-
Notifications
You must be signed in to change notification settings - Fork 0
/
MassDifferencesLEGACY.nb
15566 lines (15144 loc) · 698 KB
/
MassDifferencesLEGACY.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 714443, 15556]
NotebookOptionsPosition[ 698794, 15051]
NotebookOutlinePosition[ 699130, 15066]
CellTagsIndexPosition[ 699087, 15063]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Mass Differences", "Title",
CellChangeTimes->{{3.646561250785887*^9, 3.6465612549931793`*^9}}],
Cell["\<\
We\[CloseCurlyQuote]ll use the following mesons\\baryons for the analysis. I\
\[CloseCurlyQuote]ve tabulated mass, possible charges, slope, intercept. They \
are all of angular momentum 0.\
\>", "Text",
CellChangeTimes->{{3.64656126506663*^9, 3.646561287759823*^9}, {
3.646561328551486*^9, 3.646561391622211*^9}}],
Cell[CellGroupData[{
Cell["determination of charge and masses", "Chapter",
CellChangeTimes->{{3.646779808572959*^9, 3.646779836769912*^9}}],
Cell[CellGroupData[{
Cell["Data", "Section",
CellChangeTimes->{{3.646561298894452*^9, 3.646561299425159*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
"The", " ", "mass", " ", "of", " ", "the", " ", "Ksp", " ", "is", " ",
"the", " ", "hadroproduced", " ", "one"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Mass", "=",
RowBox[{"<|", "\[IndentingNewLine]",
RowBox[{"(*", "mesons", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Kaonp", "\[Rule]", " ", "493.6"}], " ", ",", " ",
RowBox[{"Kaon0", "\[Rule]", " ", "497.6"}], " ", ",", " ",
RowBox[{"Ksp", "\[Rule]", "891.66"}], ",",
RowBox[{"Ksn", "\[Rule]", " ", "895.81"}], ",",
RowBox[{"Dn", "\[Rule]", " ", "1864.84"}], ",",
RowBox[{"Dp", "\[Rule]", " ", "1896.61"}], " ", ",",
RowBox[{"\[Pi]p", "\[Rule]", " ", "139.57"}], ",",
RowBox[{"\[Pi]n", "\[Rule]", " ", "134.97"}], ",",
RowBox[{"\[Rho]n", "\[Rule]", "775.26"}], ",",
RowBox[{"\[Rho]p", "\[Rule]", "775.26"}], ",",
RowBox[{"Bn", "\[Rule]", " ", "5279.58"}], ",",
RowBox[{"Bp", "\[Rule]", " ", "5279.26"}], ",", "\[IndentingNewLine]",
RowBox[{"(*", "baryons", "*)"}], "\[IndentingNewLine]",
RowBox[{"proton", " ", "\[Rule]", " ", "938.272"}], ",",
RowBox[{"neutron", "\[Rule]", " ", "939.5653"}], ",", " ",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ", "2470.88"}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ", "2467.8"}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]", "2286.46"}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]", "2452.9"}], ",",
RowBox[{"\[CapitalSigma]cn", "\[Rule]", "2453.74"}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]", "1189.3"}], ",",
RowBox[{"\[CapitalSigma]n", "\[Rule]", "1192.6"}], " ", ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]", " ", "1531.8"}], ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]", " ", "1535"}], " ", ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]", " ", "1315"}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", "1322"}]}], "|>"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"m1", "=",
RowBox[{"<|",
RowBox[{
RowBox[{"Kaon", "\[Rule]", " ", "ms"}], ",", " ",
RowBox[{"proton", " ", "\[Rule]", "mu"}], " ", ",",
RowBox[{"neutron", "\[Rule]", " ", "md"}], ",", " ",
RowBox[{"Ksp", "\[Rule]", " ", "ms"}], ",", " ",
RowBox[{"Ksn", "\[Rule]", " ", "ms"}], ",",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ", "mc"}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ", "mc"}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]", "md"}], ",",
RowBox[{"Dp", "\[Rule]", "md"}], ",",
RowBox[{"Dn", "\[Rule]", "mu"}], ",",
RowBox[{"\[Pi]p", "\[Rule]", " ", "mu"}], ",",
RowBox[{"\[Pi]n", "\[Rule]", " ",
FractionBox[
RowBox[{"mu", "+", "md"}], "2"]}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]", "mc"}], ",",
RowBox[{"\[CapitalSigma]cn", "\[Rule]", "mc"}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]", "ms"}], ",",
RowBox[{"\[CapitalSigma]n", "\[Rule]", "ms"}], " ", ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]", " ", "ms"}], ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]", " ", "ms"}], ",",
RowBox[{"\[Rho]n", "\[Rule]",
FractionBox[
RowBox[{"mu", "+", "md"}], "2"]}], ",",
RowBox[{"\[Rho]p", "\[Rule]", "mu"}], ",",
RowBox[{"Bn", "\[Rule]", " ", "mb"}], ",",
RowBox[{"Bp", "\[Rule]", " ", "mb"}], ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]", " ", "ms"}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", "ms"}]}], "|>"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"m2", "=",
RowBox[{"<|",
RowBox[{
RowBox[{"Kaon", "\[Rule]", " ", "md"}], ",", " ",
RowBox[{"proton", " ", "\[Rule]", " ", "md"}], ",",
RowBox[{"neutron", "\[Rule]", " ", "md"}], ",",
RowBox[{"Ksp", "\[Rule]", " ", "mu"}], ",", " ",
RowBox[{"Ksn", "\[Rule]", " ", "md"}], ",",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ", "md"}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ", "mu"}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]", "mc"}], ",",
RowBox[{"Dp", "\[Rule]", "mc"}], ",",
RowBox[{"Dn", "\[Rule]", "mc"}], ",",
RowBox[{"\[Pi]p", "\[Rule]", " ", "md"}], ",",
RowBox[{"\[Pi]n", "\[Rule]", " ",
FractionBox[
RowBox[{"mu", "+", "md"}], "2"]}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]", "mu"}], ",",
