-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesis_nojhep.tex
1921 lines (1661 loc) · 124 KB
/
thesis_nojhep.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt,a4paper]{article}
\pdfoutput=1
\usepackage{listings}
\usepackage{graphicx,amssymb,amsmath,amsfonts,subfig}
\usepackage{tikz}
\usepackage{placeins}
\usetikzlibrary{angles}
\usetikzlibrary{quotes}
\extrafloats{50}
%\input macro
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\keywords{}
%\preprint{}
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
\begin{document}
\lstset{language=Mathematica}
%\title{Charged Holographic Strings}
%\author{Lior Blech \and Nilanjan Sircar \and Jacob Sonnenschein \\
% The Raymond and Beverly Sackler School of Physics and Astronomy,\\
% Tel Aviv University,\\
% Ramat Aviv 69978, Israel}
%\date{\today}
%\maketitle
%\affiliation{}
%\emailAdd{[email protected]}
%\emailAdd{[email protected]}
%\emailAdd{[email protected]}
\flushbottom
\pagebreak
\begin{titlepage}
\centering
\includegraphics[scale=0.65]{figures/TAUlogo.png}\par\vspace{1cm}
\vspace{1cm}
{\scshape\Large Thesis Submitted In partial Fulfilment of the Requirements for the Degree of\par}
\vspace{1cm}
{\scshape\Large Master of Science\par}
\vspace{1.5cm}
{\huge\bfseries Charged Holographic Strings\par}
\vspace{2cm}
{\Large\itshape Lior Blech\par}
\vfill
{\scshape\Large Written Under the Supervision of\par
Prof.~Jacob Sonnenschein}
\vfill
% Bottom of the page
{\large \today\par}
\end{titlepage}
\begin{abstract}
We revisit the holographic description of hadrons, adding an electromagnetic interaction term and taking account of one loop corrections through a casimir energy term. We first review the theoretical background: AdS/CFT correspondence, confining gravitational backgrounds and the approximating model of the spinning string with endpoint masses, including the one loop quantum corrections. We then analyse the effect of adding the electromagnetic charges and the casimir energy. Finally we confront the results with PDG data by fitting to the Regge trajectories and attempt to further constrict the parameter space through the determination of the mass difference between the up and down quarks.
\end{abstract}
\pagebreak
\tableofcontents
\section{Introduction}
\FloatBarrier
\subsection{Confinement and Regge Trajectories}
Confinement\cite{Greensite08} is usually defined as the apparent absence of free quarks in nature. This definition refers to the absence of free hadronic particles with fractional electric charge. Although intuitive this definition is imprecise. Suppose in nature there exists a massive scalar in the fundamental representation of $SU\left(3\right)$ and otherwise no charge. This scalar and a quark would form a bound state in the trivial representation of $SU\left(3\right)$ and fractional electric charge, albeit with a higher mass, which could be detected at a future accelerator. This kind of particle would not really qualify as a free quark, but still, it motivates us to look for a better definition.
Another possible definition would be color confinement, which states that there are no isolated particles in nature with non vanishing color charge. This definition also does not capture the essence of the problem. Suppose we introduce a higgs field in the fundamental representation of $SU\left(3\right)$ with couplings such that all gluons acquire a mass at tree level. The color charge is the integral of the electric field over a closed volume:
\begin{equation}
Q^a=\int\limits_{\partial V} \vec{E}^a \cdot d\vec{S}
\end{equation}
An isolated quark far from the boundary of the volume would thus have a color charge which is essentially zero, as the electric field would fall off exponentially with distance. So a quark viewed from a distance much greater than the inverse gluon mass would appear to be a color singlet.
What distinguishes a confining theory from a gauge theory with spontaneous symmetry breaking is the fact that meson states fall on Regge trajectories, which are not found in bound state systems with coulomb or yukawa attractive forces. Regge trajectories are straight lines in the $\left(J,M^2\right)$ plane. It is well known that a linear quark interaction potential $V(r)=a r$ leads to linear Regge trajectories \cite{LUCHA89}. In gauge theories the operators called Wilson lines (or loops) are gauge invariant operators defined by
\begin{equation}
W\left(C\right)=\frac{1}{N}\emph{TrP} e^{i\oint\limits_CA_\mu \dot{x}^\mu\left(\tau\right)\mathrm{d}\tau }
\end{equation}
The interaction potential of a quark anti-quark pair can be extracted from the infinite strip Wilson line by the relation \cite{Sonnenschein00}:
\begin{equation}
\left\langle W\left(C\right)\right\rangle=A\left(L\right)e^{-TE\left(L\right)}
\end{equation}
\begin{tikzpicture}
\draw[color=red] (-1.5,-2.5) rectangle (1.5,2.5);
\draw[<->,dashed] (-1.5,2.6) -- node[anchor=south,near end] {L} (1.5,2.6);
\draw[<->,dashed] (1.7,-2.5) --node[anchor=west,near end] {T} (1.7,2.5);
\draw[->] (-2,0) -- (2,0) node[anchor=west] {x};
\draw[->] (0,-3) -- (0,3) node[anchor=south] {t};
\end{tikzpicture}
Where \emph{T} is the time extension of the loop. Assuming the interaction potential is linear we get that the Wilson line has an area law behaviour
\begin{equation}
\left\langle W\left(C\right)\right\rangle=A\left(L\right)e^{-aTL}
\end{equation}
This is why an area law for the Wilson line is considered as a signal for a confining theory.
