #> 1970 90.0610 -3.0761e+01 -1.73870000 -1.78470000 59.3 97.2730 -3.7973e+01 #> 1971 70.2990 1.0001e+01 0.72418000 0.37014000 80.3 80.7560 -4.5603e-01 #> 1972 57.2320 -4.6316e+00 -0.41196000 -0.51321000 52.6 68.4180 -1.5818e+01 #> 1973 41.7990 -1.2799e+01 -1.55870000 -1.24620000 29.0 51.8770 -2.2877e+01 #> 1974 33.1040 -3.0037e+00 -0.46189000 -0.26237000 30.1 41.7220 -1.1622e+01 #> 1975 27.2800 -7.8800e+00 -1.47040000 -0.98073000 19.4 34.9620 -1.5562e+01 #> 1976 22.8850 1.3215e+01 2.93940000 2.24130000 36.1 30.0790 6.0205e+00 #> 1977 13.9350 -2.6351e+00 -0.96259000 -0.63303000 11.3 20.5900 -9.2898e+00 #> 1978 8.5555 -1.0555e+00 -0.62800000 -0.48259000 7.5 14.5800 -7.0796e+00 #> 1979 5.2558 6.4418e-01 0.62391000 0.10602000 5.9 10.3870 -4.4871e+00 #> 1980 3.2302 -3.0219e-02 -0.04762200 -0.27769000 3.2 7.4103 -4.2103e+00 #> 1981 1082.1000 -1.0821e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 1982 1038.6000 -3.1032e+02 -1.52090000 -1.29210000 728.3 875.1500 -1.4685e+02 #> 1983 997.5300 2.8667e+02 1.46290000 2.01310000 1284.2 849.9200 4.3428e+02 #> 1984 958.6800 -7.8984e+01 -0.41939000 -0.14354000 879.7 825.6700 5.4025e+01 #> 1985 921.9500 -1.4775e+02 -0.81578000 -0.62316000 774.2 802.3800 -2.8176e+01 #> 1986 854.3200 1.8668e+02 1.11230000 1.39440000 1041.0 758.4600 2.8254e+02 #> 1987 793.7400 -2.6534e+02 -1.70170000 -1.69130000 528.4 717.8600 -1.8946e+02 #> 1988 739.4000 1.6290e+02 1.12150000 1.23580000 902.3 680.3200 2.2198e+02 #> 1989 690.6000 5.0703e+01 0.37373000 0.39805000 741.3 645.5900 9.5714e+01 #> 1990 607.1500 1.2905e+02 1.08200000 1.03130000 736.2 583.6400 1.5256e+02 #> 1991 483.4500 -1.2185e+02 -1.28300000 -1.36120000 361.6 484.5400 -1.2294e+02 #> 1992 398.8800 -1.1484e+01 -0.14655000 -0.25758000 387.4 410.5100 -2.3110e+01 #> 1993 294.5900 -2.9488e+01 -0.50955000 -0.54383000 265.1 311.2600 -4.6164e+01 #> 1994 233.0900 7.5815e+01 1.65580000 1.36820000 308.9 250.3300 5.8568e+01 #> 1995 191.0100 1.4788e+01 0.39410000 0.18596000 205.8 209.7700 -3.9711e+00 #> 1996 159.1400 -7.7440e+00 -0.24770000 -0.43095000 151.4 180.4800 -2.9077e+01 #> 1997 94.9080 1.3792e+01 0.73973000 0.00985110 108.7 123.5400 -1.4839e+01 #> 1998 57.1100 -1.0972e-01 -0.00977990 -0.64125000 57.0 87.4770 -3.0477e+01 #> 1999 34.3910 -7.3913e+00 -1.09400000 -1.24270000 27.0 62.3230 -3.5323e+01 #> 2000 20.7200 1.6796e+00 0.41262000 -0.50263000 22.4 44.4620 -2.2062e+01 #> 2001 153.1400 -1.5314e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2002 147.5400 4.8358e+01 1.66840000 1.71000000 195.9 145.8600 5.0042e+01 #> 2003 142.2100 1.4985e+01 0.53638000 0.58560000 157.2 141.6500 1.5547e+01 #> 2004 137.1500 -3.4148e+01 -1.26740000 -1.16970000 103.0 137.6100 -3.4612e+01 #> 2005 132.3300 -2.5827e+01 -0.99353000 -0.92813000 106.5 133.7300 -2.7229e+01 #> 2006 123.3800 -1.9575e+01 -0.80768000 -0.78944000 103.8 126.4100 -2.2609e+01 #> 2007 115.2700 -1.2966e+01 -0.57260000 -0.60240000 102.3 119.6400 -1.7344e+01 #> 2008 107.9100 4.4186e+01 2.08430000 1.82860000 152.1 113.3900 3.8713e+01 #> 2009 101.2400 -1.5443e+01 -0.77646000 -0.84324000 85.8 107.6000 -2.1798e+01 #> 2010 89.6790 -1.2579e+01 -0.71403000 -0.81909000 77.1 97.2730 -2.0173e+01 #> 2011 72.1490 5.9506e+00 0.41984000 0.15506000 78.1 80.7560 -2.6560e+00 #> 2012 59.9170 -2.9169e+00 -0.24782000 -0.42365000 57.0 68.4180 -1.1418e+01 #> 2013 44.7700 -1.4270e+01 -1.62250000 -1.51610000 30.5 51.8770 -2.1377e+01 #> 2014 36.1090 9.0825e-02 0.01280400 -0.03031200 36.2 41.7220 -5.5220e+00 #> 2015 30.4570 -4.4571e+00 -0.74494000 -0.60434000 26.0 34.9620 -8.9618e+00 #> 2016 26.3090 -1.7092e+00 -0.33070000 -0.21116000 24.6 30.0790 -5.4795e+00 #> 2017 17.8420 7.1581e+00 2.04230000 1.74630000 25.0 20.5900 4.4102e+00 #> 2018 12.3130 6.8703e-01 0.28404000 0.26361000 13.0 14.5800 -1.5796e+00 #> 2019 8.5139 -7.1394e-01 -0.42686000 -0.31975000 7.8 10.3870 -2.5871e+00 #> 2020 5.8901 1.0986e-01 0.09494600 0.00842470 6.0 7.4103 -1.4103e+00 #> 2021 562.1200 -5.6212e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2022 549.8800 2.3821e+01 0.22052000 -0.37768000 573.7 875.1500 -3.0145e+02 #> 2023 538.0100 6.7691e+01 0.64047000 -0.08593400 605.7 849.9200 -2.4422e+02 #> 2024 526.5000 1.6007e+00 0.01547700 -0.49631000 528.1 825.6700 -2.9757e+02 #> 2025 515.3400 -7.5939e+01 -0.75011000 -1.00640000 439.4 802.3800 -3.6298e+02 #> 2026 494.0200 8.6082e+01 0.88701000 0.12505000 580.1 758.4600 -1.7836e+02 #> 2027 473.9600 -1.3276e+02 -1.42590000 -1.45120000 341.2 717.8600 -3.7666e+02 #> 2028 455.0700 3.7265e+00 0.04168400 -0.42348000 458.8 680.3200 -2.2152e+02 #> 2029 437.2900 8.0310e+01 0.93488000 0.21765000 517.6 645.5900 -1.2799e+02 #> 2030 404.7400 2.5602e+00 0.03220000 -0.39317000 407.3 583.6400 -1.7634e+02 #> 2031 349.9700 -7.8772e+01 -1.14580000 -1.22210000 271.2 484.5400 -2.1334e+02 #> 2032 306.2500 7.5051e-01 0.01247500 -0.34366000 307.0 410.5100 -1.0351e+02 #> 2033 242.2500 2.1852e+01 0.45918000 0.03632600 264.1 311.2600 -4.7164e+01 #> 2034 198.7300 6.5734e+00 0.16838000 -0.16926000 205.3 250.3300 -4.5032e+01 #> 2035 167.6100 -1.0813e+01 -0.32838000 -0.54849000 156.8 209.7700 -5.2971e+01 #> 2036 144.2300 -1.5128e+01 -0.53393000 -0.69752000 129.1 180.4800 -5.1377e+01 #> 2037 98.1940 1.7106e+01 0.88679000 0.45185000 115.3 123.5400 -8.2390e+00 #> 2038 69.6140 -1.0314e+01 -0.75417000 -0.75807000 59.3 87.4770 -2.8177e+01 #> 2039 49.8920 4.4076e+00 0.44970000 0.18969000 54.3 62.3230 -8.0226e+00 #> 2040 35.8700 2.7303e+00 0.38747000 0.17235000 38.6 44.4620 -5.8619e+00 #> 2041 400.6900 -4.0069e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2042 389.8100 -3.4109e+01 -0.44542000 -0.49348000 355.7 437.5700 -8.1873e+01 #> 2043 379.3800 -8.5773e+00 -0.11509000 -0.20793000 370.8 424.9600 -5.4159e+01 #> 2044 369.3800 1.2842e+02 1.76980000 1.43220000 497.8 412.8400 8.4963e+01 #> 2045 359.7900 -3.4394e+01 -0.48662000 -0.53096000 325.4 401.1900 -7.5788e+01 #> 2046 341.7900 -3.5492e+01 -0.52860000 -0.56748000 306.3 379.2300 -7.2928e+01 #> 2047 325.2300 -1.0713e+02 -1.67680000 -1.58220000 218.1 358.9300 -1.4083e+02 #> 2048 309.9800 1.0562e+02 1.73450000 1.45310000 415.6 340.1600 7.5439e+01 #> 2049 295.9300 -1.8026e+01 -0.31008000 -0.36370000 277.9 322.7900 -4.4893e+01 #> 2050 271.0000 3.8005e+01 0.71389000 0.58170000 309.0 291.8200 1.7182e+01 #> 2051 231.4300 -5.9830e+01 -1.31600000 -1.25510000 171.6 242.2700 -7.0668e+01 #> 2052 202.0300 -6.8330e+00 -0.17217000 -0.13398000 195.2 205.2600 -1.0055e+01 #> 2053 162.3600 -3.9057e+01 -1.22460000 -1.09480000 123.3 155.6300 -3.2332e+01 #> 2054 137.1300 5.9651e+00 0.22143000 0.46921000 143.1 125.1700 1.7934e+01 #> 2055 119.3400 3.9160e+01 1.67040000 2.09760000 158.5 104.8900 5.3614e+01 #> 2056 105.6100 -3.8613e+01 -1.86110000 -1.71610000 67.0 90.2380 -2.3238e+01 #> 2057 76.1520 -6.8517e+00 -0.45801000 -0.20395000 69.3 61.7700 7.5305e+00 #> 2058 55.7770 2.0723e+01 1.89120000 2.33060000 76.5 43.7390 3.2761e+01 #> 2059 40.9450 2.7545e+00 0.34245000 0.51535000 43.7 31.1610 1.2539e+01 #> 2060 30.0750 -7.3747e+00 -1.24820000 -1.23690000 22.7 22.2310 4.6906e-01 #> 2061 1701.2000 -1.7012e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2062 1653.8000 -1.1438e+01 -0.03520500 -0.05269100 1642.4 1750.3000 -1.0789e+02 #> 2063 1608.3000 1.1150e+02 0.35290000 0.30748000 1719.8 1699.8000 1.9966e+01 #> 2064 1564.5000 1.3200e+02 0.42948000 0.38482000 1696.5 1651.3000 4.5151e+01 #> 2065 1522.4000 -3.0197e+02 -1.00970000 -0.92823000 1220.4 1604.8000 -3.8435e+02 #> 2066 1442.8000 -5.9219e+01 -0.20893000 -0.18269000 1383.6 1516.9000 -1.3331e+02 #> 2067 1369.1000 6.7386e+02 2.50540000 2.34590000 2043.0 1435.7000 6.0728e+02 #> 2068 1300.8000 -1.1515e+02 -0.45059000 -0.38798000 1185.7 1360.6000 -1.7494e+02 #> 2069 1237.5000 -1.6761e+02 -0.68947000 -0.60375000 1069.9 1291.2000 -2.2127e+02 #> 2070 1124.1000 -4.0335e+02 -1.82650000 -1.66520000 720.8 1167.3000 -4.4647e+02 #> 2071 941.3600 -4.9916e+02 -2.69920000 -2.49610000 442.2 969.0700 -5.2687e+02 #> 2072 803.1600 1.4740e+01 0.09342200 0.18026000 817.9 821.0200 -3.1203e+00 #> 2073 614.1300 2.4077e+02 1.99570000 1.98860000 854.9 622.5300 2.3237e+02 #> 2074 494.4900 9.5806e+01 0.98625000 0.95653000 590.3 500.6600 8.9637e+01 #> 2075 412.5400 -7.1441e+00 -0.08815300 -0.12115000 405.4 419.5400 -1.4142e+01 #> 2076 352.0600 1.7140e+01 0.24783000 0.13951000 369.2 360.9500 8.2465e+00 #> 2077 232.9000 -5.1100e+01 -1.11690000 -1.14290000 181.8 247.0800 -6.5278e+01 #> 2078 158.7400 -3.6701e-02 -0.00117690 -0.21133000 158.7 174.9500 -1.6255e+01 #> 2079 108.8000 1.0204e+01 0.47742000 0.14767000 119.0 124.6500 -5.6453e+00 #> 2080 74.6680 3.2119e-02 0.00218970 -0.20119000 74.7 88.9240 -1.4224e+01 #> 2081 382.0600 -3.8206e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2082 370.4300 -7.6929e+01 -1.05720000 -1.04970000 293.5 437.5700 -1.4407e+02 #> 2083 359.3600 1.1954e+02 1.69340000 1.21590000 478.9 424.9600 5.3941e+01 #> 2084 348.8100 8.4492e+01 1.23310000 0.82350000 433.3 412.8400 2.0463e+01 #> 2085 338.7600 3.1539e+01 0.47393000 0.18484000 370.3 401.1900 -3.0888e+01 #> 2086 320.0700 2.2335e+01 0.35522000 0.06969700 342.4 379.2300 -3.6828e+01 #> 2087 303.0800 -4.0680e+01 -0.68325000 -0.80481000 262.4 358.9300 -9.6531e+01 #> 2088 287.6300 -8.8035e+01 -1.55800000 -1.54260000 199.6 340.1600 -1.4056e+02 #> 2089 273.5800 2.2923e+01 0.42652000 0.10261000 296.5 322.7900 -2.6293e+01 #> 2090 249.0900 -2.4588e+01 -0.50249000 -0.67706000 224.5 291.8200 -6.7318e+01 #> 2091 211.5600 -2.3757e+01 -0.57164000 -0.71946000 187.8 242.2700 -5.4468e+01 #> 2092 184.9000 -4.2700e+01 -1.17560000 -1.21140000 142.2 205.2600 -6.3055e+01 #> 2093 150.8200 -5.0617e+01 -1.70840000 -1.63730000 100.2 155.6300 -5.5432e+01 #> 2094 130.2000 -1.5396e+01 -0.60196000 -0.51433000 114.8 125.1700 -1.0366e+01 #> 2095 115.8500 -1.5754e+01 -0.69219000 -0.54294000 100.1 104.8900 -4.7855e+00 #> 2096 104.6700 1.6634e+01 0.80902000 1.08730000 121.3 90.2380 3.1062e+01 #> 2097 79.5740 1.3126e+01 0.83972000 1.24920000 92.7 61.7700 3.0930e+01 #> 2098 61.1030 1.5497e+01 1.29100000 1.81580000 76.6 43.7390 3.2861e+01 #> 2099 46.9690 6.1311e+00 0.66448000 1.03240000 53.1 31.1610 2.1939e+01 #> 2100 36.1160 -4.6158e+00 -0.65058000 -0.66327000 31.5 22.2310 9.2691e+00 #> 2101 608.7800 -6.0878e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2102 597.4000 -6.5797e+01 -0.56066000 -0.79848000 531.6 875.1500 -3.4355e+02 #> 2103 586.3300 4.1967e+01 0.36435000 -0.12880000 628.3 849.9200 -2.2162e+02 #> 2104 575.5800 8.8922e+01 0.78644000 0.18989000 664.5 825.6700 -1.6117e+02 #> 2105 565.1200 -1.8272e+02 -1.64590000 -1.54080000 382.4 802.3800 -4.1998e+02 #> 2106 545.0700 -5.8975e+01 -0.55077000 -0.72921000 486.1 758.4600 -2.7236e+02 #> 2107 526.1200 2.0781e+01 0.20107000 -0.15179000 546.9 717.8600 -1.7096e+02 #> 2108 508.1900 3.8911e+01 0.38977000 0.01749300 547.1 680.3200 -1.3322e+02 #> 2109 491.2200 8.1478e+01 0.84434000 0.39003000 572.7 645.5900 -7.2886e+01 #> 2110 459.9500 1.5455e+02 1.71050000 1.12250000 614.5 583.6400 3.0864e+01 #> 2111 406.6300 -1.7163e+02 -2.14860000 -1.86380000 235.0 484.5400 -2.4954e+02 #> 2112 363.3400 -1.2784e+02 -1.79110000 -1.57280000 235.5 410.5100 -1.7501e+02 #> 2113 298.5900 7.4308e+01 1.26680000 1.14640000 372.9 311.2600 6.1636e+01 #> 2114 253.4600 -2.8460e+01 -0.57158000 -0.49152000 225.0 250.3300 -2.5332e+01 #> 2115 220.5700 1.0326e+01 0.23830000 0.29116000 230.9 209.7700 2.1129e+01 #> 2116 195.4800 1.3318e+01 0.34681000 0.41162000 208.8 180.4800 2.8323e+01 #> 2117 144.7700 -3.5173e+01 -1.23670000 -1.20560000 109.6 123.5400 -1.3939e+01 #> 2118 111.5300 6.4717e+00 0.29539000 0.45110000 118.0 87.4770 3.0523e+01 #> 2119 86.8950 4.4047e+00 0.25803000 0.45068000 91.3 62.3230 2.8977e+01 #> 2120 67.9300 9.8699e+00 0.73962000 1.03710000 77.8 44.4620 3.3338e+01 #> 2121 176.7400 -1.7674e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2122 172.4100 -3.0508e+01 -0.90076000 -0.96497000 141.9 145.8600 -3.9575e+00 #> 2123 168.2200 1.7980e+01 0.54409000 0.68159000 186.2 141.6500 4.4547e+01 #> 2124 164.1700 2.1829e+01 0.67684000 0.85259000 186.0 137.6100 4.8388e+01 #> 2125 160.2600 1.4443e+01 0.45877000 0.62160000 174.7 133.7300 4.0971e+01 #> 2126 152.8100 -2.4012e+01 -0.79989000 -0.81166000 128.8 126.4100 2.3906e+00 #> 2127 145.8500 3.0150e+01 1.05230000 1.38880000 176.0 119.6400 5.6356e+01 #> 2128 139.3400 -9.7369e+00 -0.35572000 -0.25719000 129.6 113.3900 1.6213e+01 #> 2129 133.2400 -3.2942e+01 -1.25850000 -1.33470000 100.3 107.6000 -7.2976e+00 #> 2130 122.1900 3.0105e+01 1.25410000 1.77330000 152.3 97.2730 5.5027e+01 #> 2131 103.9800 -2.8798e+00 -0.14098000 0.08496800 101.1 80.7560 2.0344e+01 #> 2132 89.8600 1.7440e+01 0.98797000 1.58570000 107.3 68.4180 3.8882e+01 #> 2133 70.1220 1.7178e+01 1.24710000 1.97840000 87.3 51.8770 3.5423e+01 #> 2134 57.5740 -5.1738e+00 -0.45745000 -0.34941000 52.4 41.7220 1.0678e+01 #> 2135 49.1720 7.8278e+00 0.81035000 1.39670000 57.0 34.9620 2.2038e+01 #> 2136 43.2000 -8.2996e+00 -0.97799000 -1.05700000 34.9 30.0790 4.8205e+00 #> 2137 32.0510 -4.4511e+00 -0.70694000 -0.64567000 27.6 20.5900 7.0102e+00 #> 2138 25.0180 -3.4177e+00 -0.69542000 -0.62616000 21.6 14.5800 7.0204e+00 #> 2139 19.7620 8.3381e+00 2.14780000 3.79820000 28.1 10.3870 1.7713e+01 #> 2140 15.6550 -3.3553e+00 -1.09100000 -1.31500000 12.3 7.4103 4.8897e+00 #> 2141 552.8300 -5.5283e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2142 536.4900 -4.1590e+01 -0.39462000 -0.29299000 494.9 437.5700 5.7327e+01 #> 2143 520.8800 -8.3803e+00 -0.08189900 0.07300200 512.5 424.9600 8.7541e+01 #> 2144 505.9700 -1.4577e+02 -1.46660000 -1.55320000 360.2 412.8400 -5.2637e+01 #> 2145 491.7200 1.9268e+02 1.99470000 2.51930000 684.4 401.1900 2.8321e+02 #> 2146 465.1000 -4.4797e+01 -0.49030000 -0.40340000 420.3 379.2300 