-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrxode2-manual.Rmd
1058 lines (782 loc) · 34.5 KB
/
rxode2-manual.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "rxode2 user manual"
author: "Matthew Fidler, Melissa Hallow, Wenping Wang"
date: "`r Sys.Date()`"
site: bookdown::bookdown_site
documentclass: book
bibliography: [book.bib, packages.bib]
biblio-style: apalike
link-citations: yes
github-repo: nlmixr2/rxode2-manual
description: "This book is the user manual for rxode2"
header-includes:
- \usepackage{titling}
- \pretitle{\begin{center}
\includegraphics[width=2in,height=2in]{logo.png}\LARGE\\}
- \posttitle{\end{center}}
urlcolor: blue
---
```{r, echo=FALSE}
knitr::opts_chunk$set(comment = "#>")
options(cli.width=60)
```
<!--chapter:end:index.Rmd-->
---
editor_options:
markdown:
wrap: 72
---
# Introduction {#index}
Welcome to the rxode2 user guide; **rxode2** is an R package for solving
and simulating from ode-based models. These models are convert the rxode2
mini-language to C and create a compiled dll for fast solving. ODE
solving using rxode2 has a few key parts:
- `rxode2()` which creates the C code for fast ODE solving based on a
simple syntax (Chapter \@ref(syntax)) related to Leibnitz notation.
- The event data, which can be:
- a `NONMEM` or `deSolve` compatible data frame (Chapter
\@ref(events)), or
- created with `et()` or `EventTable()` for easy simulation of
events (Chapter \@ref(simulation))
- The data frame can be augmented by adding time varying or adding
individual covariates (`iCov=` as needed)
- `rxSolve()` which solves the system of equations using initial
conditions and parameters to make predictions
- With multiple subject data, this may be parallelized.
- With single subject the output data frame is adaptive
- Covariances and other metrics of uncertainty can be used to
simulate while solving.
While this is the user guide, there are other places that you can visit
for help:
- `rxode2` github [pkgdown
page](https://nlmixr2.github.io/rxode2/)
- `rxode2` tutorial (accessible in tutorials in Rstudio 1.3+)
- `rxode2` [github
discussions](https://github.com/nlmixr2/rxode2/discussions)
- There is an [Chinese `rxode2` manual translated by Fu
Yongchao](https://s0521.github.io/rxode2_chs/) which was translated
based on the manual dated June 9, 2023.
This book was assembled on `r date()` with rxode2 version
`r packageVersion("rxode2")` automatically by github actions.
# Authors and Acknowledgments {#author}
```{r introAuthors, echo=FALSE, results='asis'}
cat(paste(gsub("^#", "##", readLines('rxode2/authors.md')), collapse="\n"), "\n\n")
```
# Related R packages {#related}
```{r introRelated, child='rxode2/man-roxygen/rmdhunks/related-R-chunk.Rmd'}
```
<!--chapter:end:01-intro.Rmd-->
# Installation {#install}
```{r install, child='rxode2/man-roxygen/rmdhunks/rxode2-install-hunk.Rmd'}
```
<!--chapter:end:02-install.Rmd-->
# Getting Started {#gettingStarted}
```{r gettingStarted, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("vignette", "section",
gsub("http.*events\\.html", "#events", readLines('rxode2/man/rmdhunks/rxode2-intro-chunk.Rmd'))),
envir = environment(), quiet = TRUE)), sep="\n")
```
<!--chapter:end:03-getting-started.Rmd-->
# rxode2 syntax {#syntax}
This briefly describes the syntax used to define models
that `rxode2` will translate into R-callable compiled code. It also
describes the communication of variables between `R` and the
`rxode2` modeling specification.
## Example
```
# An rxode2 model specification (this line is a comment).
if(comed==0){ # concomitant medication (con-med)?