A simple model which was already known in the 60s \cite{Collins} to replicate the linear nature of Regge trajectories, is the spinning open relativistic string given by the Namboo-Goto action. The NG action describes the proper area of the string worldsheet:
\begin{equation}
S=T_{string}\iint \mathrm{d}^2\sigma \sqrt{-\det\left(\frac{\partial x^\mu}{\partial \sigma^a}\frac{\partial x_\mu}{\partial \sigma^b}\right)}
\end{equation}
Where $T_{string}\left[GeV^{-2}\right]$ is the string tension and
\begin{align}
&\sigma^1=\tau\in\left(-\infty,\infty\right)\\
&\sigma^2=\sigma\in\left[-\pi,\pi\right]
\end{align}
Are the worldsheet coordinates, which are affine parameters describing the worldsheet. The action is invariant upon general coordinate transformations. We choose in this case the orthogonal gauge which is defined by:
\begin{subequations}
\begin{align}
&\frac{dx^\mu}{d\tau} \frac{dx_\mu}{d\tau}=-\frac{dx^\mu}{d\sigma}\frac{dx_\mu}{d\sigma}\\
&\frac{dx^\mu}{d\sigma} \frac{dx_\mu}{d\tau}=0
\end{align}
\end{subequations}
Under which the action reduces to the more convenient form:
\begin{equation}
S=\frac{T_{string}}{2}\iint \left( \frac{dx^\mu}{d\tau} \frac{dx_\mu}{d\tau}-\frac{dx^\mu}{d\sigma} \frac{dx_\mu}{d\sigma} \right)\mathrm{d}\sigma\mathrm{d}\tau
\end{equation}
The conjugate momenta are:
\begin{equation}
P^\mu=\frac{\partial \mathcal{L}}{\partial \dot{x^\mu}}=T_{string} \eta_{\mu\nu}\dot{x}^\nu
\end{equation}
The boundary conditions appropriate for an open string are:
\begin{subequations}
\begin{align}
&\dot{x}^0_{\sigma=\pm\pi}=const\\
&P^i_{\sigma=\pm\pi}=0
\end{align}
\end{subequations}
And the equations of motion are simply the wave equation for each coordinate:
\begin{equation}
\frac{\partial^2 {x}^\mu}{\partial \tau^2}-\frac{\partial^2 {x}^\mu}{\partial \sigma^2}=0
\end{equation}
A solution describing a spinning string is:
\begin{align}
&x^0=A\tau &x^3=\cdots=const\notag\\
&x^1=A\cos\left(\tau\right)\sin\left(\sigma\right) &x^2=A\sin\left(\tau\right)\sin\left(\sigma\right)
\end{align}
The parameter $A$ is needed in the time variable to ensure the solution is in the orthogonal gauge. We now compute the energy and angular momentum of this configuration and find the relation in the $\left(J,E^2\right)$ plane. The energy is the generator of poincare time translations and angular momentum is the generator of rotations in the poincare coordinates. The expressions are:
\begin{subequations}
\begin{align}
&E=\frac{T_{string}}{2}\int\limits_{-\pi}^{\pi} \frac{dx^0}{d\tau} \mathrm{d}\sigma \\
&J_i=\frac{T_{string}}{2}\int\limits_{-\pi}^{\pi}\epsilon_{ijk}x_j \dot{x}^k \mathrm{d}\sigma
\end{align}
\end{subequations}
Substituting the spinning solution into these results in:
\begin{subequations}
\begin{align}
&E=\pi T_{string} A \\
&J_3=\frac{T_{string}\pi}{2}A^2
\end{align}
\end{subequations}
Finally we combine the two relations, eliminating $A$ in favour of $E$ in $J$ and get the formula for a classical linear trajectory:
\begin{equation}
\label{eq:intro-traj}
J=\frac{E^2}{2\pi T_{string}}
\end{equation}
Here we can define a quantity which we will use later, the Regge slope $\alpha'=\frac{1}{2\pi T_{string}}$. The expression \ref{eq:intro-traj} lacks another important property of Regge trajectories: the \emph{intercept}. The intercept is the result of quantum mechanical fluctuations, as will be demonstrated in section \ref{sec:Spinning Holographic Strings}. Due to this interesting result string theory was initially investigated as a theory of the strong interactions. Due to the presence of unwanted (from the strong interaction point of view) particles in the string spectrum and the discovery of asymptotic freedom, it was abandoned as a theory of the strong interactions, while continuing to develop as a fundamental theory of particle physics and gravity.
\subsection{The AdS/CFT Correspondence}
In time it was discovered that apart from strings, string theory contained additional degrees of freedom, p-Branes, which are extended objects where open strings end. Furthermore, p-Branes were recognized to be the same objects as D Branes, which are solitonic solutions of supergravity (which is the low energy, or small slope, limit of superstring theory). Dp Branes, as they are called, can also carry gauge fields which are said to "live" on their surface. Open strings then correspond to sources or sinks of flux on the brane.
