-
Notifications
You must be signed in to change notification settings - Fork 13
/
fast5_segmenter.jl
407 lines (347 loc) · 17.6 KB
/
fast5_segmenter.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Load Oxford Nanopore Technologies FAST5 files, do outlier value cleanup/averaging, then segment the results according to expected translocation rate
# Segmentation based on http://homepages.spa.umn.edu/~willmert/science/ksegments/, updated to Julia 1.1 libraries, data structures and syntax,
# and writing the data to files.
# Paul Gordon, 2019 ([email protected])
# Uncomment the following lines the first time that you run the program, to ensure you have support for HDF5 file reading and some basic stats.
# Automatic plotting of the segmentation is disabled at the moment.
#import Pkg
#Pkg.add("HDF5")
#Pkg.add("FreqTables");
#Pkg.add("Statistics");
#Pkg.add("StatsBase");
#Pkg.add("Plots")
#Pkg.add("PyPlot")
#using Plots
#pyplot()
using HDF5
using FreqTables
using Statistics
using StatsBase
using LinearAlgebra
using DelimitedFiles
function prepare_ksegments(series::Array{Int16,1}, weights::Array{Float64,1})
N = length(series);
# Pre-allocate matrices
wgts = diagm(0 => weights);
wsum = diagm(0 => weights .* series);
sqrs = diagm(0 => weights .* series .* series);
# Also initialize the outputs with sane defaults
dists = zeros(Float64, N,N);
means = diagm(0 => convert(Array{Float64}, series));
# Fill the upper triangle of dists and means by performing up-right
# diagonal sweeps through the matrices
for δ=1:N
for l=1:(N-δ)
# l = left boundary, r = right boundary
r = l + δ;
# Incrementally update every partial sum
wgts[l,r] = wgts[l,r-1] + wgts[r,r];
wsum[l,r] = wsum[l,r-1] + wsum[r,r];
sqrs[l,r] = sqrs[l,r-1] + sqrs[r,r];
# Calculate the mean over the range
means[l,r] = wsum[l,r] / wgts[l,r];
# Then update the distance calculation. Normally this would have a term
# of the form
# - wsum[l,r].^2 / wgts[l,r]
# but one of the factors has already been calculated in the mean, so
# just reuse that.
dists[l,r] = sqrs[l,r] - means[l,r]*wsum[l,r];
end
end
return (dists,means)
end
function regress_ksegments(series::Array{Int16,1}, weights::Array{Float64,1}, k::Int)
# Make sure we have a row vector to work with
if (length(series) == 1)
# Only a scalar value
error("series must have length > 1")
end
# Ensure series and weights have the same size
if (size(series) != size(weights))
error("series and weights must have the same shape")
end
# Make sure the choice of k makes sense
if (k < 1 || k > length(series))
error("k must be in the range 1 to length(series)")
end
N = length(series);
# Get pre-computed distances and means for single-segment spans over any
# arbitrary subsequence series(i:j). The costs for these subsequences will
# be used *many* times over, so a huge computational factor is saved by
# just storing these ahead of time.
(one_seg_dist,one_seg_mean) = prepare_ksegments(series, weights);
# Keep a matrix of the total segmentation costs for any p-segmentation of
# a subsequence series[1:n] where 1<=p<=k and 1<=n<=N. The extra column at
# the beginning is an effective zero-th row which allows us to index to
# the case that a (k-1)-segmentation is actually disfavored to the
# whole-segment average.
k_seg_dist = zeros(Float64, k, N+1);
# Also store a pointer structure which will allow reconstruction of the
# regression which matches. (Without this information, we'd only have the
# cost of the regression.)
k_seg_path = zeros(Int, k, N);
# Initialize the case k=1 directly from the pre-computed distances
k_seg_dist[1,2:end] = one_seg_dist[1,:];
# Any path with only a single segment has a right (non-inclusive) boundary
# at the zeroth element.
for i=1:N
k_seg_path[1,i] = 0;
end
# Then for p segments through p elements, the right boundary for the (p-1)
# case must obviously be (p-1).
for i in 1:k
k_seg_path[i,i] = k - 1;
end
# Now go through all remaining subcases 1 < p <= k
for p=2:k
# Update the substructure as successively longer subsequences are
# considered.
for n=p:N
# Enumerate the choices and pick the best one. Encodes the recursion
# for even the case where j=1 by adding an extra boundary column on the
# left side of k_seg_dist. The j-1 indexing is then correct without
# subtracting by one since the real values need a plus one correction.
choices = Array{Float64}(undef, n);
for i=1:n
choices[i] = k_seg_dist[p-1, i] + one_seg_dist[i, n];
end
(bestval,bestidx) = findmin(choices);
# Store the sub-problem solution. For the path, store where the (p-1)
# case's right boundary is located.
k_seg_path[p,n] = bestidx - 1;
# Then remember to offset the distance information due to the boundary
# (ghost) cells in the first column.
k_seg_dist[p,n+1] = bestval;
end
end
# Eventual complete regression
reg = zeros(Float64, size(series));