F = 1.0; # full bioavailability w.o. con-med
}
else {
F = 0.80; # 20% reduced bioavailability
}
C2 = centr/V2; # concentration in the central compartment
C3 = peri/V3; # concentration in the peripheral compartment
# ODE describing the PK and PD
d/dt(depot) = -KA*depot;
d/dt(centr) = F*KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
```
## Syntax
```{r syntax1, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("vignette", "section",
gsub("http.*event.*\\.html", "#events", readLines('rxode2/man/rmdhunks/rxode2-syntax-hunk.Rmd'))),
envir = environment(), quiet = TRUE)), sep="\n")
```
## cmt() changing compartment numbers for states
The compartment order can be changed with the `cmt()` syntax in the
model. To understand what the `cmt()` can do you need to understand
how `rxode2` numbers the compartments.
Below is an example of how rxode2 numbers compartments
### How rxode2 numbers compartments
```{r syntaxCmt, child='rxode2/man/rmdhunks/rxode2-cmt-assign.Rmd'}
```
### Changing compartments by pre-declaring with `cmt()`
```{r syntaxCmt, child='rxode2/man/rmdhunks/rxode2-cmt-preassign-1.Rmd'}
```
### Appending compartments to the model with `cmt()`
```{r syntaxCmtAppend, child='rxode2/man/rmdhunks/rxode2-cmt-preassign-2.Rmd'}
```
<!--chapter:end:04-syntax.Rmd-->
# rxode2 events {#events}
```{r eventTable, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("rxode2-event-table.html", "#et",
gsub("rxode2-events-classic.html", "#classic-et", gsub("^#", "##", readLines("rxode2/vignettes/rxode2-event-types.Rmdh")))),
envir = environment(), quiet = TRUE)), sep="\n")
```
## Classic rxode2 events {#classic-et}
```{r eventTableClassic, child='rxode2/vignettes/events-classic.Rmdh'}
```
```{r eventTableDataset, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("^#", "##", readLines("rxode2/man/rmdhunks/rxode2-datasets.Rmd")),
envir = environment(), quiet = TRUE)), sep="\n")
```
<!--chapter:end:05-events.Rmd-->
# Easily creating rxode2 events {#et}
```{r eventTableEasy, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("rxode2-event-types.html", "#events", readLines("rxode2/vignettes/events-et.Rmdh")),
envir = environment(), quiet = TRUE)), sep="\n")
```
<!--chapter:end:06-et.Rmd-->
# Solving and solving options {#solve}
In general, ODEs are solved using a combination of:
- A compiled model specification from `rxode2()`, specified with
`object=`
- Input parameters, specified with `params=` (and could be blank)
- Input data or event table, specified with `events=`
- Initial conditions, specified by `inits=` (and possibly in the model
itself by `state(0)=`)
The solving options are given in the sections below:
## General Solving Options
### object
`object` is a either a rxode2 family of objects, or a file-name
with a rxode2 model specification, or a string with a rxode2
model specification.
### params
`params` a numeric named vector with values for every
parameter in the ODE system; the names must correspond to the
parameter identifiers used in the ODE specification;
### events
`events` an `eventTable` object describing the input
(e.g., doses) to the dynamic system and observation sampling
time points (see [eventTable()]);
### inits
`inits` a vector of initial values of the state variables
(e.g., amounts in each compartment), and the order in this
vector must be the same as the state variables (e.g., PK/PD
compartments);
### sigdig
`sigdig` Specifies the "significant digits" that the ode
solving requests. When specified this controls the relative and
absolute tolerances of the ODE solvers. By default the tolerance
is `0.5*10^(-sigdig-2)` for regular ODEs. For the
sensitivity equations the default is `0.5*10\^(-sigdig-1.5)`
(sensitivity changes only applicable for liblsoda). This also
## lsoda/dop solving options
controls the `atol`/`rtol` of the steady state solutions. The
`ssAtol`/`ssRtol` is `0.5*10\^(-sigdig)` and for the sensitivities
`0.5*10\^(-sigdig+0.625)`. By default
this is unspecified (`NULL`) and uses the standard `atol`/`rtol`.