4.1072e+01 #> 2147 440.7700 7.2430e+01 0.83649000 1.17510000 513.2 358.9300 1.5427e+02 #> 2148 418.5300 1.2371e+01 0.15047000 0.37048000 430.9 340.1600 9.0739e+01 #> 2149 398.1800 8.8521e+01 1.13170000 1.55550000 486.7 322.7900 1.6391e+02 #> 2150 362.4700 -8.1701e+00 -0.11474000 0.08587700 354.3 291.8200 6.2482e+01 #> 2151 307.0600 -1.0686e+02 -1.77150000 -1.91580000 200.2 242.2700 -4.2068e+01 #> 2152 267.2000 3.5401e+01 0.67444000 1.19410000 302.6 205.2600 9.7345e+01 #> 2153 215.9000 -1.8098e+01 -0.42672000 -0.15767000 197.8 155.6300 4.2168e+01 #> 2154 185.2400 -6.1136e+01 -1.68010000 -1.96480000 124.1 125.1700 -1.0659e+00 #> 2155 164.5400 3.9161e+01 1.21160000 2.40420000 203.7 104.8900 9.8814e+01 #> 2156 148.9000 5.4799e+01 1.87340000 3.60430000 203.7 90.2380 1.1346e+02 #> 2157 114.9600 -1.8860e+01 -0.83514000 -0.88688000 96.1 61.7700 3.4330e+01 #> 2158 90.0750 -9.7750e+00 -0.55242000 -0.41009000 80.3 43.7390 3.6561e+01 #> 2159 70.7030 -9.8032e+00 -0.70581000 -0.72679000 60.9 31.1610 2.9739e+01 #> 2160 55.5210 1.4279e+01 1.30920000 3.00450000 69.8 22.2310 4.7569e+01 #> 2161 1340.9000 -1.3409e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2162 1312.6000 -1.0385e+02 -0.40272000 -0.69439000 1208.8 1750.3000 -5.4149e+02 #> 2163 1285.2000 -2.0420e+01 -0.08087900 -0.43855000 1264.8 1699.8000 -4.3503e+02 #> 2164 1258.6000 -2.6994e+01 -0.10918000 -0.44749000 1231.6 1651.3000 -4.1975e+02 #> 2165 1232.7000 -6.5445e+01 -0.27025000 -0.55905000 1167.3 1604.8000 -4.3745e+02 #> 2166 1183.3000 1.0302e+02 0.44318000 0.01774800 1286.3 1516.9000 -2.3061e+02 #> 2167 1136.6000 2.3566e+02 1.05540000 0.52657000 1372.3 1435.7000 -6.3423e+01 #> 2168 1092.6000 -6.8050e+01 -0.31703000 -0.53426000 1024.6 1360.6000 -3.3604e+02 #> 2169 1051.1000 -1.0284e+02 -0.49804000 -0.66211000 948.3 1291.2000 -3.4287e+02 #> 2170 974.9600 1.5914e+02 0.83087000 0.45834000 1134.1 1167.3000 -3.3173e+01 #> 2171 846.2400 -3.4040e+01 -0.20477000 -0.33798000 812.2 969.0700 -1.5687e+02 #> 2172 743.0500 2.4505e+02 1.67870000 1.35670000 988.1 821.0200 1.6708e+02 #> 2173 591.7500 -1.0955e+02 -0.94238000 -0.93486000 482.2 622.5300 -1.4033e+02 #> 2174 489.3300 -6.0928e+01 -0.63383000 -0.64804000 428.4 500.6600 -7.2263e+01 #> 2175 416.9200 8.7613e-01 0.01069700 -0.03784200 417.8 419.5400 -1.7421e+00 #> 2176 363.2800 -6.2808e+00 -0.08800900 -0.13153000 357.0 360.9500 -3.9535e+00 #> 2177 259.7700 -2.3266e+01 -0.45593000 -0.46328000 236.5 247.0800 -1.0578e+01 #> 2178 195.2500 -3.2489e+00 -0.08470400 -0.05254900 192.0 174.9500 1.7045e+01 #> 2179 148.8700 3.7135e+01 1.26980000 1.35890000 186.0 124.6500 6.1355e+01 #> 2180 113.9700 -6.7137e-01 -0.02998600 0.10520000 113.3 88.9240 2.4376e+01 #> 2181 322.2600 -3.2226e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2182 305.6500 -3.2948e+01 -0.54873000 -0.64752000 272.7 145.8600 1.2684e+02 #> 2183 289.9700 2.5432e+01 0.44647000 1.72440000 315.4 141.6500 1.7375e+02 #> 2184 275.1600 1.0736e+01 0.19861000 1.04550000 285.9 137.6100 1.4829e+02 #> 2185 261.1900 6.1112e+01 1.19110000 3.18910000 322.3 133.7300 1.8857e+02 #> 2186 235.5300 2.6069e+01 0.56342000 1.56910000 261.6 126.4100 1.3519e+02 #> 2187 212.6500 -5.6547e+00 -0.13536000 0.07705600 207.0 119.6400 8.7356e+01 #> 2188 192.2500 -7.1653e+01 -1.89720000 -2.93150000 120.6 113.3900 7.2131e+00 #> 2189 174.0600 5.0045e+01 1.46360000 2.39700000 224.1 107.6000 1.1650e+02 #> 2190 143.3300 5.7673e+01 2.04840000 2.65480000 201.0 97.2730 1.0373e+02 #> 2191 99.2910 -1.9391e+01 -0.99415000 -1.09640000 79.9 80.7560 -8.5603e-01 #> 2192 71.1510 -5.0696e-02 -0.00362700 -0.27803000 71.1 68.4180 2.6816e+00 #> 2193 41.1650 5.7354e+00 0.70924000 -0.01680600 46.9 51.8770 -4.9774e+00 #> 2194 27.9480 -2.1478e+00 -0.39121000 -0.76943000 25.8 41.7220 -1.5922e+01 #> 2195 21.4810 2.7187e+00 0.64426000 -0.26270000 24.2 34.9620 -1.0762e+01 #> 2196 17.8070 -1.5069e+00 -0.43077000 -0.87113000 16.3 30.0790 -1.3779e+01 #> 2197 11.9510 6.4923e-01 0.27654000 -0.42998000 12.6 20.5900 -7.9898e+00 #> 2198 8.4452 -1.0452e+00 -0.63000000 -0.88682000 7.4 14.5800 -7.1796e+00 #> 2199 5.9953 6.0473e-01 0.51346000 -0.12237000 6.6 10.3870 -3.7871e+00 #> 2200 4.2590 4.1044e-02 0.04905700 -0.34137000 4.3 7.4103 -3.1103e+00 #> 2201 1679.6000 -1.6796e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2202 1645.1000 2.4625e+02 0.76196000 0.45064000 1891.4 1750.3000 1.4111e+02 #> 2203 1611.8000 2.3855e+01 0.07533900 -0.15133000 1635.7 1699.8000 -6.4134e+01 #> 2204 1579.6000 1.7977e+02 0.57932000 0.32810000 1759.4 1651.3000 1.0805e+02 #> 2205 1548.5000 -1.6633e+00 -0.00546810 -0.19125000 1546.8 1604.8000 -5.7952e+01 #> 2206 1489.1000 -5.3731e+01 -0.18367000 -0.32611000 1435.4 1516.9000 -8.1513e+01 #> 2207 1433.6000 -1.1136e+02 -0.39543000 -0.49932000 1322.2 1435.7000 -1.1352e+02 #> 2208 1381.5000 -1.0099e+02 -0.37213000 -0.45304000 1280.5 1360.6000 -8.0142e+01 #> 2209 1332.7000 -1.2437e+02 -0.47508000 -0.53127000 1208.3 1291.2000 -8.2872e+01 #> 2210 1243.9000 -1.8049e+00 -0.00738610 -0.02242000 1242.1 1167.3000 7.4827e+01 #> 2211 1096.4000 2.0421e+02 0.94811000 1.07700000 1300.6 969.0700 3.3153e+02 #> 2212 980.4500 -4.1551e+01 -0.21573000 -0.10865000 938.9 821.0200 1.1788e+02 #> 2213 813.7900 1.3571e+02 0.84888000 1.24170000 949.5 622.5300 3.2697e+02 #> 2214 702.1400 2.3916e+02 1.73390000 2.50500000 941.3 500.6600 4.4064e+02 #> 2215 622.2800 5.1620e+01 0.42227000 0.84626000 673.9 419.5400 2.5436e+02 #> 2216 561.3000 -5.6100e+01 -0.50878000 -0.45802000 505.2 360.9500 1.4425e+02 #> 2217 433.6300 -2.6289e+00 -0.03086100 0.23317000 431.0 247.0800 1.8392e+02 #> 2218 344.0800 -2.3185e+01 -0.34300000 -0.35231000 320.9 174.9500 1.4595e+02 #> 2219 274.6200 3.4821e+00 0.06454700 0.30343000 278.1 124.6500 1.5345e+02 #> 2220 219.4900 3.2814e+01 0.76104000 1.50690000 252.3 88.9240 1.6338e+02 #> 2221 664.0100 -6.6401e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2222 651.1100 -2.5311e+01 -0.19788000 -0.48437000 625.8 875.1500 -2.4935e+02 #> 2223 638.6100 -1.0421e+02 -0.83066000 -0.94953000 534.4 849.9200 -3.1552e+02 #> 2224 626.4900 -2.3590e+01 -0.19168000 -0.45507000 602.9 825.6700 -2.2277e+02 #> 2225 614.7400 4.1557e+01 0.34412000 -0.03327900 656.3 802.3800 -1.4608e+02 #> 2226 592.3100 6.3287e+01 0.54390000 0.15003000 655.6 758.4600 -1.0286e+02 #> 2227 571.2200 -2.2952e+02 -2.04540000 -1.85500000 341.7 717.8600 -3.7616e+02 #> 2228 551.3800 1.3692e+02 1.26410000 0.78078000 688.3 680.3200 7.9788e+00 #> 2229 532.7000 -2.8797e+01 -0.27519000 -0.42580000 503.9 645.5900 -1.4169e+02 #> 2230 498.5200 1.1578e+02 1.18230000 0.81316000 614.3 583.6400 3.0664e+01 #> 2231 441.0100 -3.0612e+01 -0.35335000 -0.40247000 410.4 484.5400 -7.4136e+01 #> 2232 395.0300 4.2767e+01 0.55109000 0.45587000 437.8 410.5100 2.7290e+01 #> 2233 327.3000 1.1698e+01 0.18193000 0.20888000 339.0 311.2600 2.7736e+01 #> 2234 280.4800 4.8422e+01 0.87883000 0.97576000 328.9 250.3300 7.8568e+01 #> 2235 246.1400 -6.9402e+00 -0.14353000 -0.05740500 239.2 209.7700 2.9429e+01 #> 2236 219.4900 -5.0092e+01 -1.16170000 -1.17720000 169.4 180.4800 -1.1077e+01 #> 2237 163.4100 3.2094e+01 0.99980000 1.27030000 195.5 123.5400 7.1961e+01 #> 2238 124.9700 2.2827e+01 0.92978000 1.20670000 147.8 87.4770 6.0323e+01 #> 2239 96.1930 -1.0993e+01 -0.58175000 -0.72441000 85.2 62.3230 2.2877e+01 #> 2240 74.1670 6.3292e-01 0.04344000 0.04330100 74.8 44.4620 3.0338e+01 #> 2241 2347.4000 -2.3474e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2242 2238.6000 2.2144e+02 0.50356000 1.02030000 2460.0 1750.3000 7.0971e+02 #> 2243 2137.7000 8.8558e+01 0.21088000 0.58022000 2226.3 1699.8000 5.2647e+02 #> 2244 2044.3000 7.9777e+02 1.98650000 2.61140000 2842.1 1651.3000 1.1908e+03 #> 2245 1957.7000 -4.6353e+02 -1.20530000 -1.19690000 1494.2 1604.8000 -1.1055e+02 #> 2246 1802.8000 -3.5868e+02 -1.01280000 -1.02370000 1444.1 1516.9000 -7.2813e+01 #> 2247 1669.0000 -9.6243e+01 -0.29353000 -0.24742000 1572.8 1435.7000 1.3708e+02 #> 2248 1553.2000 -4.6554e+02 -1.52570000 -1.62790000 1087.7 1360.6000 -2.7294e+02 #> 2249 1452.6000 -1.3872e+02 -0.48611000 -0.47963000 1313.9 1291.2000 2.2728e+01 #> 2250 1288.0000 3.2511e+02 1.28490000 1.49630000 1613.1 1167.3000 4.4583e+02 #> 2251 1060.1000 -1.2151e+02 -0.58346000 -0.43033000 938.6 969.0700 -3.0472e+01 #> 2252 912.3900 -1.5429e+02 -0.86081000 -0.64412000 758.1 821.0200 -6.2920e+01 #> 2253 727.2300 -4.8727e+01 -0.34108000 0.04156500 678.5 622.5300 5.5971e+01 #> 2254 604.2900 3.2591e+02 2.74540000 3.60550000 930.2 500.6600 4.2954e+02 #> 2255 508.8200 -8.2118e+01 -0.82155000 -0.74403000 426.7 419.5400 7.1579e+00 #> 2256 430.1600 1.1644e+02 1.37790000 1.43770000 546.6 360.9500 1.8565e+02 #> 2257 261.0900 -5.4908e+00 -0.10705000 -0.45741000 255.6 247.0800 8.5220e+00 #> 2258 158.5900 -5.5385e+01 -1.77780000 -1.79480000 103.2 174.9500 -7.1755e+01 #> 2259 96.3260 1.1174e+01 0.59052000 -0.23217000 107.5 124.6500 -1.7145e+01 #> 2260 58.5330 -1.5332e+00 -0.13334000 -0.64708000 57.0 88.9240 -3.1924e+01 #> 2261 2242.0000 -2.2420e+03 -5.09050000 0.00000000 0.0 1802.8000 0.0000e+00 #> 2262 2162.0000 1.8382e+02 0.43281000 0.54375000 2345.8 1750.3000 5.9551e+02 #> 2263 2085.3000 7.7196e+01 0.18844000 0.25160000 2162.5 1699.8000 4.6267e+02 #> 2264 2011.9000 9.8444e+01 0.24908000 0.31939000 2110.3 1651.3000 4.5895e+02 #> 2265 1941.5000 5.3490e+02 1.40250000 1.65810000 2476.4 1604.8000 8.7165e+02 #> 2266 1809.5000 5.6199e+01 0.15810000 0.20572000 1865.7 1516.9000 3.4879e+02 #> 2267 1688.3000 -3.9212e+01 -0.11823000 -0.11180000 1649.1 1435.7000 2.1338e+02 #> 2268 1577.0000 -4.2271e+02 -1.36450000 -1.50480000 1154.3 1360.6000 -2.0634e+02 #> 2269 1474.7000 5.0258e+01 0.17348000 0.21068000 1525.0 1291.2000 2.3383e+02 #> 2270 1294.3000 6.9176e+01 0.27206000 0.30541000 1363.5 1167.3000 1.9623e+02 #> 2271 1012.2000 -6.1831e+01 -0.31095000 -0.31122000 950.4 969.0700 -1.8672e+01 #> 2272 808.6400 -1.0134e+02 -0.63793000 -0.62684000 707.3 821.0200 -1.1372e+02 #> 2273 550.7000 2.2170e+02 2.04940000 1.53030000 772.4 622.5300 1.4987e+02 #> 2274 406.1700 3.6232e+01 0.45409000 0.07944600 442.4 500.6600 -5.8263e+01 #> 2275 319.1200 -2.8319e+01 -0.45173000 -0.67242000 290.8 419.5400 -1.2874e+02 #> 2276 262.0600 -3.8583e+00 -0.07494800 -0.46758000 258.2 360.9500 -1.0275e+02 #> 2277 165.0600 4.5439e+00 0.14014000 -0.34719000 169.6 247.0800 -7.7478e+01 #> 2278 110.5900 -1.4388e+01 -0.66230000 -0.74751000 96.2 174.9500 -7.8755e+01 #> 2279 74.9170 -4.3171e+00 -0.29334000 -0.39877000 70.6 124.6500 -5.4045e+01 #> 2280 50.8640 7.0356e+00 0.70411000 0.28070000 57.9 88.9240 -3.1024e+01 #> 2281 396.4100 -3.9641e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2282 385.2300 4.7473e+01 0.62731000 0.45189000 432.7 437.5700 -4.8726e+00 #> 2283 374.5200 -2.7420e+01 -0.37269000 -0.40816000 347.1 424.9600 -7.7859e+01 #> 2284 364.2600 -6.5665e+01 -0.91764000 -0.88092000 298.6 412.8400 -1.1424e+02 #> 2285 354.4400 -7.2840e+01 -1.04610000 -0.99641000 281.6 401.1900 -1.1959e+02 #> 2286 336.0000 1.9097e+01 0.28932000 0.15438000 355.1 379.2300 -2.4128e+01 #> 2287 319.0600 2.4442e+01 0.38996000 0.24187000 343.5 358.9300 -1.5431e+01 #> 2288 303.4700 -5.8370e+01 -0.97911000 -0.95863000 245.1 340.1600 -9.5061e+01 #> 2289 289.1100 1.4749e+02 2.59680000 2.19560000 436.6 322.7900 1.1381e+02 #> 2290 263.6600 -3.0560e+01 -0.59002000 -0.61863000 233.1 291.8200 -5.8718e+01 #> 2291 223.2500 -2.9549e+00 -0.06737500 -0.12948000 220.3 242.2700 -2.1968e+01 #> 2292 193.1400 -5.1044e+01 -1.34530000 -1.28860000 142.1 205.2600 -6.3155e+01 #> 2293 152.1200 5.9792e+00 0.20008000 0.21374000 158.1 155.6300 2.4678e+00 #> 2294 125.5800 -2.1785e+01 -0.88303000 -0.80450000 103.8 125.1700 -2.1366e+01 #> 2295 106.5900 2.4406e+01 1.16550000 1.16770000 131.0 104.8900 2.6114e+01 #> 2296 91.8800 3.5420e+01 1.96240000 1.88200000 127.3 90.2380 3.7062e+01 #> 2297 60.9910 -1.6991e+01 -1.41810000 -1.39110000 44.0 61.7700 -1.7770e+01 #> 2298 41.0600 2.3403e+00 0.29014000 -0.00229000 43.4 43.7390 -3.3866e-01 #> 2299 27.6960 -4.4959e+00 -0.82634000 -0.93670000 23.2 31.1610 -7.9613e+00 #> 2300 18.6930 1.4071e+00 0.38319000 -0.07552500 20.1 22.2310 -2.1309e+00 #> 2301 763.8000 -7.6380e+02 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2302 747.5700 -7.0174e+01 -0.47783000 -0.54059000 677.4 875.1500 -1.9775e+02 #> 2303 731.8700 -2.7027e+02 -1.87980000 -1.70680000 461.6 849.9200 -3.8832e+02 #> 2304 716.6700 -6.1367e+01 -0.43588000 -0.48441000 655.3 825.6700 -1.7037e+02 #> 2305 701.9500 1.1385e+02 0.82562000 0.59866000 815.8 802.3800 1.3424e+01 #> 2306 673.9100 -5.2610e+01 -0.39740000 -0.42174000 621.3 758.4600 -1.3716e+02 #> 2307 647.6200 -1.4862e+02 -1.16820000 -1.07580000 499.0 717.8600 -2.1886e+02 #> 2308 622.9600 2.8764e+02 2.35050000 2.04250000 910.6 680.3200 2.3028e+02 #> 2309 599.8100 1.5489e+02 1.31450000 1.16200000 754.7 645.5900 1.0911e+02 #> 2310 557.6700 4.9433e+01 0.45123000 0.43719000 607.1 583.6400 2.3464e+01 #> 2311 487.4900 -5.3789e+01 -0.56167000 -0.45094000 433.7 484.5400 -5.0836e+01 #> 2312 432.2400 -1.1944e+02 -1.40660000 -1.26550000 312.8 410.5100 -9.7710e+01 #> 2313 352.8900 4.7909e+01 0.69109000 0.93073000 400.8 311.2600 8.9536e+01 #> 2314 300.1000 4.0000e+01 0.67849000 0.98589000 340.1 250.3300 8.9768e+01 #> 2315 262.8500 -9.7249e+01 -1.88340000 -1.92880000 165.6 209.7700 -4.4171e+01 #> 2316 234.9000 -3.1962e+00 -0.06926600 0.17541000 231.7 180.4800 5.1223e+01 #> 2317 178.2500 8.1483e+00 0.23270000 0.56907000 186.4 123.5400 6.2861e+01 #> 2318 139.9000 3.0202e+01 1.09890000 1.77090000 170.1 87.4770 8.2623e+01 #> 2319 110.6600 -7.8568e+00 -0.36143000 -0.31108000 102.8 62.3230 4.0477e+01 #> 2320 87.6980 9.5017e+00 0.55153000 0.97478000 97.2 44.4620 5.2738e+01 #> 2321 1313.0000 -1.3130e+03 -5.09050000 0.00000000 0.0 901.4000 