RowBox[{"\[CapitalSigma]cn", "\[Rule]", "md"}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]", "mu"}], ",",
RowBox[{"\[CapitalSigma]n", "\[Rule]", "md"}], ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]", " ", "mu"}], ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]", " ", "md"}], ",",
RowBox[{"\[Rho]n", "\[Rule]",
FractionBox[
RowBox[{"mu", "+", "md"}], "2"]}], ",",
RowBox[{"\[Rho]p", "\[Rule]", "md"}], ",",
RowBox[{"Bn", "\[Rule]", " ", "md"}], ",",
RowBox[{"Bp", "\[Rule]", " ", "mu"}], ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]", "mu"}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", "md"}]}], "|>"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Alpha]", "=",
RowBox[{"<|", "\[IndentingNewLine]",
RowBox[{"(*", "mesons", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Dp", "\[Rule]", "1.073"}], ",",
RowBox[{"Dn", "\[Rule]", "1.073"}], ",",
RowBox[{"\[Pi]p", "\[Rule]", "0.83"}], ",",
RowBox[{"\[Pi]n", "\[Rule]", "0.83"}], " ", ",",
RowBox[{"\[Rho]n", "\[Rule]", "0.896"}], ",",
RowBox[{"\[Rho]p", "\[Rule]", "0.896"}], ",",
RowBox[{"Kaon", "\[Rule]", " ", "0.8875"}], ",",
RowBox[{"Bn", "\[Rule]", " ", "0.204"}], ",",
RowBox[{"Bp", "\[Rule]", " ", "0.204"}], ",",
RowBox[{"Ksp", "\[Rule]", " ", "0.927"}], ",",
RowBox[{"Ksn", "\[Rule]", "0.927"}], ",", " ", "\[IndentingNewLine]",
RowBox[{"(*", "baryons", "*)"}], "\[IndentingNewLine]",
RowBox[{"proton", "\[Rule]", " ", "0.944"}], ",",
RowBox[{"neutron", "\[Rule]", " ", "0.944"}], ",",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ", "0.95"}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ", "0.95"}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]", "0.95"}], ",",
RowBox[{"(*",
RowBox[{
RowBox[{"\[CapitalSigma]cn", "\[Rule]"}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]"}], ","}], "*)"}],
RowBox[{"\[CapitalSigma]n", "\[Rule]", "0.95"}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]", "0.95"}], ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]", "0.95"}], ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]", "0.95"}], ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]", ".95"}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", " ", ".95"}]}], " ", "|>"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "=",
RowBox[{"<|", "\[IndentingNewLine]",
RowBox[{"(*", "mesons", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Dp", "\[Rule]",
RowBox[{"-", "0.07"}]}], ",",
RowBox[{"Dn", "\[Rule]",
RowBox[{"-", "0.07"}]}], ",",
RowBox[{"\[Pi]p", "\[Rule]",
RowBox[{"-", "0.23"}]}], ",",
RowBox[{"\[Pi]n", "\[Rule]",
RowBox[{"-", "0.23"}]}], ",",
RowBox[{"Kaon", "\[Rule]", " ", "0.57"}], ",",
RowBox[{"Ksp", "\[Rule]", " ", "0.32"}], ",",
RowBox[{"Ksn", "\[Rule]", " ", "0.32"}], ",",
RowBox[{"\[Rho]n", "\[Rule]", "0.52"}], ",",
RowBox[{"\[Rho]p", "\[Rule]", "0.52"}], ",",
RowBox[{"Bn", "\[Rule]", " ",
RowBox[{"-", "5.7"}]}], ",",
RowBox[{"Bp", "\[Rule]", " ",
RowBox[{"-", "5.7"}]}], ",", "\[IndentingNewLine]",
RowBox[{"(*", "baryons", "*)"}], "\[IndentingNewLine]", " ",
RowBox[{"proton", " ", "\[Rule]",
RowBox[{"-", "0.32"}]}], ",",
RowBox[{"neutron", " ", "\[Rule]",
RowBox[{"-", "0.32"}]}], ",",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ",
RowBox[{"-", "0.13"}]}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ",
RowBox[{"-", "0.13"}]}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]",
RowBox[{"-", "0.68"}]}], " ", ",",
RowBox[{"(*",
RowBox[{
RowBox[{"\[CapitalSigma]cn", "\[Rule]"}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]"}], ","}], "*)"}],
RowBox[{"\[CapitalSigma]n", "\[Rule]", "0.27"}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]", "0.27"}], ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]",
RowBox[{"-", "0.04"}]}], " ", ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]",
RowBox[{"-", "0.04"}]}], ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]",
RowBox[{"-", "0.04"}]}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", " ",
RowBox[{"-", "0.04"}]}]}], "|>"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Spin", "=",
RowBox[{"<|",
RowBox[{
RowBox[{"Kaon", "\[Rule]", " ", "0"}], ",",
RowBox[{"Ksp", "\[Rule]", " ", "1"}], ",",
RowBox[{"Ksn", "\[Rule]", " ", "1"}], ",", " ",
RowBox[{"proton", " ", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"neutron", " ", "\[Rule]",
FractionBox["1", "2"]}], " ", ",",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"Dn", "\[Rule]", " ", "0"}], ",",
RowBox[{"Dp", "\[Rule]", " ", "0"}], ",",
RowBox[{"\[Pi]p", "\[Rule]", "0"}], ",",
RowBox[{"\[Pi]n", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalSigma]cn", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalSigma]n", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]",
FractionBox["3", "2"]}], " ", ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]",
FractionBox["3", "2"]}], ",",
RowBox[{"\[Rho]n", "\[Rule]", "1"}], ",",
RowBox[{"\[Rho]p", "\[Rule]", "1"}], ",",
RowBox[{"Bn", "\[Rule]", " ", "0"}], ",",
RowBox[{"Bp", "\[Rule]", " ", "0"}], ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]",
FractionBox["1", "2"]}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", " ",