### atol
`atol` a numeric absolute tolerance (1e-8 by default) used
by the ODE solver to determine if a good solution has been
achieved; This is also used in the solved linear model to check
if prior doses do not add anything to the solution.
### rtol
`rtol` a numeric relative tolerance (`1e-6` by default) used
by the ODE solver to determine if a good solution has been
achieved. This is also used in the solved linear model to check
if prior doses do not add anything to the solution.
### atolSens
`atolSens` Sensitivity atol, can be different than atol with
liblsoda. This allows a less accurate solve for gradients (if desired)
### rtolSens
`rtolSens` Sensitivity rtol, can be different than rtol with
liblsoda. This allows a less accurate solve for gradients (if desired)
### maxsteps
`maxsteps` maximum number of (internally defined) steps allowed
during one call to the solver. (5000 by default)
### hmin
`hmin` The minimum absolute step size allowed. The default
value is 0.
### hmax
`hmax` The maximum absolute step size allowed. When
`hmax=NA` (default), uses the average difference +
hmaxSd*sd in times and sampling events. The `hmaxSd` is a user
specified parameter and which defaults to zero. When
`hmax=NULL` rxode2 uses the maximum difference in times in
your sampling and events. The value 0 is equivalent to infinite
maximum absolute step size.
### hmaxSd
`hmaxSd` The number of standard deviations of the time
difference to add to hmax. The default is 0
### hini
`hini` The step size to be attempted on the first step. The
default value is determined by the solver (when `hini = 0`)
### maxordn
`maxordn` The maximum order to be allowed for the nonstiff
(Adams) method. The default is 12. It can be between 1 and
12.
### maxords
`maxords` The maximum order to be allowed for the stiff (BDF)
method. The default value is 5. This can be between 1 and 5.
### mxhnil
`mxhnil` maximum number of messages printed (per problem)
warning that `T + H = T` on a step (`H` = step size). This must
be positive to result in a non-default value. The default
value is 0 (or infinite).
### hmxi
`hmxi` inverse of the maximum absolute value of `H` to are used.
hmxi = 0.0 is allowed and corresponds to an infinite `hmax1
(default). `hmin` and `hmxi` may be changed at any time, but will
not take effect until the next change of `H` is considered.
This option is only considered with `method="liblsoda"`.
### istateReset
`istateReset` When `TRUE`, reset the `ISTATE` variable to 1 for
lsoda and liblsoda with doses, like `deSolve`; When `FALSE`, do
not reset the `ISTATE` variable with doses.
## Inductive Linerization Options
### indLinMatExpType
`indLinMatExpType` This is them matrix exponential type that
is use for rxode2. Currently the following are supported:
* `Al-Mohy` Uses the exponential matrix method of Al-Mohy Higham (2009)
* `arma` Use the exponential matrix from RcppArmadillo
* `expokit` Use the exponential matrix from Roger B. Sidje (1998)
### indLinMatExpOrder
`indLinMatExpOrder` an integer, the order of approximation to
be used, for the `Al-Mohy` and `expokit` values.
The best value for this depends on machine precision (and
slightly on the matrix). We use `6` as a default.
### indLinPhiTol
`indLinPhiTol` the requested accuracy tolerance on
exponential matrix.
### indLinPhiM
`indLinPhiM` the maximum size for the Krylov basis
## Steady State Solving Options
### minSS
`minSS` Minimum number of iterations for a steady-state dose
### maxSS
`maxSS` Maximum number of iterations for a steady-state dose
### strictSS
`strictSS` Boolean indicating if a strict steady-state is
required. If a strict steady-state is (`TRUE`) required
then at least `minSS` doses are administered and the
total number of steady states doses will continue until
`maxSS` is reached, or `atol` and `rtol` for
every compartment have been reached. However, if ODE solving
problems occur after the `minSS` has been reached the
whole subject is considered an invalid solve. If
`strictSS` is `FALSE` then as long as `minSS`
has been reached the last good solve before ODE solving
problems occur is considered the steady state, even though
either `atol`, `rtol` or `maxSS` have not
been achieved.