0.0000e+00 #> 2322 1256.6000 1.3366e+02 0.54143000 1.37000000 1390.3 875.1500 5.1515e+02 #> 2323 1203.5000 -2.2954e+02 -0.97087000 -0.81375000 974.0 849.9200 1.2408e+02 #> 2324 1153.5000 -2.0454e+02 -0.90262000 -0.76424000 949.0 825.6700 1.2333e+02 #> 2325 1106.4000 -1.3429e+00 -0.00617850 0.40905000 1105.1 802.3800 3.0272e+02 #> 2326 1020.2000 1.0426e+02 0.52018000 1.00440000 1124.5 758.4600 3.6604e+02 #> 2327 943.6400 9.8262e+01 0.53008000 0.92037000 1041.9 717.8600 3.2404e+02 #> 2328 875.4700 4.8123e+02 2.79810000 3.68830000 1356.7 680.3200 6.7638e+02 #> 2329 814.7300 -2.1373e+02 -1.33540000 -1.51300000 601.0 645.5900 -4.4586e+01 #> 2330 712.1000 -8.7104e+01 -0.62266000 -0.67160000 625.0 583.6400 4.1364e+01 #> 2331 563.4400 1.9658e+01 0.17760000 0.24050000 583.1 484.5400 9.8564e+01 #> 2332 464.8700 -5.2972e+01 -0.58006000 -0.55945000 411.9 410.5100 1.3898e+00 #> 2333 347.6500 -2.2347e+01 -0.32722000 -0.17155000 325.3 311.2600 1.4036e+01 #> 2334 280.5800 6.5916e+01 1.19590000 1.49520000 346.5 250.3300 9.6168e+01 #> 2335 234.8500 1.1553e+01 0.25042000 0.41406000 246.4 209.7700 3.6629e+01 #> 2336 199.7300 -3.2130e+01 -0.81888000 -0.77262000 167.6 180.4800 -1.2877e+01 #> 2337 126.2300 5.0570e+01 2.03930000 1.52740000 176.8 123.5400 5.3261e+01 #> 2338 80.3430 -1.3743e+01 -0.87072000 -1.11730000 66.6 87.4770 -2.0877e+01 #> 2339 51.1610 -2.8613e+00 -0.28469000 -0.74621000 48.3 62.3230 -1.4023e+01 #> 2340 32.5920 -9.9231e-01 -0.15498000 -0.68399000 31.6 44.4620 -1.2862e+01 #> 2341 116.7800 -1.1678e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2342 114.5600 -1.8958e+01 -0.84239000 -0.91065000 95.6 145.8600 -5.0258e+01 #> 2343 112.4000 -2.3098e+01 -1.04610000 -1.06100000 89.3 141.6500 -5.2353e+01 #> 2344 110.3000 -1.3999e+01 -0.64607000 -0.73598000 96.3 137.6100 -4.1312e+01 #> 2345 108.2600 3.2742e+01 1.53960000 1.01720000 141.0 133.7300 7.2706e+00 #> 2346 104.3400 -6.8423e+00 -0.33381000 -0.45426000 97.5 126.4100 -2.8909e+01 #> 2347 100.6400 -2.9838e+01 -1.50930000 -1.39760000 70.8 119.6400 -4.8844e+01 #> 2348 97.1330 1.0867e+01 0.56948000 0.33726000 108.0 113.3900 -5.3869e+00 #> 2349 93.8150 5.3850e+00 0.29219000 0.13149000 99.2 107.6000 -8.3976e+00 #> 2350 87.6940 -2.7938e+00 -0.16217000 -0.21661000 84.9 97.2730 -1.2373e+01 #> 2351 77.2390 1.2961e+01 0.85419000 0.75853000 90.2 80.7560 9.4440e+00 #> 2352 68.7280 1.8372e+01 1.36070000 1.31080000 87.1 68.4180 1.8682e+01 #> 2353 55.9440 8.2561e+00 0.75124000 0.81681000 64.2 51.8770 1.2323e+01 #> 2354 46.9780 -2.6783e+00 -0.29021000 -0.25186000 44.3 41.7220 2.5780e+00 #> 2355 40.4110 -7.1065e-01 -0.08952000 -0.06290600 39.7 34.9620 4.7382e+00 #> 2356 35.3830 1.4217e+01 2.04540000 2.26070000 49.6 30.0790 1.9521e+01 #> 2357 25.2470 -4.7469e+00 -0.95711000 -1.13490000 20.5 20.5900 -8.9834e-02 #> 2358 18.7410 -2.3409e+00 -0.63584000 -0.82082000 16.4 14.5800 1.8204e+00 #> 2359 14.0740 -1.7440e-01 -0.06307800 -0.19462000 13.9 10.3870 3.5129e+00 #> 2360 10.6080 5.9248e-01 0.28433000 0.18157000 11.2 7.4103 3.7897e+00 #> 2361 677.3800 -6.7738e+02 -5.09050000 0.00000000 0.0 450.7000 0.0000e+00 #> 2362 649.9100 2.5089e+02 1.96510000 3.36630000 900.8 437.5700 4.6323e+02 #> 2363 623.7100 -1.6806e+01 -0.13717000 0.25736000 606.9 424.9600 1.8194e+02 #> 2364 598.7000 2.8501e+01 0.24233000 0.79451000 627.2 412.8400 2.1436e+02 #> 2365 574.8300 -4.6235e+01 -0.40943000 -0.14708000 528.6 401.1900 1.2741e+02 #> 2366 530.3300 -7.4526e+01 -0.71536000 -0.57464000 455.8 379.2300 7.6572e+01 #> 2367 489.7800 -8.3667e-02 -0.00086958 0.39151000 489.7 358.9300 1.3077e+02 #> 2368 452.8400 -1.6794e+02 -1.88790000 -2.07700000 284.9 340.1600 -5.5261e+01 #> 2369 419.1800 -1.9878e+02 -2.41400000 -2.67800000 220.4 322.7900 -1.0239e+02 #> 2370 360.5100 1.0839e+02 1.53040000 2.10190000 468.9 291.8200 1.7708e+02 #> 2371 271.0400 8.9559e+01 1.68200000 1.93800000 360.6 242.2700 1.1833e+02 #> 2372 208.7500 1.7151e+01 0.41823000 0.49017000 225.9 205.2600 2.0645e+01 #> 2373 134.0500 6.6491e+00 0.25249000 0.09124500 140.7 155.6300 -1.4932e+01 #> 2374 95.5390 -1.4739e+01 -0.78532000 -0.81541000 80.8 125.1700 -4.4366e+01 #> 2375 74.2110 -1.0811e+01 -0.74155000 -0.88411000 63.4 104.8900 -4.1486e+01 #> 2376 61.2110 5.7888e+00 0.48141000 -0.16775000 67.0 90.2380 -2.3238e+01 #> 2377 40.5250 8.1752e+00 1.02690000 0.23169000 48.7 61.7700 -1.3070e+01 #> 2378 28.8050 -7.5050e+00 -1.32630000 -1.07270000 21.3 43.7390 -2.2439e+01 #> 2379 20.6890 -2.3887e+00 -0.58774000 -0.39329000 18.3 31.1610 -1.2861e+01 #> 2380 14.8850 2.9150e+00 0.99688000 0.83121000 17.8 22.2310 -4.4309e+00 #> 2381 179.5200 -1.7952e+02 -5.09050000 0.00000000 0.0 150.2300 0.0000e+00 #> 2382 171.5500 -7.0450e+00 -0.20906000 -0.01462600 164.5 145.8600 1.8642e+01 #> 2383 163.9700 6.4257e+00 0.19948000 0.37565000 170.4 141.6500 2.8747e+01 #> 2384 156.7900 -1.0787e+01 -0.35023000 -0.27673000 146.0 137.6100 8.3876e+00 #> 2385 149.9600 -2.8636e+00 -0.09720400 -0.05710700 147.1 133.7300 1.3371e+01 #> 2386 137.3300 7.7682e+00 0.28794000 0.23877000 145.1 126.4100 1.8691e+01 #> 2387 125.9400 1.0662e+01 0.43095000 0.28068000 136.6 119.6400 1.6956e+01 #> 2388 115.6600 -2.5663e-01 -0.01129500 -0.22564000 115.4 113.3900 2.0131e+00 #> 2389 106.3700 4.9226e+01 2.35570000 1.84620000 155.6 107.6000 4.8002e+01 #> 2390 90.4080 -7.6080e+00 -0.42837000 -0.74617000 82.8 97.2730 -1.4473e+01 #> 2391 66.6330 -9.8332e+00 -0.75121000 -1.07450000 56.8 80.7560 -2.3956e+01 #> 2392 50.5330 -1.2633e+01 -1.27260000 -1.42840000 37.9 68.4180 -3.0518e+01 #> 2393 31.7030 1.7973e+00 0.28858000 -0.48473000 33.5 51.8770 -1.8377e+01 #> 2394 22.0420 9.0584e+00 2.09200000 0.39982000 31.1 41.7220 -1.0622e+01 #> 2395 16.5190 -1.1186e+00 -0.34470000 -0.81144000 15.4 34.9620 -1.9562e+01 #> 2396 12.9770 -1.1771e+00 -0.46172000 -0.85320000 11.8 30.0790 -1.8279e+01 #> 2397 7.0728 -4.7278e-01 -0.34027000 -0.75616000 6.6 20.5900 -1.3990e+01 #> 2398 4.0361 -8.3611e-01 -1.05450000 -0.95934000 3.2 14.5800 -1.1380e+01 #> 2399 2.3172 -1.7233e-02 -0.03785800 -0.51740000 2.3 10.3870 -8.0871e+00 #> 2400 1.3320 1.6797e-01 0.64189000 -0.24222000 1.5 7.4103 -5.9103e+00 #> WRES NMREP #> 1 0.00000000 1 #> 2 -0.85205000 1 #> 3 0.89732000 1 #> 4 -1.21190000 1 #> 5 -0.03483100 1 #> 6 0.06513500 1 #> 7 -0.05702000 1 #> 8 -0.64233000 1 #> 9 -0.47823000 1 #> 10 -1.25250000 1 #> 11 -0.00117670 1 #> 12 0.03637000 1 #> 13 0.69963000 1 #> 14 0.35382000 1 #> 15 -1.64090000 1 #> 16 -0.20239000 1 #> 17 -0.08790800 1 #> 18 -0.74647000 1 #> 19 2.04240000 1 #> 20 1.79380000 1 #> 21 0.00000000 1 #> 22 -0.17455000 1 #> 23 2.52750000 1 #> 24 0.97245000 1 #> 25 -1.01010000 1 #> 26 0.40229000 1 #> 27 0.52795000 1 #> 28 -1.52690000 1 #> 29 -1.90690000 1 #> 30 -0.92852000 1 #> 31 -0.27263000 1 #> 32 -1.22650000 1 #> 33 -0.74863000 1 #> 34 -0.76608000 1 #> 35 -0.54072000 1 #> 36 -0.17748000 1 #> 37 0.35001000 1 #> 38 -0.44609000 1 #> 39 0.07422200 1 #> 40 0.36595000 1 #> 41 0.00000000 1 #> 42 2.39650000 1 #> 43 -0.76039000 1 #> 44 -1.29050000 1 #> 45 -0.27871000 1 #> 46 0.37156000 1 #> 47 -1.07240000 1 #> 48 0.99647000 1 #> 49 -1.53710000 1 #> 50 0.60827000 1 #> 51 0.18639000 1 #> 52 -1.15090000 1 #> 53 -0.07080900 1 #> 54 -0.12565000 1 #> 55 -1.12740000 1 #> 56 -0.52927000 1 #> 57 -0.28428000 1 #> 58 -0.81706000 1 #> 59 0.38334000 1 #> 60 -0.08098700 1 #> 61 0.00000000 1 #> 62 0.69171000 1 #> 63 -0.62810000 1 #> 64 -0.58919000 1 #> 65 -0.62680000 1 #> 66 -0.00233820 1 #> 67 -1.12230000 1 #> 68 -0.26808000 1 #> 69 -0.95086000 1 #> 70 -0.07304700 1 #> 71 -0.27444000 1 #> 72 2.00140000 1 #> 73 -2.24370000 1 #> 74 0.05577700 1 #> 75 0.08478800 1 #> 76 -0.57307000 1 #> 77 2.22120000 1 #> 78 2.60850000 1 #> 79 1.27470000 1 #> 80 2.12090000 1 #> 81 0.00000000 1 #> 82 -1.11390000 1 #> 83 0.63639000 1 #> 84 -0.67938000 1 #> 85 -0.55962000 1 #> 86 -0.17441000 1 #> 87 -0.07682800 1 #> 88 0.33895000 1 #> 89 -0.15863000 1 #> 90 0.40523000 1 #> 91 -0.06804600 1 #> 92 -0.38238000 1 #> 93 1.19330000 1 #> 94 -0.58011000 1 #> 95 -0.52274000 1 #> 96 -1.16240000 1 #> 97 -0.45003000 1 #> 98 1.28390000 1 #> 99 0.76687000 1 #> 100 3.06760000 1 #> 101 0.00000000 1 #> 102 0.23015000 1 #> 103 -0.82410000 1 #> 104 -0.90432000 1 #> 105 -0.21592000 1 #> 106 0.56661000 1 #> 107 0.43114000 1 #> 108 0.13049000 1 #> 109 -0.21323000 1 #> 110 -1.36860000 1 #> 111 1.09720000 1 #> 112 -0.17678000 1 #> 113 -0.85886000 1 #> 114 -0.87364000 1 #> 115 0.07166100 1 #> 116 -0.22592000 1 #> 117 0.34891000 1 #> 118 -0.39144000 1 #> 119 -0.24004000 1 #> 120 0.11592000 1 #> 121 0.00000000 1 #> 122 0.43035000 1 #> 123 0.64372000 1 #> 124 0.31871000 1 #> 125 -0.06869400 1 #> 126 -0.33131000 1 #> 127 -0.13909000 1 #> 128 -1.42080000 1 #> 129 0.06669100 1 #> 130 -1.06410000 1 #> 131 -0.40081000 1 #> 132 -0.51008000 1 #> 133 -0.79208000 1 #> 134 -1.06780000 1 #> 135 -0.03539100 1 #> 136 -0.11941000 1 #> 137 -0.70814000 1 #> 138 -0.44079000 1 #> 139 -0.07418700 1 #> 140 0.34213000 1 #> 141 0.00000000 1 #> 142 -0.16762000 1 #> 143 0.37546000 1 #> 144 -0.14928000 1 #> 145 4.48040000 1 #> 146 1.45030000 1 #> 147 -0.26673000 1 #> 148 0.28333000 1 #> 149 -1.13410000 1 #> 150 0.07102300 1 #> 151 -0.08179200 1 #> 152 -1.45650000 1 #> 153 -0.26117000 1 #> 154 -0.76530000 1 #> 155 0.27978000 1 #> 156 -0.14549000 1 #> 157 -0.50166000 1 #> 158 -0.29695000 1 #> 159 -0.31244000 1 #> 160 0.62918000 1 #> 161 0.00000000 1 #> 162 0.47322000 1 #> 163 0.10498000 1 #> 164 0.98268000 1 #> 165 -0.48809000 1 #> 166 -0.94613000 1 #> 167 -0.14670000 1 #> 168 -0.98063000 1 #> 169 -0.27753000 1 #> 170 0.91470000 1 #> 171 -0.59961000 1 #> 172 -1.59040000 1 #> 173 -0.43954000 1 #> 174 0.64693000 1 #> 175 -1.19580000 1 #> 176 -0.73125000 1 #> 177 -0.16589000 1 #> 178 0.59848000 1 #> 179 0.25633000 1 #> 180 0.25327000 1 #> 181 0.00000000 1 #> 182 -0.33502000 1 #> 183 -0.25785000 1 #> 184 1.45220000 1 #> 185 -1.74150000 1 #> 186 0.98055000 1 #> 187 0.69538000 1 #> 188 1.74500000 1 #> 189 0.29968000 1 #> 190 -0.17286000 1 #> 191 1.61450000 1 #> 192 -0.55775000 1 #> 193 -1.66970000 1 #> 194 0.24571000 1 #> 195 1.29420000 1 #> 196 0.15023000 1 #> 197 -0.99817000 1 #> 198 -1.15360000 1 #> 199 -0.62140000 1 #> 200 0.18050000 1 #> 201 0.00000000 1 #> 202 0.11452000 1 #> 203 -0.54857000 1 #> 204 0.58558000 1 #> 205 0.87749000 1 #> 206 -1.45950000 1 #> 207 1.30950000 1 #> 208 2.05340000 1 #> 209 0.40678000 1 #> 210 -0.39199000 1 #> 211 1.62400000 1 #> 212 0.65625000 1 #> 213 -0.75628000 1 #> 214 -0.84447000 1 #> 215 1.81910000 1 #> 216 -1.18030000 1 #> 217 -1.00770000 1 #> 218 0.52824000 1 #> 219 1.62640000 1 #> 220 0.66644000 1 #> 221 0.00000000 1 #> 222 0.03550100 1 #> 223 -0.38004000 1 #> 224 -0.14039000 1 #> 225 -0.00797400 1 #> 226 -1.22730000 1 #> 227 -0.89177000 1 #> 228 -0.00552860 1 #> 229 -0.55774000 1 #> 230 0.16917000 1 #> 231 -0.66679000 1 #> 232 0.00113430 1 #> 233 -0.00376600 1 #> 234 0.24750000 1 #> 235 -0.39002000 1 #> 236 1.79140000 1 #> 237 0.12580000 1 #> 238 1.23170000 1 #> 239 -1.11430000 1 #> 240 3.45920000 1 #> 241 0.00000000 1 #> 242 -1.06050000 1 #> 243 -0.59795000 1 #> 244 0.31426000 1 #> 245 -1.07680000 1 #> 246 -0.28719000 1 #> 247 -0.37303000 1 #> 248 -0.74735000 1 #> 249 -0.64138000 1 #> 250 -1.13450000 1 #> 251 -0.76881000 1 #> 252 0.14377000 1 #> 253 -0.95760000 1 #> 254 0.31906000 1 #> 255 0.19768000 1 #> 256 0.09597800 1 #> 257 -0.26055000 1 #> 258 -1.70740000 1 #> 259 1.69550000 1 #> 260 0.93695000 1 #> 261 0.00000000 1 #> 262 1.06840000 1 #> 263 -0.33977000 1 #> 264 -0.19829000 1 #> 265 0.62772000 1 #> 266 -0.43625000 1 #> 267 -0.14059000 1 #> 268 -0.29629000 1 #> 269 1.51960000 1 #> 270 -0.96404000 1 #> 271 -0.40184000 1 #> 272 2.29270000 1 #> 273 0.36819000 1 #> 274 -0.80535000 1 #> 275 -1.17810000 1 #> 276 0.50814000 1 #> 277 0.79356000 1 #> 278 0.19990000 1 #> 279 0.13253000 1 #> 280 0.10352000 1 #> 281 0.00000000 1 #> 282 -0.33121000 1 #> 283 0.72187000 1 #> 284 0.25620000 1 #> 285 -0.46374000 1 #> 286 -1.29010000 1 #> 287 -0.15118000 1 #> 288 0.50502000 1 #> 289 -0.44855000 1 #> 290 -0.95252000 1 #> 291 -0.07400200 1 #> 292 0.19069000 1 #> 293 -1.00330000 1 #> 294 -0.08938900 1 #> 295 -0.94755000 1 #> 296 0.18408000 1 #> 297 -0.61929000 1 #> 298 -0.18813000 1 #> 299 -0.10758000 1 #> 300 0.20520000 1 #> 301 0.00000000 1 #> 302 -0.35468000 1 #> 303 0.11855000 1 #> 304 -0.23807000 1 #> 305 -0.06530600 1 #> 306 0.38250000 1 #> 307 -0.76714000 1 #> 308 -0.58719000 1 #> 309 0.27235000 1 #> 310 -1.16430000 1 #> 311 0.17757000 1 #> 312 0.32205000 1 #> 313 0.50918000 1 #> 314 -1.44650000 1 #> 315 -1.27890000 1 #> 316 -0.68531000 1 #> 317 -0.48264000 1 #> 318 0.05352700 1 #> 319 1.37450000 1 #> 320 -0.09057700 1 #> 321 0.00000000 1 #> 322 1.70310000 1 #> 323 1.29730000 1 #> 324 1.13440000 1 #> 325 0.74215000 1 #> 326 -1.68510000 1 #> 327 -0.09345600 1 #> 328 -0.72054000 1 #> 329 1.64810000 1 #> 330 -1.32550000 1 #> 331 -0.92102000 1 #> 332 -0.43014000 1 #> 333 1.72420000 1 #> 334 -0.77865000 1 #> 335 -1.52800000 1 #> 336 -1.42660000 1 #> 337 -0.40402000 1 #> 338 0.49825000 1 #> 339 0.58318000 1 #> 340 0.84438000 1 #> 341 0.00000000 1 #> 342 -0.70218000 1 #> 343 -0.15450000 1 #> 344 -0.05797800 1 #> 345 -0.65399000 1 #> 346 1.08090000 1 #> 347 -0.98122000 1 #> 348 0.96652000 1 #> 349 -0.30658000 1 #> 350 -0.01368100 1 #> 351 -0.04581400 1 #> 352 -0.18187000 1 #> 353 -0.34215000 1 #> 354 -1.54750000 1 #> 355 0.61409000 1 #> 356 -0.75120000 1 #> 357 1.04720000 1 #> 358 -0.73351000 1 #> 359 0.76483000 1 #> 360 0.98314000 1 #> 361 0.00000000 1 #> 362 3.66310000 1 #> 363 0.27170000 1 #> 364 -0.21149000 1 #> 365 0.18681000 1 #> 366 1.82160000 1 #> 367 0.03548300 1 #> 368 -1.60650000 1 #> 369 1.97860000 1 #> 370 -0.75540000 1 #> 371 -0.30978000 1 #> 372 -1.74330000 1 #> 373 -0.91579000 1 #> 374 -0.46261000 