FractionBox["1", "2"]}]}], "|>"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Q", "=",
RowBox[{"<|",
RowBox[{
RowBox[{"Kaon", "\[Rule]", " ", "0.57"}], ",",
RowBox[{"Ksp", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"Ksn", "\[Rule]",
RowBox[{"-",
FractionBox["1", "9"]}]}], " ", ",", " ",
RowBox[{"proton", " ", "\[Rule]", " ",
FractionBox["2", "9"]}], ",",
RowBox[{"neutron", "\[Rule]", " ",
RowBox[{"-",
FractionBox["1", "9"]}]}], ",",
RowBox[{"\[CapitalXi]cn", "\[Rule]", " ",
RowBox[{"-",
FractionBox["1", "9"]}]}], ",",
RowBox[{"\[CapitalXi]cp", "\[Rule]", " ",
FractionBox["2", "9"]}], ",",
RowBox[{"\[CapitalLambda]cp", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"Dn", "\[Rule]", " ",
RowBox[{"-",
FractionBox["4", "9"]}]}], ",",
RowBox[{"Dp", "\[Rule]", " ",
FractionBox["2", "9"]}], ",",
RowBox[{"\[Pi]p", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"\[Pi]n", "\[Rule]",
RowBox[{"-",
FractionBox["5", "18"]}]}], ",",
RowBox[{"\[CapitalSigma]cp", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"\[CapitalSigma]cn", "\[Rule]",
RowBox[{"-",
FractionBox["1", "9"]}]}], ",",
RowBox[{"\[CapitalSigma]p", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"\[CapitalSigma]n", "\[Rule]",
RowBox[{"-",
FractionBox["1", "9"]}]}], ",",
RowBox[{"\[CapitalXi]2n", "\[Rule]",
RowBox[{"-",
FractionBox["4", "9"]}]}], " ", ",",
RowBox[{"\[CapitalXi]2m", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"\[Rho]n", "\[Rule]",
RowBox[{"-",
FractionBox["5", "18"]}]}], ",",
RowBox[{"\[Rho]p", "\[Rule]",
FractionBox["2", "9"]}], ",",
RowBox[{"Bn", "\[Rule]", " ",
RowBox[{"-",
FractionBox["1", "9"]}]}], ",",
RowBox[{"Bp", "\[Rule]",
FractionBox["2", "9"]}], ",", " ",
RowBox[{"\[CapitalXi]n", "\[Rule]",
FractionBox[
RowBox[{"-", "4"}], "9"]}], ",",
RowBox[{"\[CapitalXi]m", "\[Rule]", " ",
FractionBox["2", "9"]}]}], " ", "|>"}]}], ";"}]}]}]], "Input",
CellChangeTimes->{
3.64656130474231*^9, {3.6465614105063972`*^9, 3.646561439949768*^9}, {
3.646561544436187*^9, 3.646561791373547*^9}, {3.646562387195386*^9,
3.6465624495405893`*^9}, {3.646563308008388*^9, 3.646563339034477*^9}, {
3.6465643883307123`*^9, 3.646564438362891*^9}, {3.646564523427993*^9,
3.646564531659615*^9}, {3.646565172008829*^9, 3.646565189774485*^9}, {
3.6465652571408453`*^9, 3.646565297619082*^9}, {3.646565440618848*^9,
3.646565442966382*^9}, {3.6465655187825413`*^9, 3.6465655519625673`*^9}, {
3.646569683610385*^9, 3.646569711476338*^9}, {3.646569745333887*^9,
3.646569804948608*^9}, {3.646570097779459*^9, 3.6465701286397123`*^9}, {
3.6465702931487207`*^9, 3.6465703629585447`*^9}, {3.646571208169497*^9,
3.646571261288542*^9}, {3.6465713172032633`*^9, 3.646571424041997*^9}, {
3.6465717759841833`*^9, 3.64657187309759*^9}, {3.646572097390493*^9,
3.6465721005828133`*^9}, {3.646572248070601*^9, 3.646572248524246*^9}, {
3.646572352976904*^9, 3.646572359677041*^9}, {3.646572599107952*^9,
3.6465726030186872`*^9}, {3.6465727574935493`*^9, 3.6465728247439413`*^9},
3.6465742725476*^9, {3.646574303753839*^9, 3.646574320639776*^9}, {
3.6465743719085617`*^9, 3.6465743921554613`*^9}, {3.64657443953568*^9,
3.646574444989789*^9}, {3.646574909851776*^9, 3.646574960422141*^9}, {
3.6465750675075073`*^9, 3.6465750776922607`*^9}, {3.646596301211706*^9,
3.646596329396631*^9}, {3.6465964185065317`*^9, 3.646596419697671*^9}, {
3.6466262244328966`*^9, 3.6466262380398865`*^9}, 3.6466262787186966`*^9, {
3.6466320148564043`*^9, 3.646632016049439*^9}, {3.6466370380403643`*^9,
3.6466370405270357`*^9}, {3.646640569518292*^9, 3.646640569573326*^9},
3.646640633204032*^9, {3.646640695962365*^9, 3.646640698908504*^9}, {
3.646640829559003*^9, 3.646640831139105*^9}, {3.646640873315838*^9,
3.646640875809078*^9}, {3.646641026758923*^9, 3.646641049376308*^9},
3.6466411683998623`*^9, {3.646642294395362*^9, 3.646642356749967*^9},
3.646642424406683*^9, {3.646642540934888*^9, 3.646642545424306*^9}, {
3.646642589490847*^9, 3.646642619490926*^9}, {3.646642651140843*^9,
3.6466427739061117`*^9}, {3.646642859263681*^9, 3.6466429041879663`*^9}, {
3.646643005242474*^9, 3.646643024559958*^9}, 3.646643096431348*^9, {
3.646644092682734*^9, 3.646644172926103*^9}, {3.6466442179638023`*^9,
3.646644361387556*^9}, {3.646644400687332*^9, 3.646644401744419*^9}, {
3.646644446371828*^9, 3.646644454049632*^9}, {3.646646108902524*^9,
3.6466461663527393`*^9}, {3.646646205771489*^9, 3.64664621499597*^9}, {
3.64664657330294*^9, 3.6466466122009907`*^9}, {3.646646644377685*^9,
3.64664684061484*^9}, {3.646647934787189*^9, 3.646647946055029*^9}, {
3.646652709733062*^9, 3.64665274744636*^9}, {3.6466528299607153`*^9,
3.6466528336676683`*^9}, {3.6466528742022943`*^9, 3.646652874560278*^9}, {
3.646653165466844*^9, 3.646653169187812*^9}, {3.6466532050094957`*^9,
3.646653250066142*^9}, {3.6466532914081087`*^9, 3.646653297093574*^9}, {
3.646653386784083*^9, 3.646653430996752*^9}, {3.646653487751977*^9,
3.646653556168942*^9}, {3.646653600047748*^9, 3.646653840237653*^9}, {
3.646741136982576*^9, 3.646741138329921*^9}, {3.646775334973299*^9,
3.646775339369445*^9}, {3.646779096569219*^9, 3.646779096704954*^9},
3.646779473801125*^9, {3.6467797268673277`*^9, 3.646779728858059*^9}, {