### infSSstep
`infSSstep` Step size for determining if a constant infusion
has reached steady state. By default this is large value,
12.
### ssAtol
`ssAtol` Steady state atol convergence factor. Can be
a vector based on each state.
### ssRtol
`ssRtol` Steady state rtol convergence factor. Can be a
vector based on each state.
### ssAtolSens
`ssAtolSens` Sensitivity absolute tolerance (atol) for
calculating if steady state has been achieved for sensitivity compartments.
### ssRtolSens
`ssRtolSens` Sensitivity relative tolerance (rtol) for
calculating if steady state has been achieved for sensitivity compartments.
## rxode2 numeric stability options
### maxAtolRtolFactor
`maxAtolRtolFactor` The maximum `atol`/`rtol` that
FOCEi and other routines may adjust to. By default 0.1
### stateTrim
`stateTrim` When amounts/concentrations in one of the states
are above this value, trim them to be this value. By default
Inf. Also trims to -stateTrim for large negative
amounts/concentrations. If you want to trim between a range
say `c(0, 2000000)` you may specify 2 values with a lower and
upper range to make sure all state values are in the
reasonable range.
### safeZero
`safeZero` Use safe zero divide and log routines. By default
this is turned on but you may turn it off if you wish.
### sumType
`sumType` Sum type to use for `sum()` in
rxode2 code blocks.
`pairwise` uses the pairwise sum (fast, default)
`fsum` uses the PreciseSum package's fsum function (most accurate)
`kahan` uses Kahan correction
`neumaier` uses Neumaier correction
`c` uses no correction: default/native summing
### prodType
`prodType` Product to use for `prod()` in rxode2 blocks
`long double` converts to long double, performs the
multiplication and then converts back.
`double` uses the standard double scale for multiplication.
### maxwhile
`maxwhile` represents the maximum times a while loop is
evaluated before exiting. By default this is 100000
## Linear compartment model sensitivity options
### sensType
`sensType` Sensitivity type for `linCmt()` model:
`advan` Use the direct advan solutions
`autodiff` Use the autodiff advan solutions
`forward` Use forward difference solutions
`central` Use central differences
### linDiff
`linDiff` This gives the linear difference amount for all the
types of linear compartment model parameters where sensitivities
are not calculated. The named components of this numeric vector are:
* `"lag"` Central compartment lag
* `"f"` Central compartment bioavailability
* `"rate"` Central compartment modeled rate
* `"dur"` Central compartment modeled duration
* `"lag2"` Depot compartment lag
* `"f2"` Depot compartment bioavailability
* `"rate2"` Depot compartment modeled rate
* `"dur2"` Depot compartment modeled duration
### linDiffCentral
`linDiffCentral` This gives the which parameters use central
differences for the linear compartment model parameters. The
are the same components as `linDiff`
## Covariate Solving Options
### iCov
`iCov` A data frame of individual non-time varying covariates
to combine with the `events` dataset by merge.
### covsInterpolation
`covsInterpolation` specifies the interpolation method for
time-varying covariates. When solving ODEs it often samples
times outside the sampling time specified in `events`.
When this happens, the time varying covariates are
interpolated. Currently this can be:
* `"linear"` interpolation, which interpolates the covariate
by solving the line between the observed covariates and extrapolating the new
covariate value.
* `"constant"` -- Last observation carried forward (the default).
* `"NOCB"` -- Next Observation Carried Backward. This is the same method
that NONMEM uses.
* `"midpoint"` Last observation carried forward to midpoint; Next observation
carried backward to midpoint.
### addCov
`addCov` A boolean indicating if covariates should be added
to the output matrix or data frame. By default this is
disabled.