1 #> 375 -0.00062148 1 #> 376 0.14696000 1 #> 377 -0.56361000 1 #> 378 0.13561000 1 #> 379 0.28047000 1 #> 380 1.91310000 1 #> 381 0.00000000 1 #> 382 0.14061000 1 #> 383 0.09515800 1 #> 384 -0.13076000 1 #> 385 0.71904000 1 #> 386 1.40110000 1 #> 387 0.11395000 1 #> 388 0.00930380 1 #> 389 0.56784000 1 #> 390 0.02972600 1 #> 391 0.67082000 1 #> 392 -0.59681000 1 #> 393 -1.12350000 1 #> 394 -1.06330000 1 #> 395 -0.10051000 1 #> 396 0.07307000 1 #> 397 -1.07100000 1 #> 398 2.30010000 1 #> 399 0.77265000 1 #> 400 4.96570000 1 #> 401 0.00000000 1 #> 402 -0.27690000 1 #> 403 -0.92999000 1 #> 404 1.04450000 1 #> 405 -0.56973000 1 #> 406 -0.11744000 1 #> 407 -1.16360000 1 #> 408 -1.04900000 1 #> 409 0.56570000 1 #> 410 -0.49870000 1 #> 411 2.36100000 1 #> 412 -1.13420000 1 #> 413 -0.05151900 1 #> 414 0.49546000 1 #> 415 -1.07830000 1 #> 416 -0.42447000 1 #> 417 0.35905000 1 #> 418 -1.16890000 1 #> 419 -0.82536000 1 #> 420 0.20822000 1 #> 421 0.00000000 1 #> 422 0.34780000 1 #> 423 -0.34759000 1 #> 424 -1.45510000 1 #> 425 0.97823000 1 #> 426 -1.23570000 1 #> 427 -0.82195000 1 #> 428 0.20571000 1 #> 429 1.02260000 1 #> 430 1.27230000 1 #> 431 0.34733000 1 #> 432 -1.52170000 1 #> 433 -0.25754000 1 #> 434 -0.24253000 1 #> 435 2.11670000 1 #> 436 0.67641000 1 #> 437 -0.41830000 1 #> 438 -1.53850000 1 #> 439 -0.38884000 1 #> 440 0.42325000 1 #> 441 0.00000000 1 #> 442 0.68884000 1 #> 443 1.63510000 1 #> 444 -0.07717000 1 #> 445 -0.95043000 1 #> 446 0.32628000 1 #> 447 -0.59715000 1 #> 448 -0.82467000 1 #> 449 -0.75016000 1 #> 450 -0.17750000 1 #> 451 0.20763000 1 #> 452 0.17194000 1 #> 453 -1.53300000 1 #> 454 0.48109000 1 #> 455 -0.32634000 1 #> 456 0.17241000 1 #> 457 -0.22634000 1 #> 458 -0.92815000 1 #> 459 -0.81233000 1 #> 460 0.06972200 1 #> 461 0.00000000 1 #> 462 -0.65886000 1 #> 463 1.62830000 1 #> 464 0.06186700 1 #> 465 -0.11417000 1 #> 466 -0.60923000 1 #> 467 -1.11230000 1 #> 468 -0.79389000 1 #> 469 -2.02090000 1 #> 470 2.24220000 1 #> 471 0.94863000 1 #> 472 0.34141000 1 #> 473 -0.34733000 1 #> 474 0.71961000 1 #> 475 -1.75060000 1 #> 476 2.19570000 1 #> 477 -0.59972000 1 #> 478 -0.31960000 1 #> 479 0.50775000 1 #> 480 1.28510000 1 #> 481 0.00000000 1 #> 482 0.24242000 1 #> 483 0.48405000 1 #> 484 -0.21919000 1 #> 485 -0.04979500 1 #> 486 0.68516000 1 #> 487 -0.20151000 1 #> 488 -0.88468000 1 #> 489 -0.91279000 1 #> 490 -0.54073000 1 #> 491 -1.38470000 1 #> 492 1.05030000 1 #> 493 0.18887000 1 #> 494 0.71158000 1 #> 495 0.15469000 1 #> 496 -1.09190000 1 #> 497 -0.45541000 1 #> 498 -0.28352000 1 #> 499 -0.52437000 1 #> 500 -0.50110000 1 #> 501 0.00000000 1 #> 502 -0.75355000 1 #> 503 1.89270000 1 #> 504 2.63410000 1 #> 505 -1.29300000 1 #> 506 0.37101000 1 #> 507 -0.74853000 1 #> 508 -0.92432000 1 #> 509 -0.76866000 1 #> 510 2.31070000 1 #> 511 -0.33249000 1 #> 512 1.21540000 1 #> 513 -0.62064000 1 #> 514 0.38129000 1 #> 515 0.33345000 1 #> 516 -0.67387000 1 #> 517 1.17880000 1 #> 518 1.06850000 1 #> 519 -0.97650000 1 #> 520 -0.12424000 1 #> 521 0.00000000 1 #> 522 -0.74309000 1 #> 523 1.09190000 1 #> 524 -0.45520000 1 #> 525 -1.08750000 1 #> 526 -0.61507000 1 #> 527 -0.26185000 1 #> 528 2.43040000 1 #> 529 1.99810000 1 #> 530 -0.35145000 1 #> 531 -0.01752100 1 #> 532 0.11921000 1 #> 533 -0.74229000 1 #> 534 2.01740000 1 #> 535 -0.64393000 1 #> 536 0.59858000 1 #> 537 -1.75230000 1 #> 538 3.33750000 1 #> 539 -0.39753000 1 #> 540 -0.53662000 1 #> 541 0.00000000 1 #> 542 -0.65151000 1 #> 543 0.06052800 1 #> 544 0.38026000 1 #> 545 -0.39562000 1 #> 546 -1.06870000 1 #> 547 0.76536000 1 #> 548 0.06971700 1 #> 549 0.27084000 1 #> 550 -0.24825000 1 #> 551 -0.98004000 1 #> 552 0.05552500 1 #> 553 -0.66645000 1 #> 554 -0.95193000 1 #> 555 0.97459000 1 #> 556 0.21717000 1 #> 557 -1.08680000 1 #> 558 1.26470000 1 #> 559 -0.25932000 1 #> 560 0.55061000 1 #> 561 0.00000000 1 #> 562 0.32610000 1 #> 563 1.48770000 1 #> 564 1.30150000 1 #> 565 1.31960000 1 #> 566 -0.55922000 1 #> 567 -2.19660000 1 #> 568 2.86000000 1 #> 569 0.39804000 1 #> 570 -0.10817000 1 #> 571 -0.84947000 1 #> 572 -0.24824000 1 #> 573 -0.81665000 1 #> 574 0.46789000 1 #> 575 -0.88391000 1 #> 576 -0.40333000 1 #> 577 0.18383000 1 #> 578 0.12128000 1 #> 579 -0.01930100 1 #> 580 0.87465000 1 #> 581 0.00000000 1 #> 582 -0.70710000 1 #> 583 -0.72172000 1 #> 584 -0.97522000 1 #> 585 0.28072000 1 #> 586 1.78010000 1 #> 587 0.07254600 1 #> 588 -0.02958400 1 #> 589 -0.73685000 1 #> 590 -0.18121000 1 #> 591 -1.14830000 1 #> 592 -0.61619000 1 #> 593 -1.56730000 1 #> 594 0.80359000 1 #> 595 1.27450000 1 #> 596 -0.09543200 1 #> 597 -0.64555000 1 #> 598 1.15250000 1 #> 599 2.07390000 1 #> 600 -1.20860000 1 #> 601 0.00000000 1 #> 602 0.23299000 1 #> 603 1.26900000 1 #> 604 2.86490000 1 #> 605 -0.49973000 1 #> 606 -1.41900000 1 #> 607 0.06293800 1 #> 608 -0.80637000 1 #> 609 2.39740000 1 #> 610 -1.41120000 1 #> 611 0.07097200 1 #> 612 -0.56112000 1 #> 613 0.81279000 1 #> 614 -0.35633000 1 #> 615 -0.33613000 1 #> 616 -0.72785000 1 #> 617 -0.84817000 1 #> 618 -0.50237000 1 #> 619 -0.00763920 1 #> 620 0.62325000 1 #> 621 0.00000000 1 #> 622 0.73413000 1 #> 623 0.65715000 1 #> 624 -0.59257000 1 #> 625 0.18316000 1 #> 626 1.32630000 1 #> 627 -0.18265000 1 #> 628 -0.78161000 1 #> 629 0.42714000 1 #> 630 -0.56102000 1 #> 631 -0.26224000 1 #> 632 -1.35190000 1 #> 633 0.89835000 1 #> 634 0.64725000 1 #> 635 -0.24379000 1 #> 636 1.69680000 1 #> 637 -1.16160000 1 #> 638 -1.02750000 1 #> 639 -0.50309000 1 #> 640 1.09230000 1 #> 641 0.00000000 1 #> 642 0.83013000 1 #> 643 1.07750000 1 #> 644 1.55440000 1 #> 645 0.80920000 1 #> 646 2.69780000 1 #> 647 0.28039000 1 #> 648 0.05302100 1 #> 649 -1.37340000 1 #> 650 0.17583000 1 #> 651 -1.72960000 1 #> 652 0.76875000 1 #> 653 0.65381000 1 #> 654 1.77100000 1 #> 655 0.42009000 1 #> 656 -0.35284000 1 #> 657 -0.18421000 1 #> 658 2.36320000 1 #> 659 -0.35190000 1 #> 660 0.15278000 1 #> 661 0.00000000 1 #> 662 0.61270000 1 #> 663 0.89059000 1 #> 664 0.03397300 1 #> 665 -0.71019000 1 #> 666 -0.68453000 1 #> 667 -1.11880000 1 #> 668 0.89902000 1 #> 669 -0.19518000 1 #> 670 -0.08483700 1 #> 671 0.54692000 1 #> 672 0.03935700 1 #> 673 -0.64278000 1 #> 674 1.16680000 1 #> 675 -0.01120900 1 #> 676 -1.49520000 1 #> 677 -0.20551000 1 #> 678 -0.29441000 1 #> 679 -0.08795500 1 #> 680 0.19099000 1 #> 681 0.00000000 1 #> 682 1.24920000 1 #> 683 0.85992000 1 #> 684 0.63373000 1 #> 685 0.55416000 1 #> 686 -1.20050000 1 #> 687 0.48126000 1 #> 688 -1.50310000 1 #> 689 -1.30970000 1 #> 690 1.46960000 1 #> 691 0.49855000 1 #> 692 -1.36010000 1 #> 693 0.75560000 1 #> 694 -0.89601000 1 #> 695 -0.35584000 1 #> 696 0.79546000 1 #> 697 0.61224000 1 #> 698 0.23465000 1 #> 699 -0.61332000 1 #> 700 0.07893000 1 #> 701 0.00000000 1 #> 702 1.45110000 1 #> 703 -1.04620000 1 #> 704 -0.03516800 1 #> 705 -0.27573000 1 #> 706 -0.25752000 1 #> 707 -0.83243000 1 #> 708 -0.14943000 1 #> 709 0.95305000 1 #> 710 1.19830000 1 #> 711 -1.12480000 1 #> 712 -0.93240000 1 #> 713 -0.12522000 1 #> 714 -1.11360000 1 #> 715 -1.34000000 1 #> 716 0.44339000 1 #> 717 2.14740000 1 #> 718 0.59785000 1 #> 719 -0.97906000 1 #> 720 1.41350000 1 #> 721 0.00000000 1 #> 722 -0.29874000 1 #> 723 -1.69730000 1 #> 724 1.44960000 1 #> 725 -1.14810000 1 #> 726 -0.67772000 1 #> 727 -0.42083000 1 #> 728 0.55002000 1 #> 729 -1.11510000 1 #> 730 1.60370000 1 #> 731 1.49030000 1 #> 732 0.49205000 1 #> 733 0.34780000 1 #> 734 -0.29323000 1 #> 735 0.07609200 1 #> 736 -0.64948000 1 #> 737 0.59680000 1 #> 738 0.41648000 1 #> 739 0.88634000 1 #> 740 0.10455000 1 #> 741 0.00000000 1 #> 742 1.33550000 1 #> 743 0.19067000 1 #> 744 0.59502000 1 #> 745 -0.24041000 1 #> 746 0.44642000 1 #> 747 -0.92626000 1 #> 748 0.12706000 1 #> 749 -0.45533000 1 #> 750 1.65100000 1 #> 751 0.63642000 1 #> 752 -1.27270000 1 #> 753 0.88865000 1 #> 754 0.63511000 1 #> 755 0.82377000 1 #> 756 -1.60240000 1 #> 757 -0.48822000 1 #> 758 2.02790000 1 #> 759 1.20880000 1 #> 760 1.51470000 1 #> 761 0.00000000 1 #> 762 0.91396000 1 #> 763 -0.48773000 1 #> 764 0.36544000 1 #> 765 -0.78031000 1 #> 766 0.98476000 1 #> 767 0.27803000 1 #> 768 -0.13967000 1 #> 769 0.93087000 1 #> 770 2.50360000 1 #> 771 1.48060000 1 #> 772 -1.49790000 1 #> 773 -1.43400000 1 #> 774 0.20636000 1 #> 775 2.71590000 1 #> 776 -1.01540000 1 #> 777 0.27962000 1 #> 778 0.63973000 1 #> 779 1.83400000 1 #> 780 0.88023000 1 #> 781 0.00000000 1 #> 782 -0.38399000 1 #> 783 -0.49058000 1 #> 784 -1.13700000 1 #> 785 -0.22466000 1 #> 786 -0.69979000 1 #> 787 -1.11670000 1 #> 788 -0.15721000 1 #> 789 -0.90717000 1 #> 790 0.63595000 1 #> 791 -0.64713000 1 #> 792 -0.47205000 1 #> 793 -0.54629000 1 #> 794 -1.02160000 1 #> 795 1.00470000 1 #> 796 -1.35180000 1 #> 797 2.04200000 1 #> 798 0.40995000 1 #> 799 0.93474000 1 #> 800 3.02370000 1 #> 801 0.00000000 1 #> 802 -0.01802100 1 #> 803 -0.06626100 1 #> 804 -0.54358000 1 #> 805 -0.92966000 1 #> 806 0.55799000 1 #> 807 -1.09560000 1 #> 808 -0.13876000 1 #> 809 -1.11750000 1 #> 810 -1.25890000 1 #> 811 0.00206650 1 #> 812 2.21880000 1 #> 813 0.50869000 1 #> 814 -0.01734600 1 #> 815 0.36850000 1 #> 816 -0.35294000 1 #> 817 0.56797000 1 #> 818 -0.71076000 1 #> 819 1.18250000 1 #> 820 -1.13630000 1 #> 821 0.00000000 1 #> 822 0.15106000 1 #> 823 0.29087000 1 #> 824 0.22597000 1 #> 825 1.35390000 1 #> 826 1.58920000 1 #> 827 -0.79899000 1 #> 828 -1.26330000 1 #> 829 -0.92565000 1 #> 830 0.61134000 1 #> 831 -0.74799000 1 #> 832 -0.72641000 1 #> 833 -0.61422000 1 #> 834 -0.83253000 1 #> 835 -0.26287000 1 #> 836 0.08468700 1 #> 837 -0.32501000 1 #> 838 -0.27870000 1 #> 839 0.08383800 1 #> 840 0.25316000 1 #> 841 0.00000000 1 #> 842 0.25597000 1 #> 843 1.43980000 1 #> 844 0.67893000 1 #> 845 -0.82862000 1 #> 846 -2.00990000 1 #> 847 3.76220000 1 #> 848 -0.02393500 1 #> 849 -1.13860000 1 #> 850 -0.87771000 1 #> 851 -0.65632000 1 #> 852 0.67043000 1 #> 853 -1.06060000 1 #> 854 -1.43520000 1 #> 855 0.10585000 1 #> 856 1.60030000 1 #> 857 -0.21252000 1 #> 858 0.49395000 1 #> 859 0.07881900 1 #> 860 -0.09968100 1 #> 861 0.00000000 1 #> 862 0.96120000 1 #> 863 -0.31420000 1 #> 864 -0.82179000 1 #> 865 -0.22207000 1 #> 866 0.27161000 1 #> 867 -0.67843000 1 #> 868 -0.65655000 1 #> 869 -0.96588000 1 #> 870 0.37214000 1 #> 871 -0.98610000 1 #> 872 -0.65069000 1 #> 873 -0.56769000 1 #> 874 -0.78833000 1 #> 875 -0.69028000 1 #> 876 -0.63726000 1 #> 877 -0.19314000 1 #> 878 -0.74497000 1 #> 879 -0.02267900 1 #> 880 0.16413000 1 #> 881 0.00000000 1 #> 882 1.20380000 1 #> 883 0.64492000 1 #> 884 -1.20470000 1 #> 885 -0.99020000 1 #> 886 2.17390000 1 #> 887 0.49095000 1 #> 888 0.60978000 1 #> 889 0.68040000 1 #> 890 -1.26900000 1 #> 891 -0.49983000 1 #> 892 -1.40040000 1 #> 893 -1.56420000 1 #> 894 -1.34410000 1 #> 895 -1.13350000 1 #> 896 -0.89233000 1 #> 897 -0.49130000 1 #> 898 0.38840000 1 #> 899 0.38410000 1 #> 900 1.20900000 1 #> 901 0.00000000 1 #> 902 2.81220000 1 #> 903 -2.59200000 1 #> 904 1.77570000 1 #> 905 0.67749000 1 #> 906 0.63992000 1 #> 907 1.10620000 1 #> 908 2.10360000 1 #> 909 -0.00357840 1 #> 910 -1.23530000 1 #> 911 -1.75060000 1 #> 912 1.80630000 1 #> 913 0.64745000 1 #> 914 1.92170000 1 #> 915 -0.79810000 1 #> 916 1.57980000 1 #> 917 -0.70430000 1 #> 918 -0.28545000 1 #> 919 -0.02930000 1 #> 920 -0.80654000 1 #> 921 0.00000000 1 #> 922 -0.23956000 1 #> 923 0.26242000 1 #> 924 -1.24380000 1 #> 925 -1.24550000 1 #> 926 -0.47120000 1 #> 927 0.53292000 1 #> 928 -0.66694000 1 #> 929 -0.53782000 1 #> 930 0.46510000 1 #> 931 -0.96918000 1 #> 932 -0.81331000 1 #> 933 0.16036000 1 #> 934 -1.10230000 1 #> 935 -0.64322000 1 #> 936 -0.02505500 1 #> 937 1.84970000 1 #> 938 2.15500000 1 #> 939 0.70791000 1 #> 940 1.24080000 1 #> 941 0.00000000 1 #> 942 -0.84473000 1 #> 943 0.06093900 1 #> 944 -0.03603300 1 #> 945 0.21669000 1 #> 946 -0.57105000 1 #> 947 -1.29490000 1 #> 948 -0.53531000 1 #> 949 -0.53422000 1 #> 950 -0.24201000 1 #> 951 -0.35182000 1 #> 952 -0.22096000 1 #> 953 -0.32819000 1 #> 954 -0.26736000 1 #> 955 -0.84322000 1 #> 956 -0.59206000 1 #> 957 0.06657100 1 #> 958 0.43332000 1 #> 959 -0.11298000 1 #> 960 -0.05090900 1 #> 961 0.00000000 1 #> 962 0.67631000 1 #> 963 -1.17440000 1 #> 964 -1.24110000 1 #> 965 0.15507000 1 #> 966 0.82015000 1 #> 967 0.74926000 1 #> 968 -0.59207000 1 #> 969 -0.54110000 1 #> 970 -1.38850000 1 #> 971 2.21560000 1 #> 972 -1.05200000 1 #> 973 0.64682000 1 #> 974 -1.07320000 1 #> 975 -0.41461000 1 #> 976 0.39333000 1 #> 977 -1.27470000 1 #> 978 -0.48047000 1 #> 979 0.81548000 1 #> 980 0.08481700 1 #> 981 0.00000000 1 #> 982 -1.04250000 1 #> 983 0.32646000 1 #> 984 1.84990000 1 #> 985 0.42087000 1 #> 986 -0.49816000 1 #> 987 0.96123000 1 #> 988 1.96770000 1 #> 989 -2.00180000 1 #> 990 -0.74732000 1 #> 991 -0.88172000 1 #> 992 3.65960000 1 #> 993 0.29451000 1 #> 994 -0.98975000 1 #> 995 -0.04271300 1 #> 996 0.37011000 1 #> 997 -0.77908000 1 #> 998 -0.92761000 1 #> 999 -0.98860000 1 #> 1000 -0.67164000 1 #> 1001 0.00000000 1 #> 1002 0.49262000 1 #> 1003 0.98890000 1 #> 1004 0.24513000 1 #> 1005 0.21132000 1 #> 1006 -0.77120000 1 #> 1007 -0.65370000 1 #> 1008 -0.33392000 1 #> 1009 0.06545200 1 #> 1010 -0.15847000 1 #> 1011 0.69422000 1 #> 1012 -1.21130000 1 #> 1013 -0.42691000 1 #> 1014 0.43302000 1 #> 1015 -1.15570000 1 #> 1016 -0.25924000 1 #> 1017 -0.99066000 1 #> 1018 -0.74594000 1 #> 1019 -0.50641000 1 #> 1020 1.92080000 1 #> 1021 0.00000000 1 #> 1022 -0.24882000 1 #> 1023 -0.29897000 1 #> 1024 0.13366000 1 #> 1025 -1.11620000 1 #> 1026 0.90685000 1 #> 1027 -0.71598000 1 #> 1028 -1.15820000 1 #> 1029 1.54350000 1 #> 1030 -0.30783000 1 #> 1031 -1.27910000 1 #> 1032 0.44763000 1 #> 1033 0.14697000 1 #> 1034 -1.35080000 1 #> 1035 0.22563000 1 #> 1036 -0.66204000 1 #> 1037 1.73700000 1 #> 1038 -0.30918000 1 #> 1039 2.76140000 