The study of Dp Branes and the theories that live on them led to the Maldacena conjecture that $\mathcal{N}=4$ SYM is equivalent to type IIB string theory compacted on $AdS_5\times S^5$\cite{Maldacena97,Aharony11,Vecchia98}. The conjecture relates the string theory, supergravity and gauge theory parameters:
\begin{align}
&g_{YM}^2\equiv\frac{\lambda}{N}=4\pi g_s &R_{S_5}^2=R_{AdS_5}^2=\lambda^{1/2}\alpha'
\end{align}
Where
\begin{description}
\item[$g_{YM}$] is the gauge theory coupling
\item[$\lambda$] is the t'Hooft coupling
\item[N] is the number of coincident D Branes as well as the type of gauge group $SU\left(N\right)$
\item[$g_s$] is the string coupling
\item[$R_{S_5}$] is the radius of the sphere
\item[$R_{AdS_5}$] is the radius of AdS
\item[$\alpha'$] is the slope parameter as defined above
\end{description}
The SYM theory lives on the boundary of AdS while the string theory lives in the bulk. The perturbative description is valid for small $g_{YM}$ while the supergravity description is valid for large radii, hence large $\lambda$ and finite $g_{YM}$. In this sense it is also a weak-strong coupling correspondence. A consequence of the correspondence must be that correlation functions in the gauge theory can be computed in the string theory by using the gauge theory operator insertions as the boundary conditions for the string theory computations. The correspondence in the generating functional is:
\begin{equation}
Z_{SYM}\left(\theta_0\right)=< e^{\int d^4x\theta_0\left(x\right)Q\left(x\right)}>
\sim Z_{stringy}\left(\theta_0\right)=\int\limits_{\theta\rightarrow\theta_0}\mathcal{D}\theta e^{-S\left[\theta\right]}
\end{equation}
Where $\theta_0\left(x\right)$ is the source of the boundary field $Q\left(x\right)$.
SYM theory is a supersymmetric version of Yang Mills theory, which turns out to be conformally invariant at the quantum level. The most powerful evidence for the AdS/CFT correspondence is the correspondence of $SYM\mathcal{N}=4$ theory to string theory on the $AdS_5\times S_5$ background. The correspondence in this case is supported by the fact that the two theories contain the same symmetries. We will now briefly describe conformal symmetry ,supersymmetry and the symmetries of AdS space.
The Conformal symmetry group is the group of transformations which preserve the form of the metric up to an arbitrary scale factor $g_{\mu\nu}\left(x\right)\rightarrow\Omega^2\left(x\right)g_{\mu\nu}\left(x\right)$. It is generated by the poincare transformations, the scale transformations
\begin{equation}
x^\mu\rightarrow\lambda x^\mu
\end{equation}
and the special conformal transformations
\begin{equation}
x^\mu\rightarrow\frac{x^\mu+a^\mu x^2}{1+2x^\nu a_\nu+a^2x^2}
\end{equation}
The generators of Lorentz $M_{\mu\nu}$, Translation $P_\mu$, Scale $D$ and Special Conformal $K_\mu$ transformations obey the conformal algebra:
\begin{align}
&[M_{\mu\nu},P_\rho]=-i(\eta_{\mu\rho}P_\nu-\eta_{\nu\rho}P_\mu) &[M_{\mu\nu},K_\rho]=-i(\eta_{\mu\rho}K_\nu-\eta_{\nu\rho}K_\mu) \notag \\
&[M_{\mu\nu},M_{\rho\sigma}]=-i\eta_{\mu\rho}M_{\nu\sigma}\pm\textit{permutations} &[D,K_\mu]=iK_\mu \notag \\
&[D,P_\mu]=-iP_\mu &[P_\mu,K_\nu]=2iM_{\mu\nu}-2i\eta_{\mu\nu}D & \notag \\
&[M_{\mu\nu},D]=0
\end{align}
where all other commutators vanish. This algebra is isomorphic to the algebra of $SO(d,2)$ with signature $-,+,+,\hdots,+,-$ and generators $J_{ab}$:
\begin{align}
&J_{\mu\nu}=M_{\mu\nu} &J_{\mu d}=\frac{1}{2}(K_\mu-P_\mu) &J_{\mu(d+1)}=\frac{1}{2}(K_\mu+P_\mu) &J_{(d+1)d}=D \\
&\mu,\nu=0,1,\hdots,d-1 \notag
\end{align}
The supersymmetry transformation is generated by a fermionic operators $Q$ which anti-commutes with the translation operators $P_\mu$. For some numbers of dimensions and supersymmetry generators it is possible to join the supersymmetry and conformal group into one simple group. These superconformal algebras exist only for $d\leq 6$. In these algebras there arise two more types of generators: the fermionic $S$ and the bosonic $R$ R-symmetry. The algebra is schematically:
\begin{align}
&[D,Q]=-\frac{i}{2}Q & [D,S]=\frac{i}{2}S &[K,Q]\approx S &[P,S]\approx Q \notag \\
&{Q,Q}\approx P &{S,S}\approx K &{Q,S}\approx M+D+R
\end{align}
The $p+2$ dimensional $Ads_{p+2}$ can be represented as the hyperboloid
\begin{equation}
X_0^2+X_{p+2}^2-\sum_{i=1}^{p+1}X_i^2=R^2
\end{equation}
in the flat $p+3$ dimensional space with metric
\begin{equation}
ds^2=-dX_0^2-dX_{p+2}^2+\sum_{i=1}^{p+1}dX_i^2
\end{equation}
This space has the isometry $SO(2,p+1)$ by construction and it is homogeneous and isotropic. A useful set of coordinates $(u,t,\vec{x})$, called the poincare coordinates, is defined by the relations:
\begin{align}
&X_0=\frac{1}{2u}\left(1+u^2 \left(R^2+\vec{x}^2-t^2\right)\right) &X_{p+2}=Rut \notag \\
&X^i=Rux^i \qquad \left(i=1,\hdots,p\right) \notag \\
&X^{p+1}=\frac{1}{2u}\left(1-u^2 \left(R^2-\vec{x}^2+t^2\right)\right)
\end{align}
In these coordinates the metric is:
\begin{equation}
ds^2=R^2\left(\frac{du^2}{u^2}+u^2\left(-dt^2+d\vec{x}^2\right)\right)
\end{equation}
The metric is manifestly poincare invariant ($ISO\left(1,p\right)$). Also the transformation $SO\left(1,1\right)$ defined by:
\begin{equation}
\left(t,\vec{x},u\right)\rightarrow \left(ct,c\vec{x},c^{-1}u\right)\qquad c>0
\end{equation}
is an isometry of the space. This transformation is identified with the dilatation $D$ in the conformal symmetry group of $\mathbb{R}^{1,p}$. Thus $AdS_{p+2}$ has the same number of symmetries as a conformal theory in flat space with $p+1$ dimensions.