## Simulation options
### seed
`seed` an object specifying if and how the random number
generator should be initialized
### nsim
`nsim` represents the number of simulations. For rxode2, if
you supply single subject event tables (created with
`[eventTable()]`)
### thetaMat
`thetaMat` Named theta matrix.
### thetaLower
`thetaLower` Lower bounds for simulated population parameter
variability (by default `-Inf`)
### thetaUpper
`thetaUpper` Upper bounds for simulated population unexplained
variability (by default `Inf`)
### thetaDf
`thetaDf` The degrees of freedom of a t-distribution for
simulation. By default this is `NULL` which is
equivalent to `Inf` degrees, or to simulate from a normal
distribution instead of a `t`-distribution.
### thetaIsChol
`thetaIsChol` Indicates if the `theta` supplied is a
Cholesky decomposed matrix instead of the traditional
symmetric matrix.
### nStud
`nStud` Number virtual studies to characterize uncertainty in estimated
parameters.
### omega
`omega` Estimate of Covariance matrix. When omega is a list,
assume it is a block matrix and convert it to a full matrix for
simulations. When `omega` is `NA` and you are using it with a
`rxode2` ui model, the between subject variability described by
the `omega` matrix are set to zero.
### omegaIsChol
`omegaIsChol` Indicates if the `omega` supplied is a
Cholesky decomposed matrix instead of the traditional
symmetric matrix.
### omegaSeparation
`omegaSeparation` Omega separation strategy
Tells the type of separation strategy when
simulating covariance with parameter uncertainty with standard
deviations modeled in the `thetaMat` matrix.
* `"lkj"` simulates the correlation matrix from the
`rLKJ1` matrix with the distribution parameter `eta`
equal to the degrees of freedom `nu` by `(nu-1)/2`
* `"separation"` simulates from the identity inverse Wishart
covariance matrix with `nu` degrees of freedom. This is then
converted to a covariance matrix and augmented with the modeled
standard deviations. While computationally more complex than the
`"lkj"` prior, it performs better when the covariance matrix
size is greater or equal to 10
* `"auto"` chooses `"lkj"` when the dimension of the
matrix is less than 10 and `"separation"` when greater
than equal to 10.
### omegaXform
`omegaXform` When taking `omega` values from the `thetaMat`
simulations (using the separation strategy for covariance
simulation), how should the `thetaMat` values be turned int
standard deviation values:
- `identity` This is when standard deviation values are
directly modeled by the `params` and `thetaMat` matrix
- `variance` This is when the `params` and `thetaMat`
simulates the variance that are directly modeled by the
`thetaMat` matrix
- `log` This is when the `params` and `thetaMat`
simulates `log(sd)`
- `nlmixrSqrt` This is when the `params` and
`thetaMat` simulates the inverse cholesky decomposed matrix
with the `x\^2` modeled along the diagonal. This only works
with a diagonal matrix.
- `nlmixrLog` This is when the `params` and
`thetaMat` simulates the inverse cholesky decomposed matrix
with the `exp(x\^2)` along the diagonal. This only works
with a diagonal matrix.
- `nlmixrIdentity` This is when the `params` and
`thetaMat` simulates the inverse cholesky decomposed matrix.
This only works with a diagonal matrix.
### omegaLower
`omegaLower` Lower bounds for simulated ETAs (by default -Inf)
### omegaUpper
`omegaUpper` Upper bounds for simulated ETAs (by default Inf)
### omegaDf
`omegaDf` The degrees of freedom of a t-distribution for
simulation. By default this is `NULL` which is
equivalent to `Inf` degrees, or to simulate from a normal
distribution instead of a t-distribution.
### nSub
`nSub` Number between subject variabilities (`ETAs`) simulated for every
realization of the parameters.
### dfSub
`dfSub` Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
### sigma
`sigma` Named sigma covariance or Cholesky decomposition of a
covariance matrix. The names of the columns indicate
parameters that are simulated. These are simulated for every
observation in the solved system. When `sigma` is `NA` and you are using it with a
`rxode2` ui model, the unexplained variability described by
the `sigma` matrix are set to zero.