3.6468012478165693`*^9, 3.646801274169689*^9}, {3.646801335280879*^9,
3.646801404173868*^9}, {3.646804495470277*^9, 3.6468045252756147`*^9}, {
3.646804563366613*^9, 3.6468045728687983`*^9}, {3.646804715722632*^9,
3.646804796969486*^9}, {3.646804885326367*^9, 3.646804914113141*^9},
3.646804981824039*^9, {3.646805078078404*^9, 3.64680521191813*^9}, {
3.646805701362163*^9, 3.646805712658497*^9}, {3.646805786275255*^9,
3.646805847710248*^9}, {3.6468059110449333`*^9, 3.646805922583736*^9}, {
3.646805964520049*^9, 3.64680596842838*^9}, {3.646806089359232*^9,
3.646806135665594*^9}, {3.6468064603258266`*^9, 3.64680646293678*^9}, {
3.6468065059478903`*^9, 3.646806538288015*^9}, {3.646903134322679*^9,
3.646903164258093*^9}, {3.646903203334247*^9, 3.646903230399871*^9}, {
3.646903600319491*^9, 3.646903643923533*^9}, {3.646903674934023*^9,
3.646903678733776*^9}, {3.6469038048955097`*^9, 3.6469038493760557`*^9}, {
3.646903977130188*^9, 3.646903982711542*^9}, {3.646904259130526*^9,
3.646904262586117*^9}, {3.6469043196114597`*^9, 3.646904321988662*^9}, {
3.6469074021984253`*^9, 3.646907404193143*^9}, 3.646907438474573*^9, {
3.646908836255478*^9, 3.6469088714814873`*^9}, {3.646909007094862*^9,
3.646909053846573*^9}, {3.64690916699686*^9, 3.646909186251157*^9}, {
3.646909964554543*^9, 3.646909972108692*^9}, {3.6469100552157173`*^9,
3.646910078811028*^9}, {3.646911983028267*^9, 3.646912028951136*^9}, {
3.646912133722845*^9, 3.646912138949234*^9}, {3.6469122952134333`*^9,
3.6469122984842377`*^9}, {3.6469123320258904`*^9,
3.6469124276032763`*^9}, {3.646912478823106*^9, 3.646912493173712*^9}, {
3.646912685755431*^9, 3.646912691238227*^9}, {3.6469149798031054`*^9,
3.646915028400242*^9}, {3.646915156872099*^9, 3.646915291282494*^9}, {
3.646915324883978*^9, 3.6469154021045637`*^9}, {3.646972413845058*^9,
3.646972438768071*^9}, {3.6469726137014637`*^9, 3.646972635360067*^9}, {
3.646974691693334*^9, 3.646974692395063*^9}, {3.646977646638966*^9,
3.646977650501295*^9}, {3.646977865467519*^9, 3.646977872315271*^9}, {
3.646978064305415*^9, 3.646978087816717*^9}, {3.646978178538118*^9,
3.646978178683484*^9}, {3.6469782397453833`*^9, 3.646978247275025*^9}, {
3.646978297158225*^9, 3.646978316523612*^9}, {3.646978428055999*^9,
3.646978651689726*^9}, {3.6469790676662407`*^9, 3.646979073125375*^9}, {
3.646979175897588*^9, 3.646979181028718*^9}, {3.646979291249351*^9,
3.646979292300922*^9}, {3.647154967542708*^9, 3.647154971984239*^9},
3.647155015397298*^9, {3.647156494246873*^9, 3.6471567792602*^9},
3.647157055754108*^9, {3.647157455411777*^9, 3.6471574727405453`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Calculation", "Section",
CellChangeTimes->{{3.646561298894452*^9, 3.646561299425159*^9}, {
3.646974758436963*^9, 3.6469747647817097`*^9}}],
Cell["\<\
The energy not due to end points is actually (now letting the charge be \
arbitrary)\
\>", "Text",
CellChangeTimes->{{3.6467715615223513`*^9, 3.646771597764853*^9}, {
3.646771627851495*^9, 3.646771639254436*^9}, {3.646771928577896*^9,
3.646771937756853*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"L", "[",
RowBox[{"key_", ",", "csq_"}], "]"}], ":=",
RowBox[{"\[Pi]",
SqrtBox[
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "6"}]],
RowBox[{"\[Alpha]", "[", "key", "]"}]}]],
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"Spin", "[", "key", "]"}], "-",
RowBox[{"a", "[", "key", "]"}]}]], "+",
SqrtBox[
RowBox[{
RowBox[{"Spin", "[", "key", "]"}], "-",
RowBox[{"a", "[", "key", "]"}], "+",
RowBox[{"csq",
FractionBox[
RowBox[{"8", " ",
RowBox[{"Q", "[", "key", "]"}]}], "\[Pi]"]}]}]]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"M", "[",
RowBox[{"key_", ",", "csq_"}], "]"}], ":=", " ",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{" ",
RowBox[{"2", "\[Pi]", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]],
RowBox[{"\[Alpha]", "[", "key", "]"}]}]}]],
RowBox[{"L", "[",
RowBox[{"key", ",", "csq"}], "]"}]}], "+",
RowBox[{"csq",
FractionBox[
RowBox[{"Q", "[", "key", "]"}],
RowBox[{"L", "[",
RowBox[{"key", ",", "csq"}], "]"}]]}]}]}],
RowBox[{"(*",
RowBox[{"+",
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"Spin", "[", "key", "]"}], "-",
RowBox[{"a", "[", "key", "]"}]}],
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "6"}]], " ",
RowBox[{"\[Alpha]", "[", "key", "]"}]}]]]}], "*)"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"TotM", "[",
RowBox[{"key_", ",", "csq_"}], "]"}], ":=",
RowBox[{
RowBox[{"M", "[",
RowBox[{"key", ",", "csq"}], "]"}], "+",
RowBox[{"m1", "[", "key", "]"}], "+",
RowBox[{"m2", "[", "key", "]"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.646771550426784*^9, 3.646771553316934*^9}, {
3.646771604306888*^9, 3.646771872911043*^9}, 3.6467719448725758`*^9, {
3.646773728033743*^9, 3.646773751002304*^9}, {3.646773799429037*^9,
3.646773799697246*^9}, {3.646777672506926*^9, 3.6467777031024427`*^9},
3.647107571305258*^9, 3.647108968780759*^9, {3.6471535949217176`*^9,
3.647153617883686*^9}}],
Cell["\<\
Now plot the energy differences due to charge and string tension, minus the \
difference in the actual experimental mass. This should give the mass \
difference in the end points needed to explain the mass difference.\