Lastly the $SO\left(2,p+1\right)$ isometry group of $AdS_{p+2}$ has a supersymmetric generalization called an \textit{AdS} supergroup, and it turns out that \textit{AdS} space preserves as many supersymmetries as flat space.
The exact matching between the superconformal algebra of $SYM\mathcal{N}=4$ and the isometry group of supergravity (and thus low energy string theory) on $AdS_5\times S_5$ provides the strongest evidence for the maldacena correspondence.
%The origin of string theory can be traced back to the 60's. Physicists have tried to make sense of many of the strong interactions experimental data. There were many particles and resonances detected, and there was no satisfactory theory to incorporate them. Some regularities were observed. The first was the duality of the four point amplitudes in the \textbf{s} and \textbf{t} channels. The second observation was that the energy and the angular momentum of some particles could be placed on straight lines: $J=\alpha'm^2+a$. These lines are called Regge Trajectories. A suitable scattering amplitude for two by two*******
\FloatBarrier
\subsection{Confining Backgrounds}
As has been mentioned, the Maldacena correspondence allows us to compute strong coupling quantities in gauge theories. This has given hope that a string theory dual to QCD might be found which would enable us to handle the nonperturbative regime. The fact that string models describe well the Regge trajectories gives further motivation. While this has not been accomplished to date, there has been progress in that direction.
Using the gauge-gravity duality, supergravity backgrounds have been constructed that are dual to confining gauge theories. To deal with non supersymmetric gauge dynamics one makes use of Witten's method \cite{Witten98,Kuperstein04} of using compact euclidean time with anti-periodic boundary conditions. We investigate whether the stringy picture in a confining background can reproduce the properties of real hadrons by fitting to regge trajectories and predict hadron electromagnetic mass differences. This section summarizes the results of previous works on what kinds of backgrounds confine.
\FloatBarrier
\subsubsection{The Stringy Wilson Line}
In the AdS/CFT correspondence, the stringy dual of the Wilson line is the Nambu-Goto string \cite{Maldacena98}.
\begin{equation}
\left\langle W\left(C\right)\right\rangle\sim e^{-S_{NG}}
\end{equation}
So that
\begin{equation}
S_{NG}=TE\left(L\right)
\end{equation}
We analyse a Wilson line inside a d dimensional space-time with the metric \cite{Kinar99}
\begin{equation}
ds^2=-G_{00}\left(s\right)dt^2+G_{||}\left(s\right)dx_{||}^2+G_{ss}\left(s\right)ds^2+G_{TT}\left(s\right)dx_T^2
\end{equation}
where the $x_{||}$ are p space coordinates on a $D_p$ brane and \textbf{s} and $x_T$ are radial coordinates and transverse directions respectively. For string configurations which are static and approximately stretch only along the radial and one $x_{||}$ directions we can take the gauge $t=\tau, x_{||}=x$. The induced worldsheet metric then takes the form:
\begin{equation}
h=
\begin{pmatrix}
-G_{00} & 0 \\
0 & G_{||}+G_{ss}\left(\partial_{x}s\right) \\
\end{pmatrix}
\end{equation}
The corresponding Nambu Goto action is
\begin{equation}
S_{NG}=T\int\sqrt{f^2\left(s\left(x\right)\right)+g^2\left(s\left(x\right)\right)\left(\partial_xs\right)^2}\mathrm{d}x
\end{equation}
Where $T=\int\mathrm{d}t$ and we made the following substitutions:
\begin{subequations}
\begin{align}
&f^2\left(s\left(x\right)\right)=G_{00}\left(s\left(x\right)\right)G_{||}\left(s\left(x\right)\right)\\
&g^2\left(s\left(x\right)\right)=G_{00}\left(s\left(x\right)\right)G_{ss}\left(s\left(x\right)\right)
\end{align}
\end{subequations}
Notice that \textbf{x} does not appear explicitly in the action and so there is a conserved current:
\begin{align}
&\frac{\partial L_{NG}}{\partial \left(ds/dx\right)}\frac{ds}{dx}-L_{NG}=const \notag \\
&=\cdots=-\frac{f^2\left(s\left(x\right)\right)}{\sqrt{f^2\left(s\left(x\right)\right)+g^2\left(s\left(x\right)\right)\left(\partial_xs\right)^2}}=const=-K
\end{align}
For $\frac{ds}{dx}|_{s_0}=0$ we get $f\left(s_0\right)=K$. Using this and extracting $\frac{ds}{dx}$ we get:
\begin{equation}
\frac{ds}{dx}=\pm\frac{f\left(s\right)}{g\left(s\right)} \frac{\sqrt{f^2\left(s\right)-f^2\left(s_0\right)}}{f\left(s_0\right)}
\end{equation}
The picture is of the string stretching down from the boundary $s\rightarrow\infty$ down to $s\rightarrow s_0$ where it is horizontal, and back into the boundary. The separation distance between the string endpoints (quark anti quark) is
\begin{equation}
\label{eq:stringseperation}