### sigmaLower
`sigmaLower` Lower bounds for simulated unexplained variability (by default -Inf)
### sigmaUpper
`sigmaUpper` Upper bounds for simulated unexplained variability (by default Inf)
### sigmaXform
`sigmaXform` When taking `sigma` values from the `thetaMat`
simulations (using the separation strategy for covariance
simulation), how should the `thetaMat` values be turned int
standard deviation values:
- `identity` This is when standard deviation values are
directly modeled by the `params` and `thetaMat` matrix
- `variance` This is when the `params` and `thetaMat`
simulates the variance that are directly modeled by the
`thetaMat` matrix
- `log` This is when the `params` and `thetaMat`
simulates `log(sd)`
- `nlmixrSqrt` This is when the `params` and
`thetaMat` simulates the inverse cholesky decomposed matrix
with the `x\^2` modeled along the diagonal. This only works
with a diagonal matrix.
- `nlmixrLog` This is when the `params` and
`thetaMat` simulates the inverse cholesky decomposed matrix
with the `exp(x\^2)` along the diagonal. This only works
with a diagonal matrix.
- `nlmixrIdentity` This is when the `params` and
`thetaMat` simulates the inverse cholesky decomposed matrix.
This only works with a diagonal matrix.
### sigmaDf
`sigmaDf` Degrees of freedom of the sigma t-distribution. By
default it is equivalent to `Inf`, or a normal distribution.
### sigmaIsChol
`sigmaIsChol` Boolean indicating if the sigma is in the
Cholesky decomposition instead of a symmetric covariance
### sigmaSeparation
`sigmaSeparation` separation strategy for sigma;
Tells the type of separation strategy when
simulating covariance with parameter uncertainty with standard
deviations modeled in the `thetaMat` matrix.
* `"lkj"` simulates the correlation matrix from the
`rLKJ1` matrix with the distribution parameter `eta`
equal to the degrees of freedom `nu` by `(nu-1)/2`
* `"separation"` simulates from the identity inverse Wishart
covariance matrix with `nu` degrees of freedom. This is then
converted to a covariance matrix and augmented with the modeled
standard deviations. While computationally more complex than the
`"lkj"` prior, it performs better when the covariance matrix
size is greater or equal to 10
* `"auto"` chooses `"lkj"` when the dimension of the
matrix is less than 10 and `"separation"` when greater
than equal to 10.
### dfObs
`dfObs` Degrees of freedom to sample the unexplained variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
### resample
`resample` A character vector of model variables to resample
from the input dataset; This sampling is done with replacement.
When `NULL` or `FALSE` no resampling is done. When
`TRUE` resampling is done on all covariates in the input
dataset
### resampleID
`resampleID` boolean representing if the resampling should be
done on an individual basis `TRUE` (ie. a whole patient is
selected) or each covariate is resampled independent of the
subject identifier `FALSE`. When `resampleID=TRUE`
correlations of parameters are retained, where as when
`resampleID=FALSE` ignores patient covariate correaltions.
Hence the default is `resampleID=TRUE`.
## rxode2 output options
### returnType
`returnType` This tells what type of object is returned. The
currently supported types are:
* `"rxSolve"` (default) will return a reactive data frame
that can change easily change different pieces of the solve and
update the data frame. This is the currently standard solving
method in rxode2, is used for `rxSolve(object, ...)`, `solve(object,...)`,
* `"data.frame"` -- returns a plain, non-reactive data
frame; Currently very slightly faster than `returnType="matrix"`
* `"matrix"` -- returns a plain matrix with column names attached
to the solved object. This is what is used `object$run` as well as `object$solve`
* `"data.table"` -- returns a `data.table`; The `data.table` is
created by reference (ie `setDt()`), which should be fast.
* `"tbl"` or `"tibble"` returns a tibble format.