1 #> 1040 -0.64466000 1 #> 1041 0.00000000 1 #> 1042 0.86792000 1 #> 1043 -0.22881000 1 #> 1044 0.75579000 1 #> 1045 0.79667000 1 #> 1046 1.06680000 1 #> 1047 -1.38250000 1 #> 1048 0.48341000 1 #> 1049 1.69880000 1 #> 1050 0.10778000 1 #> 1051 -0.66041000 1 #> 1052 -1.30890000 1 #> 1053 -0.01726000 1 #> 1054 0.15929000 1 #> 1055 0.99273000 1 #> 1056 0.35068000 1 #> 1057 0.03487400 1 #> 1058 0.95581000 1 #> 1059 0.16666000 1 #> 1060 0.73673000 1 #> 1061 0.00000000 1 #> 1062 -0.39147000 1 #> 1063 -1.71400000 1 #> 1064 0.52016000 1 #> 1065 -0.05355700 1 #> 1066 -0.90272000 1 #> 1067 0.44239000 1 #> 1068 -0.42134000 1 #> 1069 0.29456000 1 #> 1070 -0.70171000 1 #> 1071 -0.22371000 1 #> 1072 0.04003000 1 #> 1073 0.20318000 1 #> 1074 0.41436000 1 #> 1075 -0.30668000 1 #> 1076 0.91998000 1 #> 1077 -0.42383000 1 #> 1078 -0.94565000 1 #> 1079 0.80972000 1 #> 1080 1.25660000 1 #> 1081 0.00000000 1 #> 1082 1.20660000 1 #> 1083 -0.76149000 1 #> 1084 2.97150000 1 #> 1085 0.32060000 1 #> 1086 -0.57519000 1 #> 1087 -0.69728000 1 #> 1088 -0.46560000 1 #> 1089 1.41520000 1 #> 1090 0.12578000 1 #> 1091 -0.63037000 1 #> 1092 -0.38034000 1 #> 1093 0.30624000 1 #> 1094 -0.20048000 1 #> 1095 2.19280000 1 #> 1096 -0.02858000 1 #> 1097 -0.54917000 1 #> 1098 -0.68500000 1 #> 1099 1.36830000 1 #> 1100 -0.52998000 1 #> 1101 0.00000000 1 #> 1102 0.26106000 1 #> 1103 -0.69733000 1 #> 1104 -1.19520000 1 #> 1105 -0.28920000 1 #> 1106 -1.14670000 1 #> 1107 -0.00862910 1 #> 1108 -0.49949000 1 #> 1109 0.26729000 1 #> 1110 -0.44749000 1 #> 1111 -0.67692000 1 #> 1112 -0.30032000 1 #> 1113 0.20909000 1 #> 1114 -0.82347000 1 #> 1115 -1.14990000 1 #> 1116 0.54665000 1 #> 1117 -0.47627000 1 #> 1118 3.33440000 1 #> 1119 -0.02456500 1 #> 1120 5.78050000 1 #> 1121 0.00000000 1 #> 1122 -0.16425000 1 #> 1123 -0.49447000 1 #> 1124 1.27420000 1 #> 1125 -0.63609000 1 #> 1126 0.80300000 1 #> 1127 0.08206700 1 #> 1128 0.64433000 1 #> 1129 0.59870000 1 #> 1130 1.42670000 1 #> 1131 0.57616000 1 #> 1132 2.57480000 1 #> 1133 -1.85500000 1 #> 1134 -0.31925000 1 #> 1135 -0.19378000 1 #> 1136 0.44568000 1 #> 1137 0.27584000 1 #> 1138 -1.58720000 1 #> 1139 0.47193000 1 #> 1140 1.54310000 1 #> 1141 0.00000000 1 #> 1142 2.11130000 1 #> 1143 -0.42117000 1 #> 1144 -0.74641000 1 #> 1145 1.22990000 1 #> 1146 -0.87398000 1 #> 1147 -0.30812000 1 #> 1148 -0.98136000 1 #> 1149 -1.06100000 1 #> 1150 -0.34576000 1 #> 1151 -0.89871000 1 #> 1152 0.61034000 1 #> 1153 -0.16476000 1 #> 1154 -0.57594000 1 #> 1155 0.74824000 1 #> 1156 -0.38791000 1 #> 1157 0.29896000 1 #> 1158 -0.44383000 1 #> 1159 -0.95558000 1 #> 1160 -0.44431000 1 #> 1161 0.00000000 1 #> 1162 1.37320000 1 #> 1163 0.24010000 1 #> 1164 -1.53070000 1 #> 1165 -0.71215000 1 #> 1166 2.63870000 1 #> 1167 1.00320000 1 #> 1168 0.39142000 1 #> 1169 2.73420000 1 #> 1170 0.42198000 1 #> 1171 -1.32070000 1 #> 1172 -0.71014000 1 #> 1173 -0.73842000 1 #> 1174 -0.63782000 1 #> 1175 -0.17929000 1 #> 1176 -0.40670000 1 #> 1177 -0.30421000 1 #> 1178 0.22120000 1 #> 1179 1.53680000 1 #> 1180 -0.14913000 1 #> 1181 0.00000000 1 #> 1182 -0.29040000 1 #> 1183 0.90520000 1 #> 1184 -0.36962000 1 #> 1185 0.37222000 1 #> 1186 -0.95932000 1 #> 1187 0.78140000 1 #> 1188 0.68522000 1 #> 1189 0.70400000 1 #> 1190 -0.44601000 1 #> 1191 -2.48930000 1 #> 1192 -0.72351000 1 #> 1193 -0.56025000 1 #> 1194 0.29594000 1 #> 1195 0.98103000 1 #> 1196 -0.06335300 1 #> 1197 1.26130000 1 #> 1198 -0.25815000 1 #> 1199 -0.52757000 1 #> 1200 -0.34672000 1 #> 1201 0.00000000 1 #> 1202 0.58121000 1 #> 1203 0.61996000 1 #> 1204 -0.56544000 1 #> 1205 0.57951000 1 #> 1206 -1.77820000 1 #> 1207 1.23550000 1 #> 1208 -0.97794000 1 #> 1209 0.72882000 1 #> 1210 -0.22954000 1 #> 1211 -0.37783000 1 #> 1212 0.17484000 1 #> 1213 -1.50680000 1 #> 1214 -0.42189000 1 #> 1215 -0.52473000 1 #> 1216 -0.38889000 1 #> 1217 -0.45894000 1 #> 1218 -0.07957500 1 #> 1219 0.07119900 1 #> 1220 0.47634000 1 #> 1221 0.00000000 1 #> 1222 0.26907000 1 #> 1223 -0.65353000 1 #> 1224 0.70136000 1 #> 1225 0.28158000 1 #> 1226 1.03110000 1 #> 1227 -0.07367400 1 #> 1228 -0.30112000 1 #> 1229 0.24691000 1 #> 1230 -0.43139000 1 #> 1231 3.00220000 1 #> 1232 -0.90635000 1 #> 1233 -0.26870000 1 #> 1234 -0.23743000 1 #> 1235 0.37940000 1 #> 1236 1.19780000 1 #> 1237 -0.70060000 1 #> 1238 0.38760000 1 #> 1239 0.66907000 1 #> 1240 0.69492000 1 #> 1241 0.00000000 1 #> 1242 -0.40033000 1 #> 1243 0.94003000 1 #> 1244 -0.70107000 1 #> 1245 0.53795000 1 #> 1246 -0.54934000 1 #> 1247 -1.46530000 1 #> 1248 -0.99203000 1 #> 1249 0.45683000 1 #> 1250 -1.20000000 1 #> 1251 0.83402000 1 #> 1252 -1.26330000 1 #> 1253 -0.15955000 1 #> 1254 0.27773000 1 #> 1255 2.51390000 1 #> 1256 -1.42260000 1 #> 1257 1.00550000 1 #> 1258 2.45340000 1 #> 1259 1.86210000 1 #> 1260 3.53080000 1 #> 1261 0.00000000 1 #> 1262 -1.01230000 1 #> 1263 1.87200000 1 #> 1264 -0.48116000 1 #> 1265 1.43770000 1 #> 1266 -0.12245000 1 #> 1267 -1.31310000 1 #> 1268 0.10767000 1 #> 1269 -0.68282000 1 #> 1270 0.08742200 1 #> 1271 0.08169600 1 #> 1272 0.43258000 1 #> 1273 -0.68759000 1 #> 1274 -0.44859000 1 #> 1275 0.02950300 1 #> 1276 0.13466000 1 #> 1277 -0.86393000 1 #> 1278 -0.50689000 1 #> 1279 -0.09752700 1 #> 1280 -0.76470000 1 #> 1281 0.00000000 1 #> 1282 0.37966000 1 #> 1283 0.08109200 1 #> 1284 -0.02219100 1 #> 1285 -0.05746400 1 #> 1286 0.09271900 1 #> 1287 1.15370000 1 #> 1288 1.83410000 1 #> 1289 -1.37220000 1 #> 1290 -0.63831000 1 #> 1291 -1.13910000 1 #> 1292 1.78800000 1 #> 1293 -0.42358000 1 #> 1294 -0.61075000 1 #> 1295 0.00405960 1 #> 1296 -1.20960000 1 #> 1297 -0.00401660 1 #> 1298 0.05594600 1 #> 1299 0.65997000 1 #> 1300 -0.50508000 1 #> 1301 0.00000000 1 #> 1302 -0.48152000 1 #> 1303 -0.51829000 1 #> 1304 -0.38602000 1 #> 1305 0.04876600 1 #> 1306 -0.44208000 1 #> 1307 -0.47744000 1 #> 1308 -0.25228000 1 #> 1309 -0.62137000 1 #> 1310 -0.76207000 1 #> 1311 -0.41003000 1 #> 1312 0.23338000 1 #> 1313 -0.38166000 1 #> 1314 0.44974000 1 #> 1315 -0.32263000 1 #> 1316 -1.21380000 1 #> 1317 -0.61977000 1 #> 1318 -0.88939000 1 #> 1319 -0.74332000 1 #> 1320 -0.29079000 1 #> 1321 0.00000000 1 #> 1322 -1.37920000 1 #> 1323 0.05659500 1 #> 1324 -0.25680000 1 #> 1325 1.36590000 1 #> 1326 0.03534700 1 #> 1327 -0.28656000 1 #> 1328 -0.57535000 1 #> 1329 -1.00280000 1 #> 1330 0.53069000 1 #> 1331 -0.69654000 1 #> 1332 -0.75671000 1 #> 1333 -1.38340000 1 #> 1334 0.21680000 1 #> 1335 1.42050000 1 #> 1336 -0.14836000 1 #> 1337 -0.96550000 1 #> 1338 -0.11744000 1 #> 1339 -0.73130000 1 #> 1340 -0.91578000 1 #> 1341 0.00000000 1 #> 1342 -0.04374000 1 #> 1343 -0.82357000 1 #> 1344 -1.34750000 1 #> 1345 0.28312000 1 #> 1346 -0.07398800 1 #> 1347 1.55300000 1 #> 1348 -0.63780000 1 #> 1349 -0.64520000 1 #> 1350 0.36814000 1 #> 1351 -0.81947000 1 #> 1352 0.03245700 1 #> 1353 5.00730000 1 #> 1354 -0.83736000 1 #> 1355 -0.43331000 1 #> 1356 1.60980000 1 #> 1357 0.37864000 1 #> 1358 0.54774000 1 #> 1359 -1.66980000 1 #> 1360 -1.65300000 1 #> 1361 0.00000000 1 #> 1362 -0.14691000 1 #> 1363 0.35177000 1 #> 1364 -0.11668000 1 #> 1365 -1.17710000 1 #> 1366 -0.53905000 1 #> 1367 1.36670000 1 #> 1368 0.09751300 1 #> 1369 0.73557000 1 #> 1370 1.80080000 1 #> 1371 0.00651620 1 #> 1372 -0.13081000 1 #> 1373 -0.14477000 1 #> 1374 -1.72270000 1 #> 1375 -1.30090000 1 #> 1376 1.28810000 1 #> 1377 -0.61540000 1 #> 1378 0.45106000 1 #> 1379 0.37708000 1 #> 1380 1.13380000 1 #> 1381 0.00000000 1 #> 1382 -0.46986000 1 #> 1383 -0.01642300 1 #> 1384 -0.82845000 1 #> 1385 -0.44482000 1 #> 1386 -0.79132000 1 #> 1387 0.17317000 1 #> 1388 -0.43516000 1 #> 1389 0.81366000 1 #> 1390 -1.03090000 1 #> 1391 0.67223000 1 #> 1392 -1.93850000 1 #> 1393 -0.56738000 1 #> 1394 1.07300000 1 #> 1395 -0.63560000 1 #> 1396 -0.61499000 1 #> 1397 -0.05004400 1 #> 1398 -0.15411000 1 #> 1399 -0.15011000 1 #> 1400 1.10400000 1 #> 1401 0.00000000 1 #> 1402 0.65785000 1 #> 1403 -0.84021000 1 #> 1404 -0.01641900 1 #> 1405 0.14309000 1 #> 1406 0.72509000 1 #> 1407 -0.17777000 1 #> 1408 -0.34448000 1 #> 1409 -0.81825000 1 #> 1410 0.88619000 1 #> 1411 -1.79000000 1 #> 1412 0.05659800 1 #> 1413 0.65893000 1 #> 1414 -0.66696000 1 #> 1415 -1.04250000 1 #> 1416 1.13080000 1 #> 1417 -0.10616000 1 #> 1418 1.49450000 1 #> 1419 2.59600000 1 #> 1420 0.59840000 1 #> 1421 0.00000000 1 #> 1422 1.65870000 1 #> 1423 0.03156600 1 #> 1424 -1.96760000 1 #> 1425 1.67510000 1 #> 1426 -1.20660000 1 #> 1427 2.80980000 1 #> 1428 5.03850000 1 #> 1429 0.18394000 1 #> 1430 0.22810000 1 #> 1431 -0.69265000 1 #> 1432 -0.22398000 1 #> 1433 -1.04700000 1 #> 1434 -1.48670000 1 #> 1435 4.67620000 1 #> 1436 0.07242900 1 #> 1437 -0.72035000 1 #> 1438 2.58570000 1 #> 1439 1.73380000 1 #> 1440 2.40550000 1 #> 1441 0.00000000 1 #> 1442 -0.88429000 1 #> 1443 -0.62610000 1 #> 1444 -1.04490000 1 #> 1445 0.69659000 1 #> 1446 -0.23590000 1 #> 1447 -1.41340000 1 #> 1448 -0.47397000 1 #> 1449 -0.41933000 1 #> 1450 0.04835400 1 #> 1451 -0.57019000 1 #> 1452 0.30149000 1 #> 1453 -0.84404000 1 #> 1454 -0.70145000 1 #> 1455 -1.11440000 1 #> 1456 -0.17981000 1 #> 1457 0.39404000 1 #> 1458 0.54000000 1 #> 1459 1.06500000 1 #> 1460 1.07650000 1 #> 1461 0.00000000 1 #> 1462 0.84911000 1 #> 1463 -0.81695000 1 #> 1464 0.73949000 1 #> 1465 -0.54579000 1 #> 1466 0.83773000 1 #> 1467 0.12190000 1 #> 1468 1.48960000 1 #> 1469 0.15508000 1 #> 1470 -0.09050500 1 #> 1471 -0.81382000 1 #> 1472 -0.01249000 1 #> 1473 -1.44060000 1 #> 1474 -0.54444000 1 #> 1475 0.18518000 1 #> 1476 0.36356000 1 #> 1477 -0.79093000 1 #> 1478 -0.12180000 1 #> 1479 -0.34660000 1 #> 1480 0.94376000 1 #> 1481 0.00000000 1 #> 1482 -1.13190000 1 #> 1483 -0.31425000 1 #> 1484 1.43000000 1 #> 1485 -0.50260000 1 #> 1486 -0.05463400 1 #> 1487 -0.11475000 1 #> 1488 0.67028000 1 #> 1489 -0.51077000 1 #> 1490 1.02310000 1 #> 1491 -0.65463000 1 #> 1492 -0.92442000 1 #> 1493 -0.62333000 1 #> 1494 0.53849000 1 #> 1495 -0.45181000 1 #> 1496 -0.86013000 1 #> 1497 -0.03634600 1 #> 1498 -0.23845000 1 #> 1499 -0.34024000 1 #> 1500 -0.28165000 1 #> 1501 0.00000000 1 #> 1502 0.18187000 1 #> 1503 -0.43271000 1 #> 1504 0.29368000 1 #> 1505 -0.75752000 1 #> 1506 1.71330000 1 #> 1507 0.28309000 1 #> 1508 -0.78208000 1 #> 1509 0.25320000 1 #> 1510 0.09038500 1 #> 1511 -0.94658000 1 #> 1512 -0.26449000 1 #> 1513 1.29080000 1 #> 1514 0.03452800 1 #> 1515 -1.07030000 1 #> 1516 0.63711000 1 #> 1517 0.02117600 1 #> 1518 -0.18100000 1 #> 1519 1.48060000 1 #> 1520 -0.78372000 1 #> 1521 0.00000000 1 #> 1522 0.36600000 1 #> 1523 -0.95379000 1 #> 1524 3.38810000 1 #> 1525 -0.06950400 1 #> 1526 -2.25000000 1 #> 1527 1.85450000 1 #> 1528 0.64934000 1 #> 1529 -0.03683700 1 #> 1530 -0.16380000 1 #> 1531 0.12734000 1 #> 1532 -0.50946000 1 #> 1533 0.01486200 1 #> 1534 -0.22726000 1 #> 1535 -1.00830000 1 #> 1536 -0.00997470 1 #> 1537 0.54466000 1 #> 1538 0.48294000 1 #> 1539 -0.33324000 1 #> 1540 -0.62774000 1 #> 1541 0.00000000 1 #> 1542 -1.34710000 1 #> 1543 0.22527000 1 #> 1544 0.21555000 1 #> 1545 0.65435000 1 #> 1546 -1.10980000 1 #> 1547 -0.45807000 1 #> 1548 2.87500000 1 #> 1549 0.68996000 1 #> 1550 0.93824000 1 #> 1551 0.14266000 1 #> 1552 -0.79563000 1 #> 1553 -0.31098000 1 #> 1554 -0.64150000 1 #> 1555 -0.32289000 1 #> 1556 0.08280000 1 #> 1557 0.93855000 1 #> 1558 -0.77387000 1 #> 1559 -0.36705000 1 #> 1560 0.26256000 1 #> 1561 0.00000000 1 #> 1562 1.55660000 1 #> 1563 0.40213000 1 #> 1564 -0.11826000 1 #> 1565 1.94220000 1 #> 1566 -2.26880000 1 #> 1567 0.69068000 1 #> 1568 -1.22850000 1 #> 1569 0.29312000 1 #> 1570 1.31430000 1 #> 1571 0.62201000 1 #> 1572 -0.04749600 1 #> 1573 -0.92765000 1 #> 1574 0.46276000 1 #> 1575 2.46120000 1 #> 1576 -0.35397000 1 #> 1577 -0.20964000 1 #> 1578 1.76710000 1 #> 1579 -1.50400000 1 #> 1580 -0.95555000 1 #> 1581 0.00000000 1 #> 1582 -0.29487000 1 #> 1583 -0.24030000 1 #> 1584 1.11610000 1 #> 1585 0.33769000 1 #> 1586 0.13277000 1 #> 1587 -0.45705000 1 #> 1588 -0.78083000 1 #> 1589 -1.24420000 1 #> 1590 0.01190900 1 #> 1591 -0.31389000 1 #> 1592 -0.42792000 1 #> 1593 0.17302000 1 #> 1594 -0.43680000 1 #> 1595 0.84023000 1 #> 1596 0.07802600 1 #> 1597 -0.56196000 1 #> 1598 0.10904000 1 #> 1599 1.72330000 1 #> 1600 -0.23412000 1 #> 1601 0.00000000 1 #> 1602 2.33720000 1 #> 1603 -0.55911000 1 #> 1604 0.74899000 1 #> 1605 -1.67890000 1 #> 1606 2.06490000 1 #> 1607 -2.29500000 1 #> 1608 -0.07995800 1 #> 1609 1.10730000 1 #> 1610 -0.36753000 1 #> 1611 0.20170000 1 #> 1612 -0.55268000 1 #> 1613 -1.68110000 1 #> 1614 0.80851000 1 #> 1615 0.81940000 1 #> 1616 -0.08377600 1 #> 1617 -0.29847000 1 #> 1618 -0.43014000 1 #> 1619 0.72068000 1 #> 1620 0.32727000 1 #> 1621 0.00000000 1 #> 1622 -0.53188000 1 #> 1623 0.17622000 1 #> 1624 -0.01901500 1 #> 1625 0.75403000 1 #> 1626 -0.42904000 1 #> 1627 1.61840000 1 #> 1628 1.53630000 1 #> 1629 0.33495000 1 #> 1630 0.27625000 1 #> 1631 -0.02663000 1 #> 1632 -0.56658000 1 #> 1633 -0.73623000 1 #> 1634 -1.31190000 1 #> 1635 -0.75148000 1 #> 1636 -0.78112000 1 #> 1637 -0.11618000 1 #> 1638 0.21472000 1 #> 1639 0.01380500 1 #> 1640 0.16340000 1 #> 1641 0.00000000 1 #> 1642 -0.33609000 1 #> 1643 -0.22913000 1 #> 1644 -0.60328000 1 #> 1645 -0.37232000 1 #> 1646 -1.38600000 1 #> 1647 -0.17637000 1 #> 1648 0.04897800 1 #> 1649 -0.69300000 1 #> 1650 -0.80812000 1 #> 1651 -0.98123000 1 #> 1652 -1.34280000 1 #> 1653 0.02671700 1 #> 1654 1.57950000 1 #> 1655 -0.96403000 1 #> 1656 0.06377400 1 #> 1657 0.01395000 1 #> 1658 -0.21640000 1 #> 1659 0.47083000 1 #> 1660 -0.70081000 1 #> 1661 0.00000000 1 #> 1662 1.29670000 1 #> 1663 0.42443000 1 #> 1664 -0.39668000 1 #> 1665 0.30928000 1 #> 1666 -1.12240000 1 #> 1667 -0.02467200 1 #> 1668 -0.85520000 1 #> 1669 0.10583000 1 #> 1670 -1.61770000 1 #> 1671 1.48530000 1 #> 1672 -1.02350000 1 #> 1673 2.69550000 1 #> 1674 -0.78337000 1 #> 1675 -0.82360000 1 #> 1676 -0.43972000 1 #> 1677 0.50633000 1 #> 1678 0.30259000 1 #> 1679 0.88389000 1 #> 1680 0.83978000 1 #> 1681 0.00000000 1 #> 1682 0.90403000 1 #> 1683 -0.20094000 1 #> 1684 -0.40072000 1 #> 1685 -1.35370000 1 #> 1686 -0.83554000 1 #> 1687 -0.75493000 1 #> 1688 -0.68504000 1 #> 1689 0.87752000 1 #> 1690 -0.06386100 1 #> 1691 0.03005200 1 #> 1692 -0.89744000 1 #> 1693 -0.67893000 1 #> 1694 -0.26677000 1 #> 1695 -1.08440000 1 #> 1696 0.21268000 1 #> 1697 0.49868000 1 #> 1698 0.19454000 1 #> 1699 -0.77941000 1 #> 1700 0.02309600 1 #> 1701 0.00000000 1 #> 1702 0.71163000 1 #> 1703 0.06887500 1 #> 1704 -0.32426000 1 #> 1705 0.03417600 1 #> 1706 0.31947000 1 #> 1707 0.75317000 1 #> 1708 -0.03801700 1 #> 1709 -1.29830000 1 #> 1710 1.61040000 1 #> 1711 1.67320000 1 #> 1712 1.03000000 1 #> 1713 -1.48110000 1 #> 1714 -0.63583000 1 #> 1715 1.88870000 1 #> 1716 -0.89208000 1 #> 1717 1.05120000 1 #> 1718 -0.03532100 1 #> 1719 0.88465000 1 #> 1720 -0.41060000 1 #> 1721 0.00000000 1 #> 1722 1.01670000 1 #> 1723 -1.01380000 1 #> 1724 -0.64263000 1 #> 1725 0.04835200 1 #> 1726 0.50587000 1 #> 1727 -0.39499000 1 #> 1728 -0.63864000 1 #> 1729 -0.19435000 1 #> 1730 0.92270000 1 #> 1731 -0.21506000 1 #> 1732 0.22916000 1 #> 1733 -0.50140000 1 #> 1734 -0.13962000 1 #> 1735 -0.29723000 1 #> 1736 -1.40180000 1 #> 1737 -0.72765000 1 #> 1738 -0.07961400 1 #> 1739 -0.28506000 1 #> 1740 0.30845000 1 #> 1741 0.00000000 1 #> 1742 0.00256230 1 #> 1743 -0.43746000 1 #> 1744 -0.35138000 1 #> 1745 -0.79832000 1 #> 1746 0.29635000 1 #> 1747 -0.62051000 1 #> 1748 -1.35160000 1 #> 1749 0.63652000 1 #> 1750 1.43590000 1 #> 1751 0.29539000 1 #> 1752 -0.61704000 1 #> 1753 1.47870000 1 #> 1754 0.34801000 1 #> 1755 0.57757000 1 #> 1756 0.16002000 1 #> 1757 -0.11290000 1 #> 1758 -0.17215000 1 #> 1759 -0.69036000 1 #> 1760 -0.19398000 1 #> 1761 0.00000000 1 #> 1762 0.08531300 1 #> 1763 -1.09430000 1 #> 1764 -0.04065300 1 #> 1765 0.71452000 1 #> 1766 -1.31650000 1 #> 1767 -0.39092000 1 #> 1768 -0.76719000 1 #> 1769 -0.93632000 1 #> 1770 0.04962600 1 #> 1771 0.17179000 1 #> 1772 0.03591100 1 #> 1773 -0.08784000 1 #> 1774 -1.20560000 1 #> 1775 0.37327000 1 #> 1776 1.87580000 1 #> 1777 -1.40100000 1 #> 1778 0.84200000 1 #> 1779 1.87060000 1 #> 1780 -0.42806000 1 #> 1781 0.00000000 1 #> 1782 -1.61330000 1 #> 1783 -0.46165000 1 #> 1784 0.69047000 1 #> 1785 0.31692000 1 #> 1786 0.58723000 1 #> 1787 0.08431600 1 #> 1788 -0.87139000 1 #> 1789 -0.01058700 1 #> 1790 -1.77720000 1 #> 1791 0.01200900 1 #> 1792 -0.15749000 1 #> 1793 -0.42034000 1 #> 1794 -0.44359000 1 #> 1795 -0.47522000 1 #> 1796 -0.49337000 1 #> 1797 1.47080000 1 #> 1798 0.40441000 1 #> 1799 0.07186300 1 #> 1800 0.56637000 1 #> 1801 0.00000000 1 #> 1802 1.75110000 1 #> 1803 -0.30054000 1 #> 1804 1.24770000 1 #> 1805 3.04250000 1 #> 1806 0.45139000 1 #> 1807 -1.21180000 1 #> 1808 0.66117000 1 #> 1809 4.42160000 1 #> 1810 -2.72710000 1 #> 1811 1.62000000 1 #> 1812 0.60509000 1 #> 1813 -0.00409050 1 #> 1814 1.51410000 1 #> 1815 0.30938000 1 #> 1816 -0.70138000 1 #> 1817 -1.33980000 1 #> 1818 0.97995000 1 #> 1819 1.27070000 1 #> 1820 1.45580000 1 #> 1821 0.00000000 1 #> 1822 -0.28116000 1 #> 1823 1.58640000 1 #> 1824 -0.44712000 1 #> 1825 -0.05162800 1 #> 1826 0.73187000 1 #> 1827 1.47640000 1 #> 1828 -1.45690000 1 #> 1829 0.98939000 1 #> 1830 -0.42634000 1 #> 1831 -1.02140000 1 #> 1832 0.69189000 1 #> 1833 -1.08820000 1 #> 1834 1.37030000 1 #> 1835 -0.08785300 1 #> 1836 1.88860000 1 #> 1837 -0.25018000 1 #> 1838 -0.44192000 1 #> 1839 -0.52278000 1 #> 1840 -0.09854400 1 #> 1841 0.00000000 1 #> 1842 -1.46550000 1 #> 1843 -0.60593000 1 #> 1844 -0.02714700 1 #> 1845 0.87984000 1 #> 1846 0.51423000 1 #> 1847 -0.63671000 1 #> 1848 1.34930000 1 #> 1849 -0.75048000 1 #> 1850 -1.72640000 1 #> 1851 0.36306000 1 #> 1852 0.01395700 1 #> 1853 0.14098000 1 #> 1854 -0.82886000 1 #> 1855 0.48871000 1 #> 1856 0.16827000 1 #> 1857 -1.95320000 1 #> 1858 2.73580000 1 #> 1859 0.95140000 1 #> 1860 -0.87875000 1 #> 1861 0.00000000 1 #> 1862 -0.31316000 1 #> 1863 -0.09368300 1 #> 1864 -0.59861000 1 #> 1865 -0.47083000 1 #> 1866 0.03221500 1 #> 1867 -0.37041000 1 #> 1868 -1.11920000 1 #> 1869 -0.41833000 1 #> 1870 0.96920000 1 #> 1871 -0.80795000 1 #> 1872 -0.71574000 1 #> 1873 -1.09110000 1 #> 1874 -0.63953000 1 #> 1875 1.69560000 1 #> 1876 1.83570000 1 #> 1877 0.65418000 1 #> 1878 -0.40285000 1 #> 1879 -0.27071000 1 #> 1880 5.66150000 1 #> 1881 0.00000000 1 #> 1882 -1.17830000 1 #> 1883 -0.28520000 1 #> 1884 0.03559000 1 #> 1885 -0.28115000 1 #> 1886 -1.18730000 1 #> 1887 0.30772000 1 #> 1888 -0.63402000 1 #> 1889 1.54030000 1 #> 1890 1.50910000 1 #> 1891 0.98320000 1 #> 1892 3.90440000 1 #> 1893 -1.15610000 1 #> 1894 3.32890000 1 #> 1895 -0.65407000 1 #> 1896 -0.32568000 1 #> 1897 0.19953000 1 #> 1898 0.94366000 1 #> 1899 -0.09480100 1 #> 1900 -0.66609000 1 #> 1901 0.00000000 1 #> 1902 0.69003000 1 #> 1903 -0.58593000 1 #> 1904 -1.33680000 1 #> 1905 1.56450000 1 #> 1906 0.33049000 1 #> 1907 0.05811200 1 #> 1908 1.19990000 1 #> 1909 -0.26291000 1 #> 1910 -1.28950000 1 #> 1911 0.07223300 1 #> 1912 0.11512000 1 #> 1913 1.74690000 1 #> 1914 -1.04710000 1 #> 1915 -0.99314000 1 #> 1916 -0.30215000 1 #> 1917 0.93612000 1 #> 1918 1.19830000 1 #> 1919 -0.48071000 1 #> 1920 -0.83998000 1 #> 1921 0.00000000 1 #> 1922 0.51895000 1 #> 1923 1.01820000 1 #> 1924 1.11790000 1 #> 1925 0.95321000 1 #> 1926 -0.84462000 1 #> 1927 4.88110000 1 #> 1928 -0.11418000 1 #> 1929 1.81030000 1 #> 1930 -0.97703000 1 #> 1931 -0.91438000 1 #> 1932 -0.47381000 1 #> 1933 -0.94621000 1 #> 1934 0.12266000 1 #> 1935 -1.21700000 1 #> 1936 0.45238000 1 #> 1937 -0.43824000 1 #> 1938 0.59654000 1 #> 1939 0.38257000 1 #> 1940 1.38430000 1 #> 1941 0.00000000 1 #> 1942 -0.22927000 1 #> 1943 0.54144000 1 #> 1944 3.78110000 1 #> 1945 -1.06470000 1 #> 1946 1.12270000 1 #> 1947 2.74000000 1 #> 1948 -0.85917000 1 #> 1949 -0.72434000 1 #> 1950 -1.31000000 1 #> 1951 0.44631000 1 #> 1952 -1.32290000 1 #> 1953 -1.78980000 1 #> 1954 -0.12184000 1 #> 1955 1.83180000 1 #> 1956 -0.60053000 1 #> 1957 0.75503000 1 #> 1958 1.31590000 1 #> 1959 0.21401000 1 #> 1960 0.04682900 1 #> 1961 0.00000000 1 #> 1962 1.04290000 1 #> 1963 -0.95739000 1 #> 1964 0.90153000 1 #> 1965 0.79637000 1 #> 1966 -0.90773000 1 #> 1967 1.29050000 1 #> 1968 0.65458000 1 #> 1969 -1.71790000 1 #> 1970 -1.81940000 1 #> 1971 0.31274000 1 #> 1972 -0.62930000 1 #> 1973 -1.38340000 1 #> 1974 -0.38535000 1 #> 1975 -1.06730000 1 #> 1976 2.15260000 1 #> 1977 -0.63517000 1 #> 1978 -0.40335000 1 #> 1979 0.22474000 1 #> 1980 0.02029400 1 #> 1981 0.00000000 1 #> 1982 -1.29910000 1 #> 1983 2.02390000 1 #> 1984 -0.13632000 1 #> 1985 -0.61498000 1 #> 1986 1.41890000 1 #> 1987 -1.68940000 1 #> 1988 1.26140000 1 #> 1989 0.41189000 1 #> 1990 1.04200000 1 #> 1991 -1.41110000 1 #> 1992 -0.30901000 1 #> 1993 -0.58766000 1 #> 1994 1.42330000 1 #> 1995 0.26701000 1 #> 1996 -0.33814000 1 #> 1997 0.13949000 1 #> 1998 -0.55394000 1 #> 1999 -1.09970000 1 #> 2000 -0.35938000 1 #> 2001 0.00000000 1 #> 2002 1.73310000 1 #> 2003 0.60972000 1 #> 2004 -1.14480000 1 #> 2005 -0.90126000 1 #> 2006 -0.75999000 1 #> 2007 -0.57168000 1 #> 2008 1.86080000 1 #> 2009 -0.81329000 1 #> 2010 -0.79258000 1 #> 2011 0.17017000 1 #> 2012 -0.42167000 1 #> 2013 -1.52590000 1 #> 2014 -0.06993200 1 #> 2015 -0.64038000 1 #> 2016 -0.25481000 1 #> 2017 1.67420000 1 #> 2018 0.25652000 1 #> 2019 -0.26497000 1 #> 2020 0.08947900 1 #> 2021 0.00000000 1 #> 2022 -0.30991000 1 #> 2023 -0.04958000 1 #> 2024 -0.42482000 1 #> 2025 -0.89456000 1 #> 2026 0.13486000 1 #> 2027 -1.33130000 1 #> 2028 -0.38497000 1 #> 2029 0.21119000 1 #> 2030 -0.37559000 1 #> 2031 -1.19460000 1 #> 2032 -0.35222000 1 #> 2033 0.02895400 1 #> 2034 -0.14928000 1 #> 2035 -0.49120000 1 #> 2036 -0.61079000 1 #> 2037 0.51530000 1 #> 2038 -0.60507000 1 #> 2039 0.28090000 1 #> 2040 0.26135000 1 #> 2041 0.00000000 1 #> 2042 -0.48877000 1 #> 2043 -0.20651000 1 #> 2044 1.41510000 1 #> 2045 -0.52488000 1 #> 2046 -0.56082000 1 #> 2047 -1.56910000 1 #> 2048 1.45060000 1 #> 2049 -0.35820000 1 #> 2050 0.58681000 1 #> 2051 -1.25670000 1 #> 2052 -0.13405000 1 #> 2053 -1.11000000 1 #> 2054 0.46310000 1 #> 2055 2.10640000 1 #> 2056 -1.73520000 1 #> 2057 -0.18111000 1 #> 2058 2.43940000 1 #> 2059 0.64168000 1 #> 2060 -1.15120000 1 #> 2061 0.00000000 1 #> 2062 -0.05774300 1 #> 2063 0.30155000 1 #> 2064 0.37975000 1 #> 2065 -0.92650000 1 #> 2066 -0.18228000 1 #> 2067 2.34180000 1 #> 2068 -0.38372000 1 #> 2069 -0.59777000 1 #> 2070 -1.65670000 1 #> 2071 -2.48650000 1 #> 2072 0.19479000 1 #> 2073 2.00630000 1 #> 2074 0.96671000 1 #> 2075 -0.11998000 1 #> 2076 0.13791000 1 #> 2077 -1.15010000 1 #> 2078 -0.21128000 1 #> 2079 0.15280000 1 #> 2080 -0.17720000 1 #> 2081 0.00000000 1 #> 2082 -1.04640000 1 #> 2083 1.17650000 1 #> 2084 0.80003000 1 #> 2085 0.18031000 1 #> 2086 0.07896700 1 #> 2087 -0.77382000 1 #> 2088 -1.49680000 1 #> 2089 0.14081000 1 #> 2090 -0.62149000 1 #> 2091 -0.64984000 1 #> 2092 -1.14210000 1 #> 2093 -1.59040000 1 #> 2094 -0.46894000 1 #> 2095 -0.51549000 1 #> 2096 1.15870000 1 #> 2097 1.36730000 1 #> 2098 2.05270000 1 #> 2099 1.38510000 1 #> 2100 -0.24229000 1 #> 2101 0.00000000 1 #> 2102 -0.70899000 1 #> 2103 -0.09109100 1 #> 2104 0.20534000 1 #> 2105 -1.42750000 1 #> 2106 -0.67439000 1 #> 2107 -0.13034000 1 #> 2108 0.02729500 1 #> 2109 0.38719000 1 #> 2110 1.11130000 1 #> 2111 -1.93410000 1 #> 2112 -1.67630000 1 #> 2113 1.14620000 1 #> 2114 -0.54417000 1 #> 2115 0.30257000 1 #> 2116 0.45746000 1 #> 2117 -1.12890000 1 #> 2118 0.62897000 1 #> 2119 0.69688000 1 #> 2120 1.41010000 1 #> 2121 0.00000000 1 #> 2122 -0.92769000 1 #> 2123 0.72860000 1 #> 2124 0.90319000 1 #> 2125 0.67418000 1 #> 2126 -0.75758000 1 #> 2127 1.45220000 1 #> 2128 -0.19129000 1 #> 2129 -1.26290000 1 #> 2130 1.84280000 1 #> 2131 0.16989000 1 #> 2132 1.64500000 1 #> 2133 1.99720000 1 #> 2134 -0.30655000 1 #> 2135 1.35530000 1 #> 2136 -1.08480000 1 #> 2137 -0.74023000 1 #> 2138 -0.67449000 1 #> 2139 4.04260000 1 #> 2140 -1.11150000 1 #> 2141 0.00000000 1 #> 2142 -0.22901000 1 #> 2143 0.13628000 1 #> 2144 -1.49520000 1 #> 2145 2.58610000 1 #> 2146 -0.34862000 1 #> 2147 1.23240000 1 #> 2148 0.42004000 1 #> 2149 1.60810000 1 #> 2150 0.12009000 1 #> 2151 -1.91260000 1 #> 2152 1.20780000 1 #> 2153 -0.14421000 1 #> 2154 -1.89110000 1 #> 2155 2.39480000 1 #> 2156 3.54990000 1 #> 2157 -0.69327000 1 #> 2158 -0.18661000 1 #> 2159 -0.44040000 1 #> 2160 3.72520000 1 #> 2161 0.00000000 1 #> 2162 -0.62079000 1 #> 2163 -0.38242000 1 #> 2164 -0.39595000 1 #> 2165 -0.50847000 1 #> 2166 0.03965400 1 #> 2167 0.52895000 1 #> 2168 -0.51804000 1 #> 2169 -0.65515000 1 #> 2170 0.44050000 1 #> 2171 -0.38202000 1 #> 2172 1.32100000 1 #> 2173 -0.99292000 1 #> 2174 -0.66337000 1 #> 2175 -0.01215800 1 #> 2176 -0.07547600 1 #> 2177 -0.37781000 1 #> 2178 0.01366300 1 #> 2179 1.42360000 1 #> 2180 0.12745000 1 #> 2181 0.00000000 1 #> 2182 0.28294000 1 #> 2183 2.12030000 1 #> 2184 1.49330000 1 #> 2185 3.22490000 1 #> 2186 1.76220000 1 #> 2187 0.29724000 1 #> 2188 -2.79710000 1 #> 2189 2.46870000 1 #> 2190 2.81580000 1 #> 2191 -1.76300000 1 #> 2192 -0.78981000 1 #> 2193 -0.34403000 1 #> 2194 -1.04790000 1 #> 2195 -0.25965000 1 #> 2196 -0.71783000 1 #> 2197 0.12581000 1 #> 2198 0.07211000 1 #> 2199 1.00640000 1 #> 2200 1.06170000 1 #> 2201 0.00000000 1 #> 2202 0.52736000 1 #> 2203 -0.07279600 1 #> 2204 0.40674000 1 #> 2205 -0.11595000 1 #> 2206 -0.25745000 1 #> 2207 -0.44111000 1 #> 2208 -0.40315000 1 #> 2209 -0.49381000 1 #> 2210 0.01062600 1 #> 2211 1.11830000 1 #> 2212 -0.17015000 1 #> 2213 1.18040000 1 #> 2214 2.45110000 1 #> 2215 0.70780000 1 #> 2216 -0.62116000 1 #> 2217 0.16004000 1 #> 2218 -0.26882000 1 #> 2219 0.61758000 1 #> 2220 2.25310000 1 #> 2221 0.00000000 1 #> 2222 -0.37523000 1 #> 2223 -0.82730000 1 #> 2224 -0.36373000 1 #> 2225 0.03449700 1 #> 2226 0.19937000 1 #> 2227 -1.78410000 1 #> 2228 0.79839000 1 #> 2229 -0.41588000 1 #> 2230 0.80338000 1 #> 2231 -0.49076000 1 #> 2232 0.36259000 1 #> 2233 0.07142400 1 #> 2234 0.89341000 1 #> 2235 -0.16660000 1 #> 2236 -1.29890000 1 #> 2237 1.31730000 1 #> 2238 1.31890000 1 #> 2239 -0.57939000 1 #> 2240 0.31959000 1 #> 2241 0.00000000 1 #> 2242 1.17780000 1 #> 2243 0.73312000 1 #> 2244 2.76660000 1 #> 2245 -1.08020000 1 #> 2246 -0.94309000 1 #> 2247 -0.20001000 1 #> 2248 -1.63150000 1 #> 2249 -0.51711000 1 #> 2250 1.36180000 1 #> 2251 -0.60831000 1 #> 2252 -0.78350000 1 #> 2253 0.04177900 1 #> 2254 3.73510000 1 #> 2255 -0.49379000 1 #> 2256 1.84760000 1 #> 2257 -0.36589000 1 #> 2258 -2.03970000 1 #> 2259 -0.34546000 1 #> 2260 -0.77047000 1 #> 2261 0.00000000 1 #> 2262 0.62793000 1 #> 2263 0.32770000 1 #> 2264 0.38739000 1 #> 2265 1.71990000 1 #> 2266 0.24910000 1 #> 2267 -0.08632400 1 #> 2268 -1.50830000 1 #> 2269 0.20789000 1 #> 2270 0.27795000 1 #> 2271 -0.39984000 1 #> 2272 -0.76058000 1 #> 2273 1.51320000 1 #> 2274 0.00143200 1 #> 2275 -0.74151000 1 #> 2276 -0.48568000 1 #> 2277 -0.26687000 1 #> 2278 -0.55610000 1 #> 2279 -0.15833000 1 #> 2280 0.48303000 1 #> 2281 0.00000000 1 #> 2282 0.45882000 1 #> 2283 -0.38805000 1 #> 2284 -0.85475000 1 #> 2285 -0.97003000 1 #> 2286 0.16245000 1 #> 2287 0.24691000 1 #> 2288 -0.94257000 1 #> 2289 2.17680000 1 #> 2290 -0.61538000 1 #> 2291 -0.14021000 1 #> 2292 -1.30170000 1 #> 2293 0.18960000 1 #> 2294 -0.82591000 1 #> 2295 1.16730000 1 #> 2296 1.90360000 1 #> 2297 -1.38790000 1 #> 2298 0.03221000 1 #> 2299 -0.89626000 1 #> 2300 -0.02401900 1 #> 2301 0.00000000 1 #> 2302 -0.47394000 1 #> 2303 -1.62730000 1 #> 2304 -0.43145000 1 #> 2305 0.63490000 1 #> 2306 -0.38874000 1 #> 2307 -1.05800000 1 #> 2308 2.07090000 1 #> 2309 1.17770000 1 #> 2310 0.42571000 