L=\int dx=2\int\limits_{s_0}^{\infty} \frac{g\left(s\right)}{f\left(s\right)} \frac{f\left(s_0\right)}{\sqrt{f^2\left(s\right)-f^2\left(s_0\right)}} \mathrm{d}s
\end{equation}
We can use the two relations to calculate the action and extract the quark potential $E=\frac{S_{NG}}{T}$
\begin{align}
S_{NG}&=2T\int\limits_{s_0}^{\infty} \frac{g\left(s\right)}{f\left(s\right)} \frac{f\left(s_0\right)}{\sqrt{f\left(s\right)^2-f\left(s_0\right)^2}} \sqrt{f\left(s\right)^2+g\left(s\right)^2\frac{f\left(s\right)^2}{g\left(s\right)^2} \frac{f\left(s\right)^2-f\left(s_0\right)^2}{f\left(s_0\right)^2}}\mathrm{d}s \notag \\
&=2T\int\limits_{s_0}^{\infty} \frac{g\left(s\right)f\left(s\right)}{\sqrt{f\left(s\right)^2-f\left(s_0\right)^2}}\mathrm{d}s=\infty
\end{align}
The action diverges because of the infinite extent of the string. In order for the string length to converge the slope $\frac{ds}{dx}$ has to diverge on the boundary. This implies $f\left(s\right)\gg f\left(s_0\right)$ on the boundary. In this region the string is vertical and the energy density there is approximately just $g\left(s\right)$. In that case we can renormalize the action by
\begin{itemize}
\item[(a)] regularizing the integral $\int\limits_{s_0}^{\infty} \rightarrow \int\limits_{s_0}^{s_1}$
\item[(b)] substracting the quark masses defined by
\end{itemize}
\begin{equation}
m_q=\int\limits_{0}^{s_1}g\left(s\right)\mathrm{d}s
\end{equation}
The renormalized quark antiquark potential is now
\begin{equation}
V=f\left(s_0\right)L+2\int\limits_{s_0}^{s_1} \frac{g\left(s\right)}{f\left(s\right)}\left(\sqrt{f\left(s\right)^2-f\left(s_0\right)^2}-f\left(s\right)\right)\mathrm{d}s-2\int\limits_{0}^{s_0}g\left(s\right)\mathrm{d}s
\end{equation}
A sufficient condition for confinement found in \cite{Sonnenschein00,Kinar98} is if either:
\begin{itemize}
\item f has a minimum at $s_{min}$ and $f\left(s_{min}\right)\neq0$.
\item g diverges at $s_{div}$ and $f\left(s_{div}\right)>0$.
\end{itemize}
The first condition asserts that the potential contains a linear term. Also under this condition there must be a region where $f\left(s\right)\gg f\left(s_0\right)$. In the case of a divergence of $g\left(s\right)$,
\begin{equation}
\frac{ds}{dx}|_{s=s_{div}}=\pm\frac{f\left(s\right)}{g\left(s_{div}\right)} \frac{\sqrt{f^2\left(s\right)-f^2\left(s_0\right)}}{f\left(s_0\right)}=0
\end{equation}
So that a string long enough to reach $s_{div}$ stretches horizontally along $s=s_{div}$ for much of its length. So the stringy picture in a confining background is that of two strings stretching vertically from the boundary down to either the "wall" $s=s_{div}$ or down to $s_0$ where $f$ has a minimum, and connecting horizontally.
An example is that of the dual model of pure YM in d=3 \cite{Kinar98}:
\begin{subequations}
\label{eq:YM dual}
\begin{align}
&L_{NG}=\sqrt{\left(\frac{U}{R}\right)^4+\left(U'\right)^2\left(1-\left(\frac{U_T}{U}\right)^4\right)^{-1}} \\
&V=\frac{U_T^2}{2\pi R^2}L-2\kappa+O\left(\left(\log L\right)^\beta e^{-\alpha L}\right)
\end{align}
\end{subequations}
\begin{figure}
\centering
\includegraphics[scale=0.7]{figures/stringConfiguration.png}
\caption{String configurations of the YM dual \ref{eq:YM dual} with $s_{div}=R=1$. The blue and orange strings differ in the overall string length, controlled through the dependence on $s_0$ \ref{eq:stringseperation}. It can be observed that the length of the transition region between horizontal and vertical sections does not scale with the string length.}
\end{figure}
This has confining behaviour and $S_{div}=U_T$. In other words to get confinement we introduce a scale in the radial direction. The Wilson line in a confining background behaves similarly to a string in flat space time, due to the U shape and the cancellation of the action of the vertical segments.
%\begin{tikzpicture}[rounded corners=2pt,scale=2]
%\draw (-16pt,0) rectangle (16pt,-15pt);
%\shade (0,0) ellipse [x radius=20pt,y radius=6pt];
%\end{tikzpicture}
\FloatBarrier
\subsubsection{From Wilson Lines To Dynamical Mesons}
In the preceding section we discussed the stringy description of the Wilson line. The quarks there were actually infinitely massive due to the strings stretching all the way to the boundary. We can introduce dynamical quarks by introducing a set of $N_f$ "flavour" Dp Branes in the bulk, in addition to the stack of ($N_c$) "color" branes which lie at the boundary. Strings which stretch between the color branes and the flavour branes map to bi-fundamental "quarks" that transform as the $(N_c,N_f)$ representation of the $U(N_c)\times U(N_f)$ gauge symmetry. For $N_c\gg N_f$ the back reaction of the flavour branes can be ignored and the $U(N_f)$ can be treated as a global symmetry.