### addDosing
`addDosing` Boolean indicating if the solve should add rxode2
EVID and related columns. This will also include dosing
information and estimates at the doses. Be default, rxode2
only includes estimates at the observations. (default
`FALSE`). When `addDosing` is `NULL`, only
include `EVID=0` on solve and exclude any model-times or
`EVID=2`. If `addDosing` is `NA` the classic
`rxode2` EVID events are returned. When `addDosing` is `TRUE`
add the event information in NONMEM-style format; If
`subsetNonmem=FALSE` rxode2 will also include extra event types
(`EVID`) for ending infusion and modeled times:
* `EVID=-1` when the modeled rate infusions are turned
off (matches `rate=-1`)
* `EVID=-2` When the modeled duration infusions are
turned off (matches `rate=-2`)
* `EVID=-10` When the specified `rate` infusions are
turned off (matches `rate>0`)
* `EVID=-20` When the specified `dur` infusions are
turned off (matches `dur>0`)
* `EVID=101,102,103,...` Modeled time where 101 is the
first model time, 102 is the second etc.
### keep
`keep` Columns to keep from either the input dataset or the
`iCov` dataset. With the `iCov` dataset, the column
is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward)
imputation is performed.
### drop
`drop` Columns to drop from the output
### idFactor
`idFactor` This boolean indicates if original ID values
should be maintained. This changes the default sequentially
ordered ID to a factor with the original ID values in the
original dataset. By default this is enabled.
### subsetNonmem
`subsetNonmem` subset to NONMEM compatible EVIDs only. By
default `TRUE`.
### scale
`scale` a numeric named vector with scaling for ode
parameters of the system. The names must correspond to the
parameter identifiers in the ODE specification. Each of the
ODE variables will be divided by the scaling factor. For
example `scale=c(center=2)` will divide the center ODE
variable by 2.
### amountUnits
`amountUnits` This supplies the dose units of a data frame
supplied instead of an event table. This is for importing the
data as an rxode2 event table.
### timeUnits
`timeUnits` This supplies the time units of a data frame
supplied instead of an event table. This is for importing the
data as an rxode2 event table.
### theta
`theta` A vector of parameters that will be named `THETA\[#\]` and
added to parameters
### eta
`eta` A vector of parameters that will be named `ETA\[#\]` and
added to parameters
### from
`from` When there is no observations in the event table,
start observations at this value. By default this is zero.
### to
`to` When there is no observations in the event table, end
observations at this value. By default this is 24 + maximum
dose time.
### length.out
`length.out` The number of observations to create if there
isn't any observations in the event table. By default this is 200.
### by
`by` When there are no observations in the event table, this
is the amount to increment for the observations between `from`
and `to`.
### warnIdSort
`warnIdSort` Warn if the ID is not present and rxode2 assumes
the order of the parameters/iCov are the same as the order of
the parameters in the input dataset.
### warnDrop
`warnDrop` Warn if column(s) were supposed to be dropped, but
were not present.
## Internal rxode2 options
### nDisplayProgress
`nDisplayProgress` An integer indicating the minimum number
of c-based solves before a progress bar is shown. By default
this is 10,000.
### simVariability
`simVariability` determines if the variability is simulated.
When `NA` (default) this is determined by the solver.
### ...
`...` Other arguments including scaling factors for each
compartment. This includes S# = numeric will scale a compartment
# by a dividing the compartment amount by the scale factor,
like NONMEM.
### a
`a` when using `solve()`, this is equivalent to the
`object` argument. If you specify `object` later in
the argument list it overwrites this parameter.
### b
`b` when using `solve()`, this is equivalent to the
`params` argument. If you specify `params` as a
named argument, this overwrites the output
### updateObject
`updateObject` This is an internally used flag to update the
rxode2 solved object (when supplying an rxode2 solved object) as
well as returning a new object. You probably should not
modify it's `FALSE` default unless you are willing to
have unexpected results.