1 #> 2311 -0.52363000 1 #> 2312 -1.39810000 1 #> 2313 0.88672000 1 #> 2314 0.96967000 1 #> 2315 -2.01820000 1 #> 2316 0.19617000 1 #> 2317 0.65973000 1 #> 2318 1.94790000 1 #> 2319 -0.11355000 1 #> 2320 1.40220000 1 #> 2321 0.00000000 1 #> 2322 1.40690000 1 #> 2323 -0.72126000 1 #> 2324 -0.67772000 1 #> 2325 0.46716000 1 #> 2326 1.04650000 1 #> 2327 0.95551000 1 #> 2328 3.70800000 1 #> 2329 -1.50620000 1 #> 2330 -0.69852000 1 #> 2331 0.17436000 1 #> 2332 -0.65498000 1 #> 2333 -0.22288000 1 #> 2334 1.53840000 1 #> 2335 0.52389000 1 #> 2336 -0.65915000 1 #> 2337 1.79890000 1 #> 2338 -1.06510000 1 #> 2339 -0.67428000 1 #> 2340 -0.58653000 1 #> 2341 0.00000000 1 #> 2342 -0.76070000 1 #> 2343 -0.91740000 1 #> 2344 -0.61358000 1 #> 2345 1.08930000 1 #> 2346 -0.36890000 1 #> 2347 -1.32810000 1 #> 2348 0.38336000 1 #> 2349 0.16007000 1 #> 2350 -0.22990000 1 #> 2351 0.71213000 1 #> 2352 1.24320000 1 #> 2353 0.67229000 1 #> 2354 -0.44313000 1 #> 2355 -0.22852000 1 #> 2356 2.14240000 1 #> 2357 -1.21400000 1 #> 2358 -0.83775000 1 #> 2359 -0.12571000 1 #> 2360 0.36231000 1 #> 2361 0.00000000 1 #> 2362 3.48730000 1 #> 2363 0.46462000 1 #> 2364 0.95738000 1 #> 2365 0.01771300 1 #> 2366 -0.45620000 1 #> 2367 0.44170000 1 #> 2368 -2.06900000 1 #> 2369 -2.74450000 1 #> 2370 2.05320000 1 #> 2371 1.85250000 1 #> 2372 0.25692000 1 #> 2373 -0.17014000 1 #> 2374 -1.06850000 1 #> 2375 -1.01030000 1 #> 2376 -0.16319000 1 #> 2377 0.40694000 1 #> 2378 -0.68366000 1 #> 2379 0.02394800 1 #> 2380 1.11630000 1 #> 2381 0.00000000 1 #> 2382 0.06248400 1 #> 2383 0.46072000 1 #> 2384 -0.20035000 1 #> 2385 0.02374200 1 #> 2386 0.32828000 1 #> 2387 0.37072000 1 #> 2388 -0.16855000 1 #> 2389 2.03550000 1 #> 2390 -0.76842000 1 #> 2391 -1.19390000 1 #> 2392 -1.63260000 1 #> 2393 -0.61866000 1 #> 2394 0.30363000 1 #> 2395 -0.85928000 1 #> 2396 -0.82205000 1 #> 2397 -0.52616000 1 #> 2398 -0.44063000 1 #> 2399 0.06764300 1 #> 2400 0.42756000 1"},{"path":"/reference/nmxml.html","id":null,"dir":"Reference","previous_headings":"","what":"Read a nonmem xml and create output similar to the nmlst() — nmxml","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"Read nonmem xml create output similar nmlst()","code":""},{"path":"/reference/nmxml.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"","code":"nmxml(xml)"},{"path":"/reference/nmxml.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"xml xml file","code":""},{"path":"/reference/nmxml.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"list nonmem information","code":""},{"path":"/reference/nmxml.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"Matthew L. Fidler","code":""},{"path":"/reference/nmxml.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read a nonmem xml and create output similar to the nmlst() — nmxml","text":"","code":"nmxml(system.file(\"mods/cpt/runODE032.xml\", package=\"nonmem2rx\")) #> $theta #> theta1 theta2 theta3 theta4 theta5 #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> $omega #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> $sigma #> NULL #> #> $cov #> theta1 theta2 theta3 theta4 theta5 #> theta1 8.876810e-04 -1.055098e-04 1.844162e-04 -1.202337e-04 5.278300e-08 #> theta2 -1.055098e-04 8.714095e-04 -1.061946e-04 -5.066632e-05 -1.565618e-05 #> theta3 1.844162e-04 -1.061946e-04 2.993363e-03 1.652516e-04 5.993313e-06 #> theta4 -1.202337e-04 -5.066632e-05 1.652516e-04 1.213465e-03 -2.539912e-05 #> theta5 5.278300e-08 -1.565618e-05 5.993313e-06 -2.539912e-05 9.942182e-06 #> eta1 -4.712728e-05 4.696667e-05 -3.642709e-05 2.547962e-05 -8.168847e-06 #> omega.1.2 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.1.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta2 -7.371560e-05 2.566338e-05 -8.083493e-05 1.369999e-05 -4.365635e-06 #> omega.2.3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> omega.2.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta3 6.633832e-05 -8.190016e-05 5.489848e-04 1.683555e-04 1.591222e-06 #> omega.3.4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta4 -9.496613e-06 1.101079e-04 -3.065372e-04 -9.128974e-05 3.187703e-06 #> eps1 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 #> eta1 omega.1.2 omega.1.3 omega.1.4 eta2 omega.2.3 #> theta1 -4.712728e-05 0 0 0 -7.371560e-05 0 #> theta2 4.696667e-05 0 0 0 2.566338e-05 0 #> theta3 -3.642709e-05 0 0 0 -8.083493e-05 0 #> theta4 2.547962e-05 0 0 0 1.369999e-05 0 #> theta5 -8.168847e-06 0 0 0 -4.365635e-06 0 #> eta1 1.692964e-04 0 0 0 8.751806e-06 0 #> omega.1.2 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.1.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta2 8.751806e-06 0 0 0 1.512503e-04 0 #> omega.2.3 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta3 3.487139e-05 0 0 0 4.315929e-07 0 #> omega.3.4 0.000000e+00 0 0 0 0.000000e+00 0 #> eta4 1.366281e-05 0 0 0 -1.950959e-05 0 #> eps1 0.000000e+00 0 0 0 0.000000e+00 0 #> omega.2.4 eta3 omega.3.4 eta4 eps1 #> theta1 0 6.633832e-05 0 -9.496613e-06 0 #> theta2 0 -8.190016e-05 0 1.101079e-04 0 #> theta3 0 5.489848e-04 0 -3.065372e-04 0 #> theta4 0 1.683555e-04 0 -9.128974e-05 0 #> theta5 0 1.591222e-06 0 3.187703e-06 0 #> eta1 0 3.487139e-05 0 1.366281e-05 0 #> omega.1.2 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.1.4 0 0.000000e+00 0 0.000000e+00 0 #> eta2 0 4.315929e-07 0 -1.950959e-05 0 #> omega.2.3 0 0.000000e+00 0 0.000000e+00 0 #> omega.2.4 0 0.000000e+00 0 0.000000e+00 0 #> eta3 0 9.590290e-04 0 -1.297699e-04 0 #> omega.3.4 0 0.000000e+00 0 0.000000e+00 0 #> eta4 0 -1.297699e-04 0 5.101895e-04 0 #> eps1 0 0.000000e+00 0 0.000000e+00 0 #> #> $objf #> [1] 20167.64 #> #> $nobs #> [1] 2280 #> #> $nsub #> [1] 120 #> #> $nmtran #> [1] \"\\n\\n WARNINGS AND ERRORS (IF ANY) FOR PROBLEM 1\\n\\n (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.\\n\" #> #> $nonmem #> [1] \"7.4.3\" #> #> $termInfo #> [1] \"\\n0MINIMIZATION SUCCESSFUL\\n NO. OF FUNCTION EVALUATIONS USED: 320\\n NO. OF SIG. DIGITS IN FINAL EST.: 2.5\\n\" #> #> $time #> [1] 100.95 #> #> $control #> [1] \"\" #> [2] \"$PROB BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> [3] \"$INPUT ID TIME DV LNDV MDV AMT EVID DOSE V1I CLI QI V2I SSX IIX SD CMT\" #> [4] \"$DATA BOLUS_2CPT.csv IGNORE=@ IGNORE (SD.EQ.0)\" #> [5] \"$SUBR ADVAN13 TOL=6\" #> [6] \"$MODEL\" #> [7] \" COMP=(CENTRAL,DEFOBS,DEFDOSE)\" #> [8] \" COMP=(PERI)\" #> [9] \"$PK\" #> [10] \" CL=EXP(THETA(1)+ETA(1))\" #> [11] \" V=EXP(THETA(2)+ETA(2))\" #> [12] \" Q=EXP(THETA(3)+ETA(3))\" #> [13] \" V2=EXP(THETA(4)+ETA(4))\" #> [14] \" V1=V\" #> [15] \" S1=V\" #> [16] \"\\t\\t K21=Q/V2\" #> [17] \"\\t\\t K12=Q/V\" #> [18] \"$DES\" #> [19] \" DADT(1)= K21*A(2)-K12*A(1)-CL*A(1)/V1\" #> [20] \" DADT(2)=-K21*A(2)+K12*A(1) \\t\\t\" #> [21] \"$ERROR\" #> [22] \" IPRED = F\" #> [23] \" RESCV = THETA(5)\" #> [24] \" W = IPRED*RESCV\" #> [25] \" IRES = DV-IPRED\" #> [26] \" IWRES = IRES/W\" #> [27] \" Y = IPRED+W*EPS(1)\" #> [28] \"$THETA 1.6 ;log Cl\" #> [29] \"$THETA 4.5 ;log Vc\" #> [30] \"$THETA 1.6 ;log Q\" #> [31] \"$THETA 4 ;log Vp\" #> [32] \"$THETA (0,0.3,1) ;RSV\" #> [33] \"$OMEGA 0.15 0.15 0.15 0.15\" #> [34] \"$SIGMA 1 FIX\" #> [35] \"$EST NSIG=2 SIGL=6 PRINT=5 MAX=9999 NOABORT POSTHOC METHOD=COND INTER NOOBT\" #> [36] \"$COV\" #> [37] \"$TABLE ID TIME LNDV MDV AMT EVID DOSE V1I CLI QI V2I CL V Q V2 ETA1 ETA2 ETA3 ETA4\" #> [38] \" IPRED IRES IWRES CWRESI\" #> [39] \" ONEHEADER NOPRINT FILE=runODE032.csv\" #>"},{"path":"/reference/nmxmlCov.html","id":null,"dir":"Reference","previous_headings":"","what":"Get the xml for debugging (without including data etc) — nmxmlCov","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"Get xml debugging (without including data etc)","code":""},{"path":"/reference/nmxmlCov.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"","code":"nmxmlCov(xml, xmlout, tag = \"//nm:covariance\") nmxmlOmega(xml, xmlout, tag = \"//nm:omega\") nmxmlSigma(xml, xmlout, tag = \"//nm:sigma\") nmxmlTheta(xml, xmlout, tag = \"//nm:theta\")"},{"path":"/reference/nmxmlCov.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"xml Original xml file xmlout xml output (includes xml)","code":""},{"path":"/reference/nmxmlCov.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"nothing, called side effects","code":""},{"path":"/reference/nmxmlCov.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Get the xml for debugging (without including data etc) — nmxmlCov","text":"Matthew L. Fidler","code":""},{"path":"/reference/nonmem2rx.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"Convert NONMEM source file rxode model (nlmixr2-syle)","code":""},{"path":"/reference/nonmem2rx.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"","code":"nonmem2rx( file, inputData = NULL, nonmemOutputDir = NULL, rename = NULL, tolowerLhs = TRUE, thetaNames = TRUE, etaNames = TRUE, cmtNames = TRUE, updateFinal = TRUE, determineError = TRUE, validate = getOption(\"nonmem2rx.validate\", TRUE), nonmemData = FALSE, strictLst = FALSE, unintFixed = FALSE, extended = getOption(\"nonmem2rx.extended\", FALSE), nLinesPro = 20L, delta = 1e-04, usePhi = TRUE, useExt = TRUE, useCov = TRUE, useXml = TRUE, useLst = TRUE, mod = \".mod\", cov = \".cov\", phi = \".phi\", lst = getOption(\"nonmem2rx.lst\", \".lst\"), xml = \".xml\", ext = \".ext\", scanLines = getOption(\"nonmem2rx.scanLines\", 50L), save = getOption(\"nonmem2rx.save\", NA), saveTime = getOption(\"nonmem2rx.saveTime\", 15), overwrite = getOption(\"nonmem2rx.overwrite\", TRUE), load = getOption(\"nonmem2rx.load\", TRUE), compress = getOption(\"nonmem2rx.compress\", TRUE), keep = getOption(\"nonmem2rx.keep\", c(\"dfSub\", \"dfObs\", \"thetaMat\", \"sigma\")) )"},{"path":"/reference/nonmem2rx.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"file NONMEM run file, like .xml .lst file even control stream inputData path input dataset (NULL determine dataset). Often input dataset may different place points control stream directories can created run NONMEM script. , specified input data assumed instead. nonmemOutputDir path nonmem output directory. NULL assume diretory output files located instead control stream currently exists. rename NULL named character vector contains parameters renamed. example, model uses variable YTYPE CMT compatible rxode2/nlmixr2. can change input dataset model create new model still reproduces NONMEM output specifying rename=c(dvid=\"YTYPE\") tolowerLhs Boolean change lhs lower case (default: TRUE) thetaNames boolean indicating theta names changed comment-labeled names (default: TRUE). also character vector theta names (order) replaced. etaNames boolean indicating eta names changed comment-labeled names (default: TRUE). also character vector theta names (order) replaced. cmtNames boolean indicating compartment names changed named compartments $MODEL COMP = (name) (default: TRUE). also character vector compartment names (order) replaced. updateFinal Update parsed model model estimates .lst output file. determineError Boolean try determine nlmixr2-style residual error model (like ipred ~ add(add.sd)), otherwise endpoints defined rxode2/nlmixr2 model (default: TRUE) validate Boolean tool attempt \"validate\" model solving derived model pred conditions (etas zero eps values zero) nonmemData Boolean tells nonmem2rx read nonmem data (possible) even model validated (like simulation run missing final parameter estimates). default FALSE, nonmem data integrated nonmem2rx ui. strictLst list parsing needs correct successful load (default FALSE). unintFixed Treat uninteresting values fixed parameters (default FALSE) extended Translate extended control streams tools like wings NONMEM nLinesPro number lines check $PROBLEM statement. delta offset NONMEM times tied usePhi present, use NONMEM phi file extract etas (default TRUE), otherwise defaults etas tables (present) useExt present, use NONMEM ext file extract parameter estimates (default TRUE), otherwise defaults parameter estimates extracted NONMEM output useCov present, use NONMEM cov file import covariance, otherwise import covariance list file useXml present, use NONMEM xml file import much NONMEM information useLst present, use NONMEM lst file extract NONMEM information mod NONMEM output extension, defaults .mod cov NONMEM covariance file extension, defaults .cov phi NONMEM eta/phi file extension, defaults .phi lst NONMEM output extension, defaults .lst xml NONMEM xml file extension , defaults .xml ext NONMEM ext file extension, defaults .ext scanLines number lines scan comment chars IGNORE=@, default 50 save can : NULL (meaning save), logical (default FALSE, save) TRUE use base name control stream, append .qs save file using qs::qsave() path file write Note file saved qs::qsave() can loaded qs::qread() NA value means save whole process (including validation) takes much time saveTime time translation/validation needs (secs) save avoid rerun model (default 15 15 seconds) overwrite boolean allow overwriting save file (see load information). load boolean says load save file (exists) instead re-running translation validation. Note overwrite=TRUE load=TRUE overwrite based time stamp files. save file newer input file, load file, otherwise regenerate overwrite. works best point output file, like .xml listing file instead control stream compress boolean indicating UI compressed UI. using simulation old versions rxode2, compressed ui supported, FALSE. Otherwise use TRUE using newer rxode2. keep character vector imported model items kept model ; defaults \"sigma\" keeps sigma matrix model . can add rxode2 solving options imported NONMEM keep model.","code":""},{"path":"/reference/nonmem2rx.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"rxode2 function","code":""},{"path":"/reference/nonmem2rx.