\begin{table}
\centering
\begin{tabular}{ l *{10}{c}}
& 0 & 1 & 2 & 3 & (4) & 5 & 6 & 7 & 8 & 9 \\
$D4$ & $\circ$ & $\circ$ & $\circ$ & $\circ$ & $\circ$ & & & & & \\
$D8-D\bar{8}$ & $\circ$ & $\circ$ & $\circ$ & $\circ$ & & $\circ$ & $\circ$ & $\circ$ & $\circ$ & $\circ$
\end{tabular}
\caption{The Sakai-Sugimoto model brane configuration. The dimension $x^4$ is compacted on a circle.}
\label{tab:Sakai-Sugimoto}
\end{table}
We use the Sakai-Sugimoto model \cite{Sakai04} which consists of $N_c$ $D4$ branes and $N_f$ $D8-D\bar{8}$ branes. The dimensions the branes extend along are described in table \ref{tab:Sakai-Sugimoto}. The $x^4$ coordinate is compacted with boundary conditions which kill supersymmetry and introduces confinement. The flavour branes in the $D4$ background are described by the embedding $x^4\left(U\right)$ where $U$ is the radial direction away from the $D4$ brane (with the $D4$ brane residing at $U=\infty$). In their analysis Sakai and Sugimoto determined that the $D8-D\bar{8}$ branes hang from the $D4$ brane and meet at some $U$, forming a single brane and spontaneously breaking the chiral symmetry $U\left(N_f\right)_L\times U\left(N_f\right)_R\rightarrow U\left(N_f\right)$. One can separate the flavour branes in the radial $U$ direction, further breaking the flavour symmetry.
\begin{figure}
\centering
\begin{tikzpicture}[rounded corners=5pt,scale=0.1]
\shade[left color=green,right color=white] (30,15) ellipse [x radius=20,y radius=5];
\shade[left color=green,right color=white] (30,30) ellipse [x radius=20,y radius=5];
\shade[left color=green,right color=white] (30,45) ellipse [x radius=20,y radius=5];
\shade[left color=green,right color=white] (30,60) ellipse [x radius=20,y radius=5];
\draw[dashed,->] (30,0) -- (30,70);
\draw[->] (0,0) -- (0,70);
\draw[color=blue] (20,60) circle [radius=1,fill=blue]--(20,0)--(40,0)--(40,15) circle [radius=1,fill=blue];
\draw (0,0)--(1,0) node[anchor=west] {$u_\Lambda$-"wall"};
\draw (0,15)--(1,15) node[anchor=west] {$u_{u/d}$};
\draw (0,30)--(1,30) node[anchor=west] {$u_s$};
\draw (0,45)--(1,45) node[anchor=west] {$u_c$};
\draw (0,60)--(1,60) node[anchor=west] {$u_b$};
\end{tikzpicture}
\caption{Illustration of flavour probe branes. Each brane is located at a different radial coordinate which determines the mass of the corresponding quark flavour.}
\end{figure}
Now instead of starting and ending on the boundary the strings can start and end on the flavour branes. A string would now have an endpoint mass:
\begin{equation}
m_q= T\int\limits_{s_0}^{s_f} \sqrt{G_{00}G_{ss}}\mathrm{d}s
\end{equation}
Where $s_f$ is the radial coordinate of a flavour brane. In \cite{Kruczenski05} it was found that the dynamics of the open string spinning in the confining background could be described by the model of the spinning string in flat space loaded with masses at its' ends. This approximation is valid as long as the string is sufficiently long and stretches along the wall.
We have seen that it is possible to get a string theory which is dual to a confining gauge theory with flavour symmetries and fundamental quarks and the states dual to mesons are spinning strings stretching between the flavour branes. In \cite{Seki08} a similar analysis was carried out for baryons, which were found to be described by spinning strings which at one end connect with a flavour brane and at the other end with a baryonic vertex, which then connects with two other short strings which in turn connect to flavour branes. The baryonic vertex is itself a D5 brane wrapped around the $S_5$. In addition we see that this theory can be analysed through the approximation of the spinning string with masses at the endpoints. This approximation lies at the heart of the present work.
\FloatBarrier
\subsection{Spinning Holographic Strings}
\label{sec:Spinning Holographic Strings}
In the previous section we have seen that strings in gravitational backgrounds which connect with probe branes can be approximately described as strings in flat space-time, with endpoint masses proportional to the length of the horizontal string sections. This section will present the results obtained in the analysis of such a model and use them to discuss the general approach to the holographic string problem.
The model of the spinning string with massive endpoints is described using the Nambu-Goto action and relativistic point particle action:
\begin{align}
\label{eq:actionmassive}
S&=-T\iint\limits_{(0,-l_{2})}^{(T,l_{1})}\mathrm{d}^{2}\sigma\sqrt{-\det h}-m_1\int\limits_{0}^{T}\mathrm{d}\tau\sqrt{u^{\mu}u_{\mu}}|^{\sigma=l_{1}}-m_2\int\limits_{0}^{T}\mathrm{d}\tau\sqrt{u^{\mu}u_{\mu}}|^{\sigma=-l_{2}}=\notag\\
&=-T\iint\limits_{(0,-l_{2})}^{(T,l_{1})}\mathrm{d}^{2}\sigma\sqrt{-\det h}-m\int\limits_{0}^{T}\mathrm{d}\tau\sqrt{u^{\mu}u_{\mu}}|_{\sigma=-l_{2}}^{\sigma=l_{1}}
\end{align}
The endpoint masses (point like massive particles) are located at the coordinates specified by $\sigma=l_1,-l_2$, and the masses are allowed to vary between the two ends. The second line of equation \ref{eq:actionmassive} shows an example of a shorthand we use to write the two point-particle actions as one.