\>", "Text",
CellChangeTimes->{{3.6467715615223513`*^9, 3.646771597764853*^9}, {
3.646771627851495*^9, 3.646771639254436*^9}, {3.646771892161929*^9,
3.646771922570491*^9}, {3.646771955659872*^9, 3.6467720195600758`*^9}, {
3.6467746398636637`*^9, 3.6467747120583687`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Nbaryon", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "neutron", "]"}], "-",
RowBox[{"Mass", "[", "proton", "\[IndentingNewLine]", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"neutron", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"proton", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["1", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Gray"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Ks", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "Ksn", "]"}], "-",
RowBox[{"Mass", "[", "Ksp", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"Ksn", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"Ksp", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalXi]c", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "\[CapitalXi]cn", "]"}], "-",
RowBox[{"Mass", "[", "\[CapitalXi]cp", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"\[CapitalXi]cn", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"\[CapitalXi]cp", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Dmes", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "Dn", "]"}], "-",
RowBox[{"Mass", "[", "Dp", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"Dn", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"Dp", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"\[CapitalSigma]c", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "\[CapitalSigma]cn", "]"}], "-",
RowBox[{"Mass", "[", "\[CapitalSigma]cp", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"\[CapitalSigma]cn", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"\[CapitalSigma]cp", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Yellow"}]}], "]"}]}], ";"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalSigma]", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "\[CapitalSigma]n", "]"}], "-",
RowBox[{"Mass", "[", "\[CapitalSigma]p", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"\[CapitalSigma]n", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"\[CapitalSigma]p", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Purple"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Rho]", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "\[Rho]n", "]"}], "-",
RowBox[{"Mass", "[", "\[Rho]p", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"\[Rho]n", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"\[Rho]p", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dashed", ",", "Red"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"B", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "Bn", "]"}], "-",
RowBox[{"Mass", "[", "Bp", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"Bn", ",", "csq"}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"Bp", ",", "csq"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",",
FractionBox["0.5", "137"], ",",
FractionBox["10", "137"]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dashed", ",", "Blue"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"Nbaryon", ",", "Ks", ",", "\[CapitalXi]c", ",", "Dmes",
RowBox[{"(*",
RowBox[{",", "\[CapitalSigma]c"}], "*)"}], ",", "\[CapitalSigma]", ",",
"\[Rho]", ",", "B"}], "]"}]}], "Input",
CellChangeTimes->{{3.646771950731372*^9, 3.646771952079427*^9}, {
3.646773446750395*^9, 3.646773527162901*^9}, {3.6467739499050417`*^9,
3.6467740871374083`*^9}, {3.64677412262253*^9, 3.646774187884631*^9}, {
3.646774249796054*^9, 3.64677431049582*^9}, {3.6467744799045258`*^9,
3.6467745123336573`*^9}, {3.646774736765486*^9, 3.6467747673780117`*^9}, {
3.64677480806011*^9, 3.646774905078524*^9}, {3.6468054195661592`*^9,
3.6468054612143517`*^9}, {3.646806278805697*^9, 3.646806299819624*^9},
3.6468063302471447`*^9, {3.646904373022484*^9, 3.646904418235331*^9}, {
3.646904481152533*^9, 3.646904485287752*^9}, {3.646906424813212*^9,
3.646906474872012*^9}, {3.6469067567808332`*^9, 3.6469067664148483`*^9}, {
3.646907516192577*^9, 3.64690752320674*^9}, 3.6469075735789843`*^9, {
3.646908658506624*^9, 3.646908658933872*^9}, {3.646912738500119*^9,
3.646912824595537*^9}, {3.646912870978058*^9, 3.646912884420073*^9}, {
3.646915424828039*^9, 3.646915448856234*^9}, 3.646972686340456*^9,
3.646973161576544*^9, {3.646978329135674*^9, 3.646978334135767*^9},
3.647155526888801*^9, {3.647157107279174*^9, 3.6471571649611263`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{GrayLevel[0.5], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVz3s0lHkYB/B3qHUKuXSbdclgmpFJEt63RT2PLqJoUUc32mFroxJpddok
0ylKJl1G1CySCc24zpDI7d0uWtXZaptUhFlCaIdULi1r3/3jd37nc57f8zzf
n3VYVOBuHYIg/Jjz/31zlhm+6o4Hon0JqIf0Mehze9noV8aVH6d7TurjtBaZ
Ndv4OBDY21Q8wwCFeQ6629wYH93rc9rGANkeno0tqYzd/+S5bTbAMxHhvu1U
AhADgh3XbhugS9iOouE1IiBWLlXsOW6Is+vkVePpJ4AIqe8c1DfCvsiS5O5D
p0DUu5rf5mKC/bduSIBzGkR6RkUWD03ROHQGy6EhGYhBU6OwgDnop9fMG0sX
AyHrPjs+MRcr16QlOq08D8TYoXtDKfNRujJkI9foIhBVtjWuHt/ifnFByi9H