## Parallel/Threaded Solve
### cores
`cores` Number of cores used in parallel ODE solving. This
is equivalent to calling [setRxThreads()]
### nCoresRV
`nCoresRV` Number of cores used for the simulation of the
sigma variables. By default this is 1. To reproduce the results
you need to run on the same platform with the same number of
cores. This is the reason this is set to be one, regardless of
what the number of cores are used in threaded ODE solving.
### nLlikAlloc
`nLlikAlloc` The number of log likelihood endpoints that are
used in the model. This allows independent log likelihood per
endpoint in focei for nlmixr2. It likely shouldn't be set,
though it won't hurt anything if you do (just may take up more
memory for larger allocations).
### useStdPow
`useStdPow` This uses C's `pow` for exponentiation instead of
R's `R_pow` or `R_pow_di`. By default this is `FALSE`
### ss2cancelAllPending
`ss2cancelAllPending` When `TRUE` the `SS=2` event type
cancels all pending doses like `SS=1`. When `FALSE` the pending
doses not canceled with `SS=2` (the infusions started before
`SS=2` occurred are canceled, though).
### addlKeepsCov
`addlKeepsCov` This determines if the additional dosing items
repeats the dose only (`FALSE`) or keeps the covariates at the
record of the dose (`TRUE`)
### addlDropSs
`addlDropSs` When there are steady state doses with an `addl`
specification the steady state flag is dropped with repeated
doses (when `TRUE`) or retained (when `FALSE`)
### ssAtDoseTime
`ssAtDoseTime` Boolean that when `TRUE` back calculates the
steady concentration at the actual time of dose, otherwise when
`FALSE` the doses are shifted
### naTimeHandle
`naTimeHandle` Determines what time of handling happens when
the time becomes `NA`: current options are:
- `ignore` this ignores the `NA` time input and passes it through.
- `warn` (default) this will produce a warning at the end of the
solve, but continues solving passing through the `NA` time
- `error` this will stop this solve if this is not a parallel
solved ODE (otherwise stopping can crash R)
<!--chapter:end:07-solving.Rmd-->
# rxode2 output {#output}
```{r eventTableOutput, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("^#", "##", readLines("rxode2/vignettes/df.Rmdh")),
envir = environment(), quiet = TRUE)), sep="\n")
```
<!--chapter:end:08-output.Rmd-->
# Simulation
```{r simulation1, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("^#", "##", readLines("rxode2/man-roxygen/rmdhunks/single-subject.Rmdh")),
envir = environment(), quiet = TRUE)), sep="\n")
```
```{r simulation2, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("^#", "##", readLines("rxode2/man-roxygen/rmdhunks/sim-var.Rmd")),
envir = environment(), quiet = TRUE)), sep="\n")
```
```{r simulation3, echo=FALSE, results='asis'}
cat(unlist(knitr::knit_child(text = gsub("^#", "##",
readLines("rxode2/man-roxygen/rmdhunks/prior-data.Rmd")),
envir = environment(), quiet = TRUE)), sep="\n")
```
<!--chapter:end:09-simulation.Rmd-->
# Examples
This section is for example models to get you started in common
simulation scenarios.
```{r modelTypes, child='rxode2/man-roxygen/rmdhunks/model-types.Rmd'}
```
## Weight based dosing
```{r wtBased, echo=FALSE, results='asis'}
cat(gsub("(^|\n) *# ", "\\1### ",
unlist(knitr::knit_child(text = readLines("rxode2/man-roxygen/rmdhunks/rxode2-wt.Rmd"),
envir = environment(), quiet = TRUE))), sep="\n")
```
## Inter-occasion and other nesting examples
```{r iov, echo=FALSE, results='asis'}
cat(gsub("(^|\n) *# ", "\\1## ",
unlist(knitr::knit_child(text = readLines("rxode2/man-roxygen/rmdhunks/nesting.Rmdh"),
envir = environment(), quiet = TRUE))), sep="\n")
```
## Transit compartment models
```{r transit, child='rxode2/man-roxygen/rmdhunks/transit-compartments.Rmdh'}
```