In section \ref{sec:eom} we show how to derive the equations of motion, energy and angular momentum for the case of the charged holographic string discussed there. For now we simply write down the results obtained in \cite{Sonnenschein14} for the case of identical endpoint masses.
\begin{subequations}
\begin{align}
&\text{The equation of motion is:}\notag\\
&\gamma\beta m \omega-\frac{T}{\gamma}=0\\
&\text{The energy is:}\notag\\
&E=\frac{2T}{\omega}\sin^{-1}\left(\beta\right)+2m\gamma\\
&\text{The angular momentum is:}\notag\\
&J=T\frac{-\frac{\beta}{\gamma}+\sin^{-1}\left(\beta\right)}{\omega^{2}}+2m\frac{\gamma\beta^{2}}{\omega}
\end{align}
\end{subequations}
Where:
\begin{itemize}
\item[c]=1.
\item[$\beta$] is the velocity of the endpoints.
\item[$\gamma$]$=\frac{1}{\sqrt{1-\beta^2}}$
\item[$T$] is the string tension.
\item[$\omega$] is the rate of rotation, such that $\beta=\omega l$ and $l$ is the distance of each endpoint to the center of rotation.
\end{itemize}
Notice that the equation of motion can be used to relate the rate of rotation with the velocity:
\begin{equation}
\label{eq:omega}
\omega=\frac{T}{m\gamma^2\beta}
\end{equation}
So putting this back in the expressions for the energy and angular momentum results in:
\begin{subequations}
\begin{align}
&E=2m\gamma^2\beta\sin^{-1}\left(\beta\right)+2m\gamma\\
&J=m^2\gamma^4\beta^2 \frac{-\frac{\beta}{\gamma}+\sin^{-1}\left(\beta\right)}{T}+\frac{2m^2\gamma^3\beta^{3}}{T}
\end{align}
\end{subequations}
We are interested in the predicted regge trajectories in the limits of small and large quark mass, which corresponds to $\beta\rightarrow1$ and $\beta\rightarrow0$ respectively (this results from equation \ref{eq:omega}, assuming constant string tension and rotation rate).The procedure to get the expression for the regge trajectory in each limit is:
\begin{enumerate}
\item Expand the energy and angular momentum in a Taylor series around the corresponding limit.
\item Find the inverse series for the energy $\beta\left(E\right)$ \cite{WolframSeriesReversion}.
\item Plug $\beta\left(E\right)$ into the angular momentum series and get $J\left(E\right)$.
\end{enumerate}
The resulting series are:
\begin{subequations}
\begin{align}
&\text{Light quark limit }\beta\rightarrow1\notag\\
&J=\alpha' E^2-\frac{8 \sqrt{\pi } \alpha' m^{3/2}}{3}\sqrt{E}+\frac{2}{5}\frac{\pi^{3/2}m^{5/2}\alpha'}{\sqrt{E}}+\hdots \\
&\text{Heavy quark limit }\beta\rightarrow0\notag\\
&J=\frac{4\pi\alpha'\sqrt{m} \left(E-2 m\right)^{3/2}}{3\sqrt{3}}+\frac{7\pi\alpha' \left(E-2m\right)^{5/2}}{54\sqrt{3}\sqrt{m}}+\hdots
\end{align}
\end{subequations}
Here we have defined the string 'slope' related to the string tension by:
\begin{equation}
\alpha'=\frac{1}{2\pi T}
\end{equation}
Observe that in the light quark limit the regge trajectory reduces to the linear trajectory of the spinning string with no endpoint masses $J=\alpha'E^2$.
\subsection{Quantization of the String with Massive Ends}
The trajectory in the last section still does not predict an intercept. The intercept is created by the quantum mechanical zero point energy. This energy is also called a casimir energy because in the casimir effect it is the energy difference induced by this energy term which causes the observed casimir force. It is well known that the intercept is given in terms of the casimir term which is the sum of the eigenvalues of the world sheet Hamiltonian $\omega_n$:
\begin{equation}
E_{casimir}=\frac{1}{2}\sum_{n=1}^\infty \omega_n=\frac{\pi (D-2)}{2L}\sum_{n=1}^\infty n=-\frac{(D-2)}{24}\frac{\pi}{L}=a\frac{\pi}{L}
\end{equation}
where $\omega_n=n$ for the case of the open string with Dirichlet boundary conditions and a zeta function regularization has been performed. Our case differs however in two ways:
\begin{itemize}
\item Our model lives in four dimensions, which is not the critical dimension of the bosonic string.
\item Our model contains a rotating string with massive endpoints instead of a string with Dirichlet boundary conditions.
\end{itemize}
The question of quantizing the string in non-critical dimensions was addressed by Polyakov and more recently in \cite{PS91}\cite{Hellerman13}\cite{Hellerman14}. The basic observation is that for the quantum effective string action in D dimensions, it is necessary to add a Liouville term of the form:
\begin{equation}
S_L=\frac{26-D}{24\pi}\int d^2\sigma\sqrt{|g|}\left[g^{ab}\partial_a\varphi\partial_b\varphi-\mathcal{R}_2\varphi\right]
\end{equation}
where the Liouville field is a composite field of the form
\begin{equation}
\varphi=-\frac{1}{2}Log(g^{ab}\partial_a x^\mu\partial_b x_\mu)
\end{equation}
An alternative formulation for the non-critical string was proposed by Polchinski-Strominger in \cite{PS91}. In the orthogonal gauge it reads:
\begin{equation}
S_{PS}=\frac{26-D}{24\pi}\int d\theta \int_{-\delta}^\delta d\sigma \frac{\left(\partial_{+}^2X\cdot \partial_{-}X\right)\left(\partial_{+}X\cdot \partial_{-}^2X\right)}{\left(\partial_{+}X\cdot \partial_{-}X\right)^2}
\end{equation}
Both formulations result in the same contribution to the action and have to be added to the open string as well as the closed string with either massless of massive end points. The purpose of the Polchinski-Strominger term (as in the case of the Liouville term) is to restore 2d conformal invariance for the non-critical string. Although it looks somewhat arbitrary at first sight, this term naturally appears in the Wilsonian quantization of the effective string in non-critical dimension and so is an integral part of the effective string action.