LgHx71qThHdmqM7b253YJAEig6twiLbAh7Wh5izqMohYlgVcywXof+15pLM4
HUSKI9Uni61wf/nYwdKWDCD82vaMSDk4+8GmQOnaq4AbIsRPoqzRP5f/vccV
KYjKjXdvI22QHe9o56eXCSK3yYpEQ1s8lKxVFURlgehvyfpKjS3uCuVtr27I
BmRl+OTkcTHavElrMS8HCJs4K37cQhzfV1O/nM4BXGf+W/gqHnrXPJxIOXId
6NBWs7VmfBTKSmefcsgFQvGog6fl4+qPL6q2NDNe2GjdWG6HH1aYPgk7JwOa
ezdhMnkRCofEkT7LbwB6sGs+BdhjlntXr7qD8ZsNNsNzBZiTuOlZxuU8EA1U
WSb1CzDSlVhHQj7QW9pTW8sWI/GuUWAwmg9E13DC/dMOGCyI6EsqLADRrsTu
iu1L8OTrda5tm24CHVW3K8LKEaNP4eDemXKgzbLVJZ8d0S49llJXyEHY9Kj1
bchSlGPS1s4dChC2TQn3NCzFob6yXr5JIWBRN+e7RU6oMz5/us8dxqShRpvi
hC3fXL1w/WAREFN/qftHnDD+aJDipUUx0NK6nx9vX4Z9SYOZJfeLQRh7TKWs
XYbml3In64+WgCaX6n/Lc0a27qUPCm4piDI1xtpkZ2yJ+dXnj7elQPAWLFn9
xRnLV9Dw2LsMOMOfzmftdMGOz8+sLbMYD7jZd9AueKBQe+fsWBlochrjfhS4
YmeavXmPnxKEHxeXPE11xZr16l7JdSUQXnqHVw254ujU2X0hE0qgq9IaRraR
yH7/Q+WcABVw3pzjp9WS+JOffCI1UAU5sn8O+taTWKEaXjVjswo07bq102gS
/eMTn04GMfXCro2x90g8Y1r4vieY6a/WRAU9InHUY8SsOpzxgefZ7NckNl8U
J4SIVIDVkrLMTyRyR18+eHVCBcKIAO3mLyTGBFsZBJ5UAV0gFxiOkjiLr7ri
lcT0v1iUF/+VRK/aV0pHsQpEU+GSnSwKb/XYvGNdUQER1xXMMaJQx3e//bGr
TJ6E9WmvjSn0V96KHpEy7619H18wpfBDnPdkfxazD62Ws+ZRyDU5ME8tY/Lo
TjfstKAw5vDt4I15zP9menpKF1BItxKy3/OZ+bfnxwZyKAzOlzjWyRkTl1vv
2lKo0G+LpQqZvNnus+IWUjgWzatVFjH1nmPozKfQqzlKZ3EJM795a8yAHYVp
7tXe+aVMnuinMpk9hf8BKHwt2A==
"]]}}, {{}, {},
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVj300lAkUxl9ORr6W0ozRWCYMxVYYTMzLvdVUtFKLY9jYJur0sZtGKkbK
GxU1GkWNjz7IjGGiMMpY+pjTqd3qWFbtbrs5ZSoWEY4tq5T23T/uued3nnuf
+9wFSbujtpoSBLGOrv871z9D86R/FxBvu661yZjobHTISJ2bApRr9pvPFBM5
BfpwK6B5iOm+Kp+JrL7JkdDSFCBiPpzoUjLR+sw+vmbtbiBCKqCvmYkfZUGS
NrEUKPZ3IptRJg78Ffgm/0YqUOF/tCcmsfBWma+5x7G9QGlfJk+tdcDfKaHf
rtOZQNW1ZPmtdESW/pKKyaGAWuTA63Xk4HZWNC+8NwcIvZi7dMAJd2sVrrm9
R4Eqrq9P63FGJTw4k1GfD1gskTmKubjHQpGz97ocCLNm7/HoBfhWSA2IGhVg
uNiW5hDhih2trZLB9lOA/qahFN8NM3btlzeFFAGxusA1YYk7XlM1S/+sLgZq
zK32AJuHIkXe6SHGWTAofEzGP/HwahF3/NNRJVB3X1c8nvTAWnaQhXS4BIiG
7p6Z556Y1cqS9KeUASGrESifLkS1tXxCNFwOBq+y+MPdizDh5SEwjTwPaNrp
3qr3wtFuwcM7nRcAvR75iZu80W6l1PZFQAVQtuPTK8u/QsZAYPjhxEowuGcN
nVUuxiuMwwvznC6BYU5uYohiCToNWPa3d14CKqq3MHDfUpTFpONEYRUYnDcd
vy/wwYs5bjKxSAWUWNtYUe+DI5bnunzfqcA4WFXr5uKLntx3d22uqwG1ZSmx
53zRa1JRwt5eDZTcbnaArR9y4q0seF4aIEq7hwwFfhjAii7VDGqAm+Y6/705
Hx3OPJ0lLq8Bybww+95MPv59UWRnsbEWJDlJ+6X/8vHgztGpoS+0wN14varx
e38MPZX8GW5rgaiQOlc888eRFe3qkkOXgVvoESCID8CklihPZ986MNq/mszu
CMCfWjrCNBN1gPaLn0jDA3Ei/diaxJp6oEzvSexvBeKaYqstx+OugCTXxHKr
jwCPC9Nc9OyrgJsY5on1AixWz2+176D5GE8+m7sM5eXqsVRFA1RyHF7HXViG
4ndZVVUejYDWU6/F7CDsOPhzuyq7ESoz3eOs5UGoj8hV84yNQJ2iupPNg5Hx
8fl0aHATEN+sb0g9EIw747gvi4qawFj+g4vPm2BcNf2oZNtEExji/+kp3C7E
I4d4Nx5/rQOj0L+rpkeIfUdjGcnrdEC1Wmq1z4S46mTeholIHVTuWZdT1ytE
xvmhPrsoHXCrHfgNr4SY/+MVm8g4ep9/+2TLsBBPvg3YdH8LzRkJnvemhajc
udr05kEdYFXP8AsOiZOp6RER2TSzQ5pffUmiWFar7KFofxOrzH4XEtn5lt4f
cmn/ZSNmQ24knqvujBacoOc332WNe5NYaYytblLqgHD7xWlGSCIxmDeGpfQ9
zeTTzyEkbh5rDfq1TAeGtoJSEyTRdWZ+5+h5mpUzc8xEJKo5vZPeKvq/mPef
rCJInOVmt7xdTfsdydPbRJK41Wu5fK2G9tuQI7XdQKJHkMplh5bWH9w0zo0h
MQ9/2zF1md5PnymZF0vi4Bqza3n1dN6HdZGsOBLD1gfOsK7See/cm8X+lkRt
7LYwTQOtJ0W0OSaQ+B/WNCAL
"]]}}, {{}, {},
{RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVj3001HkUxn+1LaEmw2nMaWxNLFpqMzLE9+ReNZI2atmY2l4oksrLVFt0
yA9NM1KTKG+pMGOkGEzyNr3Y1G5rpdZup7Bpsgmb2DPJFtL+9o977vmce57n
Ps/CHbGBEdMpivJn5v/Nd41XP+mLBtrT2uJBIBvn663iJRYxQAezLFdtZiPv
ZL2fGTCcrWE3hrGR83JsyCsvBqjsD8alcWycdfaHZeq1sUBtaHqaqGDjZIJH
aFNIHNCpQ6aLW9nY3+n2Rn5DArTUWyv3tsBb+QJj++MHgf6RxyLOlviYJi7R
Z44AlVWsLxPORU59sXIujwZasf+ckmuFuzlBdn7PU4He9dF3moGLseUKm7Tn
UkavW7Tx7TzMgV/OxlfIgT6QP44d1rjfRJF68HoG0+fEM17nfBwldL+oWgHo
t9/FaS8f2xoaQgd0mYDD243zxQsxPvpQRs2KLGjuWz9zfJMN1iqvxT0tzQbq
4b7RJWttUaSQnRk0Ogf05pZdOcIvUZPF/+ejNAdoy8m2N652eJnrYRL3Oheo
bie5ta09JjZwQvti8oFOv37bzc4BVbMyDKLXBYDTROJjNotwS+9RmB5QCNiZ
3FzJ+gqHf3NvvdN+Aaiwm+G3WI5ovipuzgvhJcC7QtvKj45o1O/ml7K1CPAJ
qUqmFmOlUcoimXUxULUJmbKpxWjdb9qna2c4RjMheb0EE747jIbTJYCavZ/I
0Nd4MdU2IUSkBPSy7fi7eykOmZ5/KHinBPrfhXeidjqjA//d3dnXVUC9ONbz
a68zOo4pcrm7S0G/+0JaySYB8jaZmdg5qgEbJyCiS4BCTlCeekANFOvxtrti
F7Q62zUjpKAMaHnT0oJ2F3x1UWRu8v1l0J9nm20OWIZJe4bfD7LKgZ+Wdu3M
vWXolbnzE9xmOKVkNNLTFYdW6lS5R68Af0gmsm90xR11gQ7zBVcBX7Uc3LZU
iD/Vta1RG64CX1xskVQlRMPh475byyoAN64u5zi4oW+2WXi6uBKoGS231xe6
YTo5sKCeqwEqd4d/NM8ds1XzGizbNKCfYvUaZ7ljRoFqRKKogiKzyQ1Si+UY
8i6xpMS+GtDpZn1x5nJsS/pZp0yuhqKaPLLCyAPr16Wp7PTVwJ86ealR6oFG
kz0TXp41QK/sENRNeuAeMb83K6sGilr39QRJPNFnoiM30lADfG56yqMRTzx2
1O7G799oofl9WdDDCIIvpcFGO/21QG95y++JJOhzSrbBEKCF0MeFb4aiCBoV
Dr40D2R4jqnUNIagvLFydoBYC/we/wqfQwRPjQq33w9n9BWJf+qOE8zZs3r6
zSQt6H2kLWVlBMckh9etS2buq3MT68oJhiRczummGb5gLLx3lSBXbuo0nqYF
KuQzVW8VwfOl7UHuJ5h8zpFHvmggWKQPLq3JYf6Jemdm3ydIDchGME8LeKmr
vriVYNhIg8ejfEYvEeyqbiNoMzWvfbiQ0aeMNz94RFDFez7mpGTynx6PmdlJ
cIatubdOxXDXK65VN8EIR++Mter/8wvu2D0jaO+hXBBVzvgP91qsekFQhn9E
vb/C+IX5NX37F8EB389rZRVMv3BWWGgfwTXr3aY4GibfB4FxbD/B8uDINeoq
LRTxayuSBgn+B0oyKmg=
"]]}}, {{}, {},
{RGBColor[0, 1, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVkHs41Ikexh3HsSbTvSTjljKKTShC+H7TWA3lHpYzzMVluhiXFNZ1CeM2
iBBHsRi5/X4lyW7il5V2exy3Tie0G20JKRyRVWidP97nfT7/vJ/neXfxg138
ZWVkZIRr+X9rHoqUPhsLgk2D08ZXpKaU+uiOyNAtIjANtE4aLTGlGJl32Yog
Am4rlamXa0opvf74zqpIBGJVhf9Q0aYUPf/CQaldMCj0s40mnEyp5Sgz7k8e
IdD3qW+X7ufD1PiQyXtxayjk/KIq+s7xMNV21fArZko4hBiP3WMvGlNPE44Y
BeV+BzeHBgy1aQcppbvlFdsZCSCMOq3QamtACZVctdkjiWBgtzwap65HBddI