# Now use the solution information to reconstruct the optimal regression.
# Fill in each segment reg(i:j) in pieces, starting from the end where the
# solution is known.
rhs = length(reg);
for p=k:-1:1
# Get the corresponding previous boundary
lhs = k_seg_path[p,rhs];
# The pair (lhs,rhs] is now a half-open interval, so set it appropriately
for i=lhs+1:rhs
reg[i] = one_seg_mean[lhs+1,rhs];
end
# Update the right edge pointer
rhs = lhs;
end
return reg
end
translocation_rate_per_second = parse(Int64, ARGS[1]);
max_samples_to_segment = parse(Int64, ARGS[2]);
max_samples_to_supersegment = parse(Int64, ARGS[3]);
output_prefix = ARGS[4];
avg_segment_size = 1000/translocation_rate_per_second; # in ms
#println("Average expected segment duration is ", avg_segment_size, "ms");
# read the fast5 file name from the command line
for argi=5:size(ARGS)[1]
fast5 = h5open(ARGS[argi], "r");
channel = fast5["UniqueGlobalKey/channel_id"];
channel_number = read(attrs(channel), "channel_number");
sampling_frequency = read(attrs(channel), "sampling_rate");
for nanopore_read in fast5["/Raw/Reads"]
whole_raw_signal = read(nanopore_read, "Signal");
read_number = read(attrs(nanopore_read), "read_number");
output_file_prefix = joinpath(output_prefix,string("ch", channel_number, "_read", read_number));
writedlm(string(output_file_prefix, ".raw.txt"), whole_raw_signal, "\n");
# Commented lines represent option to print first pass segemtnation results to a file for plotting or debugging.
# fileName = string(output_file_prefix, ".max", translocation_rate_per_second, "bps.event_means.txt");
# io = open(fileName,"w");
fileName = string(output_file_prefix, ".max", translocation_rate_per_second, "bps.event_medians.txt");
#io2 = open(fileName,"w");
io = open(fileName,"w");
num_samples = size(whole_raw_signal)[1];
println("Processing ", output_file_prefix, " (", num_samples, " samples, ", max_samples_to_segment, " at a time)");
first_round_medians = zeros(0);
events_so_far = 0;
for start_index=1:max_samples_to_segment:(num_samples-4)
samples_to_segment = max_samples_to_segment;
if(start_index+samples_to_segment > num_samples)
samples_to_segment = num_samples-start_index;
end
raw_signal = whole_raw_signal[start_index:(start_index+samples_to_segment)];
#if(num_samples > max_samples_to_segment)
# num_samples = max_samples_to_segment;
# raw_signal = raw_signal[start_index:(start_index+num_samples)];
#end
# Even weighting for all data points in the series...TODO: put less weight on the starting values?
#subsampled_length = floor(Int, num_samples/2);
subsampled_length = floor(Int, samples_to_segment/2);
if(subsampled_length < 3)
continue
end
smoothed_signal = zeros(Int16, subsampled_length);
# Two stage smoothing to reduce effect of high measurements (min) while tempering low measurements a bit too (mean)
[smoothed_signal[Int(i/2)]=floor(Int16, Statistics.mean(raw_signal[(i-1):i])) for i=2:2:samples_to_segment]
[smoothed_signal[Int(i/2)]=floor(Int16, minimum(smoothed_signal[(i-1):i])) for i=2:2:subsampled_length]
subsampled_length = floor(Int, subsampled_length/2);
smoothed_signal = smoothed_signal[1:subsampled_length];;
wght = ones(subsampled_length);
last_expected_num_events = 0;
for test_translocation_rate_per_second=translocation_rate_per_second:-1:4
#elapsed_time = num_samples/sampling_frequency*1000; # in milliseconds
elapsed_time = samples_to_segment/sampling_frequency*1000; # in milliseconds
time_scale = 0:(1/sampling_frequency*1000):elapsed_time;
expected_num_events = ceil(Int, elapsed_time*test_translocation_rate_per_second/1000);
if(expected_num_events > subsampled_length/2)
continue
end
# Would yield same result
if(last_expected_num_events == expected_num_events)
continue
end
last_expected_num_events = expected_num_events
# Run the regression
means = regress_ksegments(smoothed_signal, wght, expected_num_events);
# If we are getting events with a tiny number of members, let's assume have too many segments
# Eliminate segments of size 1
num_singletons = 0;
for i=2:(subsampled_length-1)
# singleton
if(means[i-1] != means[i] && means[i+1] != means[i])
num_singletons = num_singletons + 1
# Pick the neighbour with the smallest distance to join
if(abs(means[i-1] - means[i]) < abs(means[i+1] - means[i]))
means[i] = means[i-1];
else
means[i] = means[i+1];
end
end
end
if(num_singletons > 0)
continue
end
# Find median for each segment
medians = zeros(Int16, subsampled_length);
segment_raw_values = raw_signal[1:4];
segment_start = 1;
for i=2:subsampled_length
if(means[i-1] != means[i])
med = floor(Int16, median(segment_raw_values));
# assign to all the members of the segment
medians[segment_start:(i-1)] .= med;
segment_raw_values = zeros(Int16, 0);
segment_start = i;
else
append!(segment_raw_values, raw_signal[(4*i-3):(4*i)]);
