-
Notifications
You must be signed in to change notification settings - Fork 1
/
theorems_chapter4.tex
152 lines (133 loc) · 4.24 KB
/
theorems_chapter4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
\documentclass{amsart}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{fullpage}
\usepackage{enumerate}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\theoremstyle{definition}
\newtheorem*{definition*}{Definition}
\newtheorem*{note*}{Note}
\begin{document}
\section*{Chapter 4}
\begin{theorem}
Let $x$ and $y$ be real numbers.
Then
\begin{enumerate}[(1)]
\item
$[x] \leq x \leq [x] + 1], x-1 < [x] \leq x, 0 \leq x - [x] < 1.$
\item
$[x] = \sum_{1 \leq i \leq x} 1 \quad \text{if $x \leq 0$}$.
\item
$[x+m] = [x] + m$ if $m$ is an integer.
\item
$[x] + [y] \leq [x + y] \leq [x] + [y] + 1$.
\item
$[x] + [-x] = \begin{cases} 0 & \text{if $x$ is an integer} \\
-1 & \text{otherwise} \end{cases}$
\item
$\left[ \frac{[x]}{m} \right] = \left[ \frac{x}{m} \right]$
if $m$ is a positive integer.
\item
$\cdots$
\end{enumerate}
$\cdots$
\end{theorem}
\begin{theorem}
de Policgnac's formula.
Let $p$ denote a prime.
Then the largest exponent $e$ such that $p^e \parallel n!$
is
\[
e = \sum^{\infty}_{i = 1} \left[ \frac{n}{p^i} \right].
\]
\end{theorem}
\begin{definition*}
A function $f$ is arithmetic if its domain is the positive
integers and whose range is a subset of the complex numbers.
In other words, $f(n)$ is defined for all positive
integers $n$.
\emph{Arithmetic functions} are also called
\emph{number theoretic functions}, or
\emph{numerical functions.}
\end{definition*}
\begin{note*}
An arithmetic function does not need to be defined for 0.
Also, $\phi$, or Euler's function, is an arithmetic function.
\end{note*}
\begin{definition*}
For positive integers $n$ we make the following definitions
\begin{itemize}
\item[] $d(n)$ is the number of positive divisors of $n$.
\item[] $\sigma(n)$ is the sum of the positive divisors of $n$.
\item[] $\sigma_k(n)$ is the sum of the $k$th powers of the
positive divisors of $n$.
\item[] $\omega(n)$ is the number of distinct primes dividing $n$.
\item[] $\Omega(n)$ is the number of primes dividing $n$, counting
multiplicity.
\end{itemize}
\end{definition*}
\begin{note*}
Prime numbers are positive by definition.
\end{note*}
\begin{definition*}
If $f(n)$ is an arithmetic function \underline{not identically zero} such
that $f(mn) = f(m)f(n)$ for every pair of
\underline{positive} integers $m,n$
satisfying $\gcd(m,n) = 1$, then $f(n)$ is said to be multiplicitive.
If $f(mn) = f(m)f(n)$ whether $m$ and $n$ are relatively prime or not,
then $f(n)$ is said to be totally multiplicitive or completely
multiplicitive.
\end{definition*}
\begin{note*}
If $f$ is a multiplicitive function, then $f(n) = f(n)f(1)$.
Since there is an $n$ such that $f(n) \neq 0$, we can divide
by $f(n)$ to reveal that $f(1) = 1$.
Thus, an easy way to exclude a function as multiplicitive is to
find $f(1) \neq 1$.
\end{note*}
\begin{note*}
For a multiplicitive function $f$, we see that for
$n = \prod p^{\alpha}$, we have
$f(n) = f\left( \prod p^{\alpha} \right) = \prod f(p^{\alpha})$.
\end{note*}
\begin{theorem}
Let $f(n)$ be a multiplicitive function and let
$F(n) = \sum_{d \mid n} f(d)$.
Then $F(n)$ is multiplicitive.
\end{theorem}
\begin{theorem}
For every positive integer $n$,
\begin{align*}
\sigma(n) &= \prod_{p^{\alpha} \parallel n}
\left( \frac{p^{\alpha + 1} - 1}{p -1} \right).
\end{align*}
\end{theorem}
\begin{definition*}
For positive integers $n$ put $\mu(n) = (-1)^{\omega(n)}$
if $n$ is square-free, and set $\mu(n) = 0$ otherwise.
Then $\mu(n)$ is the M\"{o}bius mu function.
\end{definition*}
\begin{theorem}
The function $\mu(n)$ is multiplicitive and
\begin{align*}
\sum_{d \mid n} \mu(d) =
\begin{cases}
1 & \text{if} \quad n = 1 \\
0 & \text{if} \quad n > 1.
\end{cases}
\end{align*}
\end{theorem}
\begin{theorem}
M\"{o}bius inversion formula.
If $F(n) = \sum_{d \mid n} f(d)$ for every positive integer $n$,
then
\[
f(n) = \sum_{d \mid n} \mu(d) F\left( \frac{n}{d} \right).
\]
\end{theorem}
\begin{theorem}
If $f(n) = \sum_{d \mid n} \mu(d) F\left( \frac{n}{d} \right)$ for
every positive integer $n$, then $F(n) = \sum_{d \mid n} f(d)$.
\end{theorem}
\end{document}