tJJGkgFtP3aN6GlTBfBrfmS9GDTtGb0DTA0qjCZJDL+TAdwlkx5iags1fyRh
nHVTAjI2FqHjxp/bu1tauBP3ckDmofiV/dk5iAy6mHHL8jJQVVs/MJU3Y1PF
7ZDBqjzgWv9DGDeiiixJau6k/BXgul/pe8Hag8RlzdmV5AJIkCh/GarVxRvK
ZrSQqUIY3Of8v3QvA4xpUeKOia6CsKjAYrb2IFbSM+ZYU8VwM9XykcyiCf7z
jziQdfgXUPwk/aFt5jjdf/hxR08ptLyHPVWJlrjpWMjGl8bXQfPle29LHqL8
uAn7e04ZUOe8vKz1rLFB/vu9qarlIM77VWFh/hiqjq8bu9dTDsfH0z0aq20w
yi0C57J/ALrvw0IzsS1eS9wd5cGqgKbU1hFrFza+W1fSa7hQAZ0BgYFvVe1R
R3Ohc/2dSrA49ejvDionUfejpFBZWAXCIfPl8b85IuNbRZq2rhRE4Z2e13Oc
0FjJtUg6IQWVxE2tXRXOuCN/WM6juBpk7LObP9S74JtrrE007xvAbaRH6T5z
xdgz039ObqgBq6sMo21LbmiVI/gC7TXgpbV6aHqXO76zvldZGFcLcjsh5G24
B/KbXXTUDetA9rH52MVOT+xq7j4unauDgqkf3NvtvHAuIsWWU10PAwONZP8z
b7TNU/RL82wA7sntJampHJwwXFJJ926AQ9ZpuxyzOZje96Y/3acB/EbqjBiF
HOxe3wGZfg2grvGb8gMpB53EkYzskAZIGM36yOrioGfs2EC+uAFUmYnnjOV9
UBjYfrSspQHqN6sdlUv3wbQj5zXuKhPg5vEmi13pi/pDT3MvMQhgynyjulDv
iwMXTeVc1AnQTBv/d/UdX1RpXJl4t5sAOo82qfXIF2v3ihu1DhCwQc3XOOyt
L3ZvL7WR2BDQoZK/kbWTixtmu876hxGQ7vljbJkfFxuz9r0wukDApRvxwvjT
XHTXy3SSiSTg1n5ZiUDExWsBzsYlsQRwSr95ciSSiwd+f77aJyaAH9Lor5/J
RafHs7kW19f83H0W+ne4mFep0rK1m4Dx7F+CT9J5eKb7TwO1XgKW05LbY7bw
0Hr+vzXMAQLq1DLdm5V5OHcsr8RskAC/Q3XmbG0eurxSjPd9TcD9OVHovBUP
N2ut2NQtE7BTRzWwNJyHE+znbU1fCLC69MAvJ5qHVOiPh9tkSRgVFXhcTuRh
yIML+/oVSLgd9rKjM4eHfdxp+uI2EugRDO/ZBh5mXx95Yr2fhL6mG0q/T/Ew
4NH9EycMSBj8fPnmygceWs2UPDx1kIQd/jrLJss8nLbyvCs0I6HCfz5xkc5H
hxd9xRIbEtSLMjR6D/CRKU9uLTpOwqXzpR1PTPm4uj8rs9yehNWjtJ5PR/lI
xLLjmpxJCONMjjW78XG9WgdvmEPCzz6KjhoxfHzNKht+xSXBPTqmU5TCx9Zz
ca7vBSSI4ntn5nL4eK7V3EbmDAkqzMX4aikfWa+V22hBa3uMgqWRW3xUpS+a
bA0hYUM0L4Jzn4/d3rf3Mi+SMLzkumD5lI+VSbnlB6JIIDVOmxIv+RhTF6xi
FkNCwKdQ37hpPn79WY9+IpGENonANIAmQLnd65JPJa9xEy2zYIcAf7ObWPER
k/D1nhTGt0wBZhRXzoRKSNhcKtCZtBFg98ySRVDu2p/lCx6l7gKk2zimC/NJ
4Ga7zzoIBXiyuPKZoJAEhv4f6UbRApTMLO3xLSbBJiN7LjdbgD0sxzCvUhKc
lsVhw1UC3Fhc2X6qjISUW67VP7UJ0Glmie5cQYJV0rzh2ecCzGE5ep2QkmBn
T32VvyrAvquV1bY1JDANI342M/TD8yxHh4e1JLwVxbhlnfXDvwAILgTo
"]]}}, {{}, {},
{RGBColor[0.5, 0, 0.5], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVkHs01HkYh2dlpwxpaA1LB8llU+1SLk2zvC/mmyHJyW60Wy2h5LjMtBW2
aFIadmpW2JFLNZoxLrmMX8mUaFa22lYqW7oeplKIqFmkUu3sH+95z3M+5/Oe
57zzN6esjTOg0Wir9fP/tvdIU959lgT4OmWiON0CbbWWaQLzZKA9EB8bzbZA
m0PNQcagZ9uVnIB8C2T1T474Hk0G4VtpxEiNBZoU7lymDE4B2h/UXN9HFjid
zo46H8EHWqtVSZ8vCwfue73MuSAAmseNx9aGlthW7D7T+eAO0ATHJW+XWOEd
IWdp0pFfAJttFw732yCruVxuYSMEjfE5IcvADuNZ4U5BfVmgSdxUnjlzPqZU
Sxz292UDTWATqqp3QCn8VZhWmwMamHsgjO2I240kWTuaxKAN2btB1u+E4xzh
AFclAXtJwsFrIhfsVKujBlvyQMYO4qeZLsS0pF3iRp98kJW9393R5Ipn5Kf5
9yoKQNYj+foELkauRHRkiP47aKauGyRcWoL1+favPmRLQfYij9e+5RussmIb
8YeLgN/gKO7d5YZ71KyoZ8nFoL2o7ioNdkeFiVjHHS4BpilXssZ6KW54kgkG
oWVAK88Q9j5ciqO3vK+1dx0DmdFlu4q6ZcgM4M957HkChKtyTUIEHkgf8Ara
t1EGYa+TGI7EE+vo+74SzSuHsL9DS9984YXzBhjPWrrKIcrsrXlTjxemf5eK
ut9OQhTD83xplTcez1qQHsGVQ5jDYW9B4nIcYZTecJ+QA7O7wCVkMRtd7Cc6
ZjcpwO1pRwdvmo2uk5Iiq/gKoG295unTtgJt1hsbObkqQeN/32V1Hgc9WeFH
lYNKiOrxc4ne9C1aFj4wjCipBI3oyMROWx98fpzLNPqxClSV3UPHR30wI2F0
asi0GtDVfNV1lS/65sV8govV4FbTMzkrBXDEv0VRlFkDWmfl0ypbxM1n17rY
up8CdR/ldTsT8fLZTp5SdwrcvvTgzBhA1KUeDNxYWQuqruk4Ds8PAwuMY3Mj
60BLUsP3VPphLudnu2aresgbDypsNfXHAoW1em5nPeSc5xqbpPijuEQxJpA0
wE0XM7PIu/4YMbHn5ElnFajW3/Kp9QnAzowrLfK9el6urjc7FoDNIfsVTloV
qLc0xQgMuUif7n3vu6IRrBK6t/fHcjEh0v5Jfn4j8GKD7sRc4iJ53120VafP
/Vb+8GAhwQOZThf+WUWBWy8xjM8l2J+9jh6zmoL46EMSczFBclgUpgulQJ14
zrL1EEF62VA/cy0FPHLF2TyPYM65utmhkRTIHE97X5ASPDzu+dPVWAqmrt52
ZCoIShNWGrRmUKAxyF3c3EZwUpAaErKXAubdMwXRGoIR6VXSh0IK+FlX3xq3
E7TKYSx6t1/vk1vZHvUnwdKKrnDvXynA3SSQ0UlQpl1X0Sil4B6LMW/jfYK0
QdEYHqUgLVAtmPmQYPSYmn2zWM+ToZcbHxF0+GjdNVpGQd47z0S6lqDCpm9y
kZwCWttwTcNzgoYLmH4tCgrCZvW9WT9IMM7VTxyspEDo2BJg+IKgM1tut61a
f+/DknuRLwmK8Pa2qRq9340O+xljBAcDPz8jqtX/p4wbX/eKIG+N10dWvZ75
dfUROoLV67bylA36/vef/v1snOB/K1ItOg==
"]]}}, {{}, {},
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwVkHtU0gcUgH9asSxNlmUss6imppKPVMxI7kXhl5q50pZuqyM97GEPsWzK
zCKdryimYPgqQ0GKIgXKxGmLtY7LjoeZq9NqLalZWjH1MLOm1sb+uOee75zv
j+/exdsyEtMcCYJYZ5//Nz00R/3g+X4gpKepHkYHXGiZl5M5+wAQZzl3xL0O
6HGyNXYm2Fl5onTS6oDu/WNWdpWdO0ZpTxY7onPF4RB1XAYQD4Jy68WOOCmM
4H+fLACioGidb+oUHHjI/KukIxMIH7l/JGUa/lAd/JF3URYQ9R2PD2+cjvdF
rBX7y78BYrZuX/kxV3RvrVfO9RCBaPxOUhvNDXe7J3nF9uUDcajQwWmrO2Zo
JEsK+gqBGDSGd458gnLoqsjRlgARMunwR7QnHnSS5Ge1iMHEzJrLzKDjKEs0
wNVJgPiyJSYodAl2G438wfYyILqYG3ofLcWc/V+L9ZFSMOWIleGNXnhVeUXw
W6MMRLd/TIza4INcSXH5S8ppQP8HuvHRZdgkpY+8L5QDqtJy8zr88AItwknw
uhJMO1NyFWkMPGJ05z8/UA0i6cRt2YoAVDmLbdzXNWBqcHFe+TYQNz87Co4J
Z0BEK8hvNwfh0N3wOzfNZwEVrPedV4KRGi1wfRp2Diw7hYfqSlcgZYAZe3yL
AvjPwqamZYbgZcrxZcUL6oHgnlBN+TwUFwzMeN5urgeFr3DDXt8wFG7MRtt3
DUC/dcOn05WJdflLhclcJYiupMsGXzDROqP2l+A3SuC7aOmWtnD0ob+55dKi
AlMZY9BctxL9xiSVtN2NQN+Yx87PikCPL2Y6efmpgV+kXBa0eRWGuSdVqQft
vMV7WguwcF7Fo6nJNeeB7xa6asJtNb6o41KdvroA9OVzUnF8NealD717OUsD
/OkuHN7dSGSXbf8XbmjAcuTVE08VG61R7arKoxeBqGN1/VMCuO1aos/C4EvQ
EzBldmwgYue17hi17RII3tfraUpEW3bRmi3ntYCPqpt5rhxcI5u5ozTlMoz8
5MXYLORgKevQolZaE1AvqtJyrByUqeYb3bqbYH0fHUaSo1BcoxrOlDRDUHm/
MaM7CpPfHGlo8NaBaE+V/iE7Grvzfm5XHtPB+mbPg2c10dgaX6DysuiAWPuK
t9eTi5TJJxPsVXqwPLWOlpdyMT2F/kwq1YOJb4mt/5uLvIneyl02PRCLsz+9
vpOH3x716vh1rQFG7iveBvbysL9wE2X7Ojufy7zneo+HvFPF620JBhAxJvXD
93lIOfOyn5poAIWGndH8kIclbZddElIM0DMutAU85eGp0bDU2zvsvm+PR8AI
D+XppOP1PLsfxxhnzCJxLDM7Pv6YASyLooecqSQmCy/IfxcZQFAz50/rxyTS
Smb4jxcYgF87YNbOJbG20ZwUfsIAuoqEZoYniQrLpka93O5XessYDBKJweJh