end
end
# Unimodal without the singletons?
if(length(segment_raw_values) == 0)
continue
end
medians[segment_start:subsampled_length] .= floor(Int16, median(segment_raw_values));
# println("Raw position ", start_index, " (event ", events_so_far, "), estimated rate of ", test_translocation_rate_per_second);
events_so_far += expected_num_events-num_singletons;
# Expand the means result to the original data length
#means = StatsBase.inverse_rle(means, fill(4, subsampled_length));
medians = StatsBase.inverse_rle(medians, fill(4, subsampled_length));
# Append the regression breakpoints to a file
append!(first_round_medians, medians);
# Plot the raw data
#Plots.scatter(time_scale, raw_signal,
# title="Unimodal regression (dwells between \noligonucleotide nanopore translocation)\n with uniform weighting",
# xlabel="Elapsed Time (ms)",
# ylabel="Electrical Current (pA)",
# xlim=[0,elapsed_time],
# xticks = Int.(round.(0:avg_segment_size:elapsed_time)),
# size = (plot_width, plot_height),
# label=""); # disable legend
# Overlay (indicated by '!') the optimal unimodal regression
#plot!(time_scale, means, color="red", linewidth=2, linetype=:steppre, label="")
#plot!(time_scale, medians, color="red", linewidth=2, linetype=:steppre, label="")
break;
end
end
# writedlm(io, first_round_medians, "\n");
# Perform a second round of segmentation over larger areas after adjusting all the original data towards the segmented medians.
# This will reduce segmentation window edge artefacts.
events_so_far = 0;
final_medians = zeros(0);
for start_index=1:max_samples_to_supersegment:(num_samples-2)
samples_to_segment = max_samples_to_supersegment;
if(start_index+samples_to_segment > num_samples)
samples_to_segment = num_samples-start_index;
end
raw_signal = whole_raw_signal[start_index:(start_index+samples_to_segment)];
subsampled_length = floor(Int, samples_to_segment/2);
if(subsampled_length < 2)
continue
end
smoothed_signal = zeros(Int16, subsampled_length);
# Single stage 2-datapoint smoothing with regional median correction to reduce wandering drift effect on oversegmentation
[smoothed_signal[Int(i/2)]=floor(Int16, (first_round_medians[i-1]+first_round_medians[i]+raw_signal[i-1]+raw_signal[i])/4) for i=2:2:samples_to_segment]
smoothed_signal = smoothed_signal[1:subsampled_length];
wght = ones(subsampled_length);
last_expected_num_events = 0;
for test_translocation_rate_per_second=translocation_rate_per_second:-1:4
elapsed_time = samples_to_segment/sampling_frequency*1000; # in milliseconds
time_scale = 0:(1/sampling_frequency*1000):elapsed_time;
expected_num_events = ceil(Int, elapsed_time*test_translocation_rate_per_second/1000);
if(expected_num_events > subsampled_length/2)
continue
end
# Would yield same result
if(last_expected_num_events == expected_num_events)
continue
end
last_expected_num_events = expected_num_events
# Run the regression
means = regress_ksegments(smoothed_signal, wght, expected_num_events);
# If we are getting events with a tiny number of members, let's assume have too many segments
# Eliminate segments of size 1
num_singletons = 0;
for i=2:(subsampled_length-1)
# singleton
if(means[i-1] != means[i] && means[i+1] != means[i])
num_singletons = num_singletons + 1
# Pick the neighbour with the smallest distance to join
if(abs(means[i-1] - means[i]) < abs(means[i+1] - means[i]))
means[i] = means[i-1];
else
means[i] = means[i+1];
end
end
end
if(num_singletons > 0)
continue
end
# Find median for each segment
medians = zeros(Int16, subsampled_length);
segment_raw_values = raw_signal[1:2];
segment_start = 1;
for i=2:subsampled_length
if(means[i-1] != means[i])
med = floor(Int16, median(segment_raw_values));
# assign to all the members of the segment
medians[segment_start:(i-1)] .= med;
segment_raw_values = zeros(Int16, 0);
segment_start = i;
else
append!(segment_raw_values, raw_signal[(2*i-1):(2*i)]);
end
end
# Unimodal without the singletons?
if(length(segment_raw_values) == 0)
continue
end
medians[segment_start:subsampled_length] .= floor(Int16, median(segment_raw_values));
println("Raw position ", start_index, " (final event ", events_so_far, "), estimated rate of ", test_translocation_rate_per_second);
events_so_far += expected_num_events-num_singletons;
# Expand the means result to the original data length (e.g. for plotting vs. raw)
# medians = StatsBase.inverse_rle(medians, fill(2, subsampled_length));
append!(final_medians, medians);
break;
end
end
#writedlm(io2, final_medians, "\n");
writedlm(io, final_medians, "\n");
# Save the plot to a file
# Plots.savefig(string(output_file_prefix, ".max", translocation_rate_per_second, "bps.segmented.png"));
end
end