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"Since options may want set per project, following options queried: nonmem2rx.validate - boolean validate model (default: TRUE) nonmem2rx.lst - default extension output (default: .lst) nonmem2rx.save - nonmem2rx save model output? nonmem2rx.overwrite - nonmem2rx save output overwritten (default TRUE) nonmem2rx.load - nonmem2rx load saved model instead translating validating ? (default TRUE) nonmem2rx.extended - nonmem2rx support extended control streams? (default FALSE) nonmem2rx.compress - ui compressed uncompressed (default: TRUE)","code":""},{"path":"/reference/nonmem2rx.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert a NONMEM source file to a rxode model (nlmixr2-syle) — nonmem2rx","text":"","code":"# You can run a translation without validating the input. This is # a faster way to import a dataset (and allows the CRAN machines to # run a quick example) mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), lst=\".res\", save=FALSE, validate=FALSE, compress=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done # \\donttest{ # Though by default you likely wish to validate the input mod <- nonmem2rx(system.file(\"mods/cpt/runODE032.ctl\", package=\"nonmem2rx\"), lst=\".res\", save=FALSE) #> ℹ getting information from '/home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.ctl' #> ℹ reading in xml file #> ℹ done #> ℹ reading in ext file #> ℹ done #> ℹ reading in phi file #> ℹ done #> ℹ reading in lst file #> ℹ abbreviated list parsing #> ℹ done #> ℹ done #> ℹ splitting control stream by records #> ℹ done #> ℹ Processing record $INPUT #> ℹ Processing record $MODEL #> ℹ Processing record $gTHETA #> ℹ Processing record $OMEGA #> ℹ Processing record $SIGMA #> ℹ Processing record $PROBLEM #> ℹ Processing record $DATA #> ℹ Processing record $SUBROUTINES #> ℹ Processing record $PK #> ℹ Processing record $DES #> ℹ Processing record $ERROR #> ℹ Processing record $ESTIMATION #> ℹ Ignore record $ESTIMATION #> ℹ Processing record $COVARIANCE #> ℹ Ignore record $COVARIANCE #> ℹ Processing record $TABLE #> ℹ change initial estimate of `theta1` to `1.37034036528946` #> ℹ change initial estimate of `theta2` to `4.19814911033061` #> ℹ change initial estimate of `theta3` to `1.38003493562413` #> ℹ change initial estimate of `theta4` to `3.87657341967489` #> ℹ change initial estimate of `theta5` to `0.196446108190896` #> ℹ change initial estimate of `eta1` to `0.101251418415006` #> ℹ change initial estimate of `eta2` to `0.0993872449483344` #> ℹ change initial estimate of `eta3` to `0.101302674763154` #> ℹ change initial estimate of `eta4` to `0.0730497519364148` #> ℹ read in nonmem input data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/Bolus_2CPT.csv #> ℹ ignoring lines that begin with a letter (IGNORE=@)' #> ℹ applying names specified by $INPUT #> ℹ subsetting accept/ignore filters code: .data[-which((.data$SD == 0)),] #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ read in nonmem IPRED data (for model validation): /home/runner/work/_temp/Library/nonmem2rx/mods/cpt/runODE032.csv #> ℹ done #> ℹ changing most variables to lower case #> ℹ done #> ℹ replace theta names #> ℹ done #> ℹ replace eta names #> ℹ done (no labels) #> ℹ renaming compartments #> ℹ done #> #> #> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ #> ℹ solving ipred problem #> ℹ done #> ℹ solving pred problem #> ℹ done mod #> ── rxode2-based free-form 2-cmt ODE model ────────────────────────────────────── #> ── Initalization: ── #> Fixed Effects ($theta): #> theta1 theta2 theta3 theta4 RSV #> 1.3703404 4.1981491 1.3800349 3.8765734 0.1964461 #> #> Omega ($omega): #> eta1 eta2 eta3 eta4 #> eta1 0.1012514 0.00000000 0.0000000 0.00000000 #> eta2 0.0000000 0.09938724 0.0000000 0.00000000 #> eta3 0.0000000 0.00000000 0.1013027 0.00000000 #> eta4 0.0000000 0.00000000 0.0000000 0.07304975 #> #> States ($state or $stateDf): #> Compartment Number Compartment Name #> 1 1 CENTRAL #> 2 2 PERI #> ── μ-referencing ($muRefTable): ── #> theta eta level #> 1 theta1 eta1 id #> 2 theta2 eta2 id #> 3 theta3 eta3 id #> 4 theta4 eta4 id #> #> ── Model (Normalized Syntax): ── #> function() { #> description <- \"BOLUS_2CPT_CLV1QV2 SINGLE DOSE FOCEI (120 Ind/2280 Obs) runODE032\" #> dfObs <- 2280 #> dfSub <- 120 #> sigma <- lotri({ #> eps1 ~ 1 #> }) #> thetaMat <- lotri({ #> theta1 ~ c(theta1 = 0.000887681) #> theta2 ~ c(theta1 = -0.00010551, theta2 = 0.000871409) #> theta3 ~ c(theta1 = 0.000184416, theta2 = -0.000106195, #> theta3 = 0.00299336) #> theta4 ~ c(theta1 = -0.000120234, theta2 = -5.06663e-05, #> theta3 = 0.000165252, theta4 = 0.00121347) #> RSV ~ c(theta1 = 5.2783e-08, theta2 = -1.56562e-05, theta3 = 5.99331e-06, #> theta4 = -2.53991e-05, RSV = 9.94218e-06) #> eps1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0) #> eta1 ~ c(theta1 = -4.71273e-05, theta2 = 4.69667e-05, #> theta3 = -3.64271e-05, theta4 = 2.54796e-05, RSV = -8.16885e-06, #> eps1 = 0, eta1 = 0.000169296) #> omega.2.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0) #> eta2 ~ c(theta1 = -7.37156e-05, theta2 = 2.56634e-05, #> theta3 = -8.08349e-05, theta4 = 1.37e-05, RSV = -4.36564e-06, #> eps1 = 0, eta1 = 8.75181e-06, omega.2.1 = 0, eta2 = 0.00015125) #> omega.3.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0) #> omega.3.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0) #> eta3 ~ c(theta1 = 6.63383e-05, theta2 = -8.19002e-05, #> theta3 = 0.000548985, theta4 = 0.000168356, RSV = 1.59122e-06, #> eps1 = 0, eta1 = 3.48714e-05, omega.2.1 = 0, eta2 = 4.31593e-07, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0.000959029) #> omega.4.1 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0) #> omega.4.2 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0) #> omega.4.3 ~ c(theta1 = 0, theta2 = 0, theta3 = 0, theta4 = 0, #> RSV = 0, eps1 = 0, eta1 = 0, omega.2.1 = 0, eta2 = 0, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = 0, omega.4.1 = 0, #> omega.4.2 = 0, omega.4.3 = 0) #> eta4 ~ c(theta1 = -9.49661e-06, theta2 = 0.000110108, #> theta3 = -0.000306537, theta4 = -9.12897e-05, RSV = 3.1877e-06, #> eps1 = 0, eta1 = 1.36628e-05, omega.2.1 = 0, eta2 = -1.95096e-05, #> omega.3.1 = 0, omega.3.2 = 0, eta3 = -0.00012977, #> omega.4.1 = 0, omega.4.2 = 0, omega.4.3 = 0, eta4 = 0.00051019) #> }) #> validation <- c(\"IPRED relative difference compared to Nonmem IPRED: 0%; 95% percentile: (0%,0%); rtol=6.43e-06\", #> \"IPRED absolute difference compared to Nonmem IPRED: 95% percentile: (2.19e-05, 0.0418); atol=0.00167\", #> \"IWRES relative difference compared to Nonmem IWRES: 0%; 95% percentile: (0%,0.01%); rtol=8.99e-06\", #> \"IWRES absolute difference compared to Nonmem IWRES: 95% percentile: (1.82e-07, 4.63e-05); atol=3.65e-06\", #> \"PRED relative difference compared to Nonmem PRED: 0%; 95% percentile: (0%,0%); rtol=6.41e-06\", #> \"PRED absolute difference compared to Nonmem PRED: 95% percentile: (1.41e-07,0.00382) atol=6.41e-06\") #> ini({ #> theta1 <- 1.37034036528946 #> label(\"log Cl\") #> theta2 <- 4.19814911033061 #> label(\"log Vc\") #> theta3 <- 1.38003493562413 #> label(\"log Q\") #> theta4 <- 3.87657341967489 #> label(\"log Vp\") #> RSV <- c(0, 0.196446108190896, 1) #> label(\"RSV\") #> eta1 ~ 0.101251418415006 #> eta2 ~ 0.0993872449483344 #> eta3 ~ 0.101302674763154 #> eta4 ~ 0.0730497519364148 #> }) #> model({ #> cmt(CENTRAL) #> cmt(PERI) #> cl <- exp(theta1 + eta1) #> v <- exp(theta2 + eta2) #> q <- exp(theta3 + eta3) #> v2 <- exp(theta4 + eta4) #> v1 <- v #> scale1 <- v #> k21 <- q/v2 #> k12 <- q/v #> d/dt(CENTRAL) <- k21 * PERI - k12 * CENTRAL - cl * CENTRAL/v1 #> d/dt(PERI) <- -k21 * PERI + k12 * CENTRAL #> f <- CENTRAL/scale1 #> ipred <- f #> rescv <- RSV #> ipred ~ prop(RSV) #> }) #> } #> ── nonmem2rx translation notes ($notes): ── #> • there are duplicate eta names, not renaming duplicate parameters #> • there are duplicate theta names, not renaming duplicate parameters #> ── nonmem2rx extra properties: ── #> other properties include: $nonmemData, $etaData #> captured NONMEM table outputs: $predData, $ipredData #> NONMEM/rxode2 comparison data: $iwresCompare, $predCompare, $ipredCompare #> NONMEM/rxode2 composite comparison: $predAtol, $predRtol, $ipredAtol, $ipredRtol, $iwresAtol, $iwresRtol # you can plot to compare the pred/ipred differences plot(mod) # if you want to see the individual differences # you can by plotting by page of plots plot(mod, nrow=2, ncol=2, page=1, log=\"y\") # or select which pages you want to print plot(mod, nrow=2, ncol=2, page=c(1,3), log=\"y\") #' or even all the individuals with # plot(page=TRUE) plot(mod, nrow=5, ncol=5, page=TRUE, log=\"y\") # you can also convert to a nlmixr2 object, but need babelmixr2 for # that conversion # }"},{"path":"/reference/nonmem2rxRec.html","id":null,"dir":"Reference","previous_headings":"","what":"Record handling for nonmem records — nonmem2rxRec.abb","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Record handling nonmem records","code":""},{"path":"/reference/nonmem2rxRec.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"","code":"# S3 method for class 'abb' nonmem2rxRec(x) # S3 method for class 'pk' nonmem2rxRec(x) # S3 method for class 'pre' nonmem2rxRec(x) # S3 method for class 'des' nonmem2rxRec(x) # S3 method for class 'mix' nonmem2rxRec(x) # S3 method for class 'err' nonmem2rxRec(x) # S3 method for class 'dat' nonmem2rxRec(x) # S3 method for class 'inp' nonmem2rxRec(x) # S3 method for class 'mod' nonmem2rxRec(x) # S3 method for class 'ome' nonmem2rxRec(x) # S3 method for class 'sig' nonmem2rxRec(x) # S3 method for class 'pro' nonmem2rxRec(x) # S3 method for class 'aaa' nonmem2rxRec(x) nonmem2rxRec(x) # Default S3 method nonmem2rxRec(x) # S3 method for class 'sub' nonmem2rxRec(x) # S3 method for class 'tab' nonmem2rxRec(x) # S3 method for class 'the' nonmem2rxRec(x)"},{"path":"/reference/nonmem2rxRec.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"x Nonmem record data item, class c(stdRec, \"nonmem2rx\") stdRec standardized record (pro $PROBLEM, etc)","code":""},{"path":"/reference/nonmem2rxRec.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Nothing, called side effects","code":""},{"path":"/reference/nonmem2rxRec.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Can add record parsing handling creating S3 method type standardized method","code":""},{"path":"/reference/nonmem2rxRec.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Record handling for nonmem records — nonmem2rxRec.abb","text":"Matthew L. Fidler","code":""},{"path":"/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. ggplot2 autoplot lotri lotri magrittr %>% rxode2 expit, ini, logit, model, model<-, rxode, RxODE, rxode2, rxRename, rxSolve, rxUiGet","code":""},{"path":"/news/index.html","id":"nonmem2rx-015","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.5","title":"nonmem2rx 0.1.5","text":"CRAN release: 2024-09-18 forgiving validation remove IDs without observations solving IPRED problem. Binary linkage dparser changed structure , meaning nonmem2rx may updated dparser updated.","code":""},{"path":"/news/index.html","id":"nonmem2rx-014","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.4","title":"nonmem2rx 0.1.4","text":"CRAN release: 2024-05-29 reading NONMEM results xml try nm: prefixed tags non-nm: prefixed tags. Omega Sigma prior estimates currently ignored (theta priors already ignored) Improve reading theta values xml Read NONMEM files using latin1 encoding allow single byte parser work lines NONMEM input dataset start # now ignored. IDs zero, NONMEM assumes restarting time gives different IDs; now reflected NONMEM translation IDs. linCmt() parsing, expand scope conflicting parameters renamed import. Added better parsing ELSE another next line. Prefixed conflicting VP rxm. linCmt() models accommodating importing linear compartment models.","code":""},{"path":"/news/index.html","id":"nonmem2rx-013","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.3","title":"nonmem2rx 0.1.3","text":"CRAN release: 2023-12-12 Added explicit requirement rxode2 2.0.13 Added support DADT(#) statements right side equation, .e. DADT(3) = DADT(1) + DADT(2) (#164) Added support ADVAN#, TRANS# (#161) Added NONMEM-specific solving options Fixed security related format issues requested CRAN #167 Now omega, thetaMat, dfObs dfSub incorporated model function (default). can change nonmem2rx keep argument Using rxode2 2.0.13 makes sure solves models endpoint determined typical nlmixr2 style validate often (due bug solving rxode2).","code":""},{"path":"/news/index.html","id":"nonmem2rx-012","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.2","title":"nonmem2rx 0.1.2","text":"CRAN release: 2023-07-03 Added support ADVAN5 ADVAN7 models Add parsing accept/ignore characters example IGNORE=(C='C') (See Issue #140) Add robust reading NONMEM information (add source) nminfo() (See issue #142) Since NONMEM protect divide zeros default, default solveZero changed solveZero = TRUE nonmem2rx objects. Fixed bug renaming eta theta renamed ui$iniDf match theta# eta# (Issue #153) Turned testing .nonmem2rx example since took much time (according CRAN)","code":""},{"path":"/news/index.html","id":"nonmem2rx-011","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.1","title":"nonmem2rx 0.1.1","text":"CRAN release: 2023-06-01 Fix internal memory issue (LTO, valgrind etc)","code":""},{"path":"/news/index.html","id":"nonmem2rx-010","dir":"Changelog","previous_headings":"","what":"nonmem2rx 0.1.0","title":"nonmem2rx 0.1.0","text":"CRAN release: 2023-05-26 Added NEWS.md file track changes package.","code":""}]