rDJAmdtrqXMAiVuHjRE91QYwqdNl1kASl3yYbx46YwDq8lq5NoRElUffmL/S
APSCm40MFolTl1I57Sp7Ty7/knMkiWl+HHGc2gDErTa9lU2id4Ry0R6N/Z7U
OpM2isRivLfn3UX7f0y+XSe5JA6umXa1WGvvlQh695EkxnzG/ODeZO8xH3wc
H0OiZtOuGHWzAYJKgwYYcST+B8j+Jlg=
"]]}}, {{}, {},
{RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwV0nlQ00cUB/AdiqGA1AAlRlGI0HAERPJTsAi6DwyiVKkVx2CBlnoUROSo
aAABOcSEoqlCGg5RUUIAFQQVSBu1jmUqbWmoYosHFnRAgiA4EFK8sK9/7Ox8
Zr/z5s13dtG2pE07TQghG/D8f/OWpal7BvdQErOyufvAJHXon5uWYpOI7umF
45PU/kjbOkuK7r9s1qiepJwB4+iqMnTV0kjZ7Uk6W7FvqTo0CfMbXwa4Guib
dL+YH8XJ+P7GWn3HQIfu+z6XXU2hZKNzi8TdSK+XC81cDqfivJab3J5p+leO
P7PneAYl3k776mpmKKftTLWdfQ4lx8TBd983gThOOH9dXx4l+qQoYbMpJNXL
nfL7CijRnAxnSsxASX9VpF2QUcILHxxdbQHfmMvzUluKKOkQu4V6WYHBP2dI
1CSnJOqhSd4sNnRqNDF67TFKplMlAZHWkLZnf1HzymJKPBtlt/6wgSvVl5Pv
1ZTg/H+zmlw/BJFcenyY9T0lmdrMjgw7aCzmvXhboMT8UEzTMw7Ucf3Mk0dK
cf/aXmMgFzI1nJjBxHJK2j+und06D1SziyZEIxWU1CmCPnO2h6gn2dQkrJKS
ZcLFU5IFMHZ7+W83dScp6S05Hzu8ENirk+c89jmN+/f+7RfkCKwh33W50VWU
kL3vRiN50MDKdZMuOEPJJcPpzbaLYMGQxaBWh55+b2/C9UWQvlkCE9+dpWSs
/ukziROcynNOF4uqKXnRrZ3Hd4ZRixNdwil0WNyBfp0zuPKm2q1aVJQol+RY
ST8CgVFeyo2rwfksGGH4YL/V0pwvUFNiYnjp9ZwPPpzwMrUeXTUrz0LlAnMV
D0zFFbWU3GjnlYa5wtNTIrZ5ZB0lirCoQjM3yIofmx7+oJ6SNQGPPK+4wapj
29/Rn9BR2sK4aHcYDdKqSrPPYd8L08ztBLCtdZOrg/A89mEwjbohgF9aO9eq
J9BO0zLbDA+YkBwOia69QElE6INMV08IKbHcURjRQMmzhozs255Q6L/XsY3b
iP/Num2gcDGUqOZrbDvRvfPmv/XxgqIK1XiK/CIliUt16S+8QDyVefasSxMl
M+4t8tol0Jl1S1t9EH3Tbo6Huze0rc9X8fvRjsprNwq8gfXmn9erVjRTYrGr
fUmvN8RH8J4UF6O7RbYj3kIIfn2nNHYCbdfhde+IEA5l8692f3IJ+7TsOvVE
CAMFW1jbN6ALVnQtHMD8UenGiTC05vOuykEhsCqHB9ib0KKkrgq9EGQ/NFiF
RaCn9DrlmBCOGny+7NiBvu7wu/yVEJTxa0yuZaHZCk22DQPGFMn69QfRnuOt
b20ZEKfXKR/moM/5t2TaMcCVWXi8ykd31jVncBk4UaMLX/4t+mJ3/X4HBqr6
t9Q0K9Ezu0sTBQwQvXQcytDBjxTPPRj4alzj92c5epwWJyxmwGlmvm6sEp1w
/0i8NwMq+z6jRzXaMjr3a18GTJ3ZgVoVOm5r9uByBnYKAotC1WhByIEdfgy4
+FU77qpH9xhTtwUwIIW7u6bPoX/WpDxeyYA+ZNYV6QW0TUJiDGVg7ae+M5xG
dDt7dx8wUL8ldq36Ivq+OvaLIAb+A5XTEQ4=
"]]}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.01, 3.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{633., Automatic},
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->NCache[{{
Rational[1, 137],
Rational[10, 137]}, {3.4925923286607485`, 23.166559446472547`}}, {{
0.0072992700729927005`, 0.072992700729927}, {3.4925923286607485`,
23.166559446472547`}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.646915455562003*^9, 3.646915465981339*^9}, {
3.646972678784955*^9, 3.6469726870726957`*^9}, 3.646973163543934*^9,
3.646978350153631*^9, 3.646981396624117*^9, 3.647107791359207*^9,
3.647109068456748*^9, 3.647153629189049*^9, {3.647155518851261*^9,
3.647155527684608*^9}, {3.6471571266876783`*^9, 3.647157147332953*^9},
3.64715717897289*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\[CapitalXi]", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Mass", "[", "\[CapitalXi]m", "]"}], "-",
RowBox[{"Mass", "[", "\[CapitalXi]n", "]"}], "-",
RowBox[{"M", "[",
RowBox[{"\[CapitalXi]m", ",",
FractionBox["csq", "137"]}], "]"}], "+",
RowBox[{"M", "[",
RowBox[{"\[CapitalXi]n", ",",
FractionBox["csq", "137"]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"csq", ",", "0.5", ",", "2"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dashed", ",", "Yellow"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[CapitalXi]", "]"}]}], "Input",
CellChangeTimes->{{3.6471571819381247`*^9, 3.647157199363978*^9}, {
3.6471575166809053`*^9, 3.647157520492272*^9}, {3.6471576331021967`*^9,
3.647157759670615*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[1, 1, 0], AbsoluteThickness[1.6], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwV0Xs0lGkcB/CHMEzmZTY5qo1h0Ah7UJIunpdcNtaGEmMSOmrrnGK6HtFV
uRPrUrSpppYWIVonyvQ+iy0skVwq0WDyGsllyF2zT3/8zvd8zvef7zk/wwPh
PgeVAQCe+L5nrle4NgASeOnJNq6VJZskhf3v6pZhN0x331vPJqWpvvcTGBII
AkMzV/LY5PqWrZtWaOF+eYDKghGbrPRU32eqj/uoUsm/emyyzV304Jdt2ALl
JIEKm1R3eeOQE4Gt5Jof261NnrK3O2YzgX1uw0x3gjYp+aSfWjLdB0GOJ5VY
pkWm1T4s6RzuhyB/buC/QwR511+jauP7AQj22h+6ZMQincti4j/0SCGodSgv
rllOWm79y9eq9RME46FpHpFMsih+mG7uHIRgE9clWFeDjE9ZCBW9pSEYfZRK
VzLIgtryj5yGIQisk5/2nVAjg8QJBsPNMgi8Wzy82Kokf0gtMOifYQiuFsts
Xi4jyxt9YpiPPkOQNXo68YoyeVf4/ISifAQCDXW1PcZKZJtba+DdP79AcPhZ
/boqBczpVyKSCkchCLAQxckXIbVRuaCoaAyC29V1LZvn4cp97Zxqz3EIhLJ1
GiUzMPPik10vW7CvX6XWjkzBimfHzvN2TkAwWC834cuh6N3jlJImbC/zBqb+
GNy2OySjxVMOwZ6U4tz7Mhj5qe+G6wvsW+dNDeOkMJovv9D/8yQEek1H0md7
oMVgR2h7DfaQwK759hsY+4pDhmyZgoBkmMdO1MDC7IWlH6qxQbqhjiibEkYV
PF1t+xUCTgDvteglpUTSfLdKbCtn5s2pTsoxOHmUsJ+GIKL5Nw+5hOLmqERb
lGE/zPvgqDlItT7WnA3bMAOBvxu/NPMzZUDTRxnF2BwRER80TumfWd+1xXgW
Ap/Csy9oOUUPLnIz8rBdb7m5PPhK+QjvhTvqz+F/Bq2tspul4ru7cnVE2P4u
fscV81RwkKRx+5p5CBIfWf6YvUTRDl5flDKwi+48kLEBsgde8mGdBQjMLCVH
Tiohy/dG02bXsKf3rggRK6PPWTEfUtiLEGyemvxmpIL4xbsqk9OxrX9t4Ear
oiM9I+l9zCUIjtrbihvU0I6xVV6CFOyYoQ6FhTpCq1ZrmjO+QeD+tKMiQgON
3LkszrqALTwpGBcz0QDjrLcJUEAQbpjaqa+JzsXvkDLPYvfRjZaHWajqj98r
TaOwfdecHjnGQtMlH5OdzmM763GKTrJQeEeUbeRl7OSwCN5FFjpg9HesLAEb
pNhwr7PQzmpjs/qb2Lz0Jr06FtIdVw2LqcaW1d5Q4RBo97I9TqLn2HyeoNaE
QGm693TFCDtkr0G0OYGY2x2oqTpsO61CxSYCLSWc0Q5txjaeqp/3JJCUS5c7
9WJXJllMRBHI0M42br8EWzVxsfQygfa7XxFE9mPPeTeHxRGoS2igUj6I3eZw
fCSdQI1iP1/DMezTyTV0AYEYr/PMtk9gM95m55cSyFk6ueQ/ie3+JfxgBYGe
M9Py02awO09xBhCBFtb2Rj6c+76HnhO9INBma4td9QvYBtz24CYCnXKO5EqX