In \cite{Lambiase96} the quantum corrections to the energy of the massive stationary string have been calculated. There it can be seen that the Hamiltonian for the stationary string is reduced to:
\begin{equation}
H=\sum_{n=1}^{\infty}\sum_{j=1}^{D-2}\omega_na_n^{j\dagger}a_n^j+TR+\frac{D-2}{2}\sum_{n=1}^\infty \omega_n+\sum_{i=1,2} m_i
\end{equation}
Where the eigenfrequencies $\omega_n$ satisfy:
\begin{equation}
\tan\left(\omega_nR\right)=\frac{2mTR\left(\omega_nR\right)}{m^2\omega_n^2R^2-T^2R^2}
\end{equation}
Where $R$ is the string length and $D$ is the number of space-time dimensions, so that the energy in terms of the dimensionless quantity $\Omega_n=\omega_n R$ is:
\begin{equation}
H=\frac{1}{R}\sum_{n=1}^{\infty}\sum_{j=1}^{D-2}\Omega_n a_n^{j\dagger}a_n^j+TR+\frac{D-2}{2R}\sum_{n=1}^\infty \Omega_n+\sum_{i=1,2} m_i
\end{equation}
Therefore the string potential is
\begin{equation}
\label{eq:stringpotential}
V\left(R\right)=TR+\frac{D-2}{2R}\sum_{n=1}^\infty \Omega_n
\end{equation}
Note that in the limits of infinite and zero mass $\Omega_n=n$ and the result of the string with massless ends is recovered.
The casimir term calculated in \cite{Lambiase96} is plotted in figure \ref{fig:casimir}, where
\begin{equation}
\eta(q)=\frac{E_C^{ren}(m,L)}{E_C^{ren}(m=\infty,L)}=-\frac{12}{\pi^2}\int_0^\infty dx Lan\left[1-e^{-2x}\left(\frac{q-x}{q+x}\right)^2\right]
\end{equation}
and the definition of $q$ is the ratio of the string length $L$, tension $T$ and endpoint mass $m$:
\begin{equation}
q=\frac{TL}{m}
\end{equation}
\begin{figure}[h]
\centering
\includegraphics[scale=0.7]{figures/casimirPlot.png}
\caption{Plot of casimir term value as a function of tension, string length and endpoint mass in the case of the stationary string. Taken from \cite{Lambiase96}}
\label{fig:casimir}
\end{figure}
So we see that the string introduces both a confining linear potential and a $1/R$ term. This term is the generalization of the famous Luscher term. In the case of the string with massive endpoints it turns out this additional potential is attractive, similar to the Luscher result, but has mass and string length dependent corrections. This leads us to guess that the quantum correction to the spinning holographic string can be made by introducing a casimir energy term of the same form with some free parameter which stands in for the sum $\sum_{n=1}^\infty \Omega_n$.
In \cite{Sonnenschein14} the charges of the quarks have not been taken account of. The charges are expected to contribute to observables such as the mass differences between different hadrons, as well as decay rates and magnetic and electric dipoles. In the next section we will add the point charges and take the same philosophy: calculate the classical trajectory and add the quantum corrections by hand (although a bit differently).
In previous work on the holographic string\cite{Sonnenschein14} the intercept has been introduced by taking
\begin{equation}
J\rightarrow J-a
\end{equation}
\subsection{Potential Models}
\label{sec:potentialmodels}
Before going into the specifics of our model, it is worth mentioning another approach available for probing the low energy dynamics of QCD. The approach of non-relativistic potential models \cite{LUCHA89} postulates that the binding force inaccessible to perturbation theory can be written as a non-relativistic potential, commonly:
\begin{equation}
V_{confining}(r)=a\cdot r^n \qquad 2>n>0,a>0
\end{equation}
The exponent of $r$ is designed to be a long distance interaction ($n>0$ so that the force does not decrease faster than $\frac{1}{r}$), while not inducing equidistant level spacings (as in the case of the harmonic oscillator, $n=2$). A choice of $n=1$ is conventional and when combined with relativistic dynamics reproduces the Regge Trajectories. By considering the elastic scattering of quarks, the short distance part of the potential can be derived from QCD perturbation theory in the following way:
\begin{itemize}
\item Compute the scattering amplitude $T_{fi}$ in lowest non-trivial order of perturbation theory
\item Perform the non-relativistic limit
\item obtain the potential $V(r)$ in the born approximation as the Fourier transform
\begin{equation}
V(r)=-(2\pi)^3\int d^3k e^{-ik\cdot r}T_{fi}(k)
\end{equation}
\end{itemize}
For example the quark forces within a meson can be derived from quark-anti-quark scattering and leads to
\begin{equation}
V(r)=-\frac{4}{3}\alpha_s/r \qquad \text{with} \qquad \alpha_s\equiv g_s^2/4\pi
\end{equation}
while the quark forces within a baryon are derived from quark-quark scattering and yields
\begin{equation}
V(r)=-\frac{2}{3}\alpha_s/r
\end{equation}
Combining the short distance and large distance potentials results in the so called "funnel potential" (in the case of mesons):
\begin{equation}
V(r)=-\frac{4}{3}\alpha_s/r+ar+V_0
\end{equation}
One then uses this potential in the time independent schrodinger equation and calculates the energies and wavefunctions for hadrons. It has also been shown within the potential models formalism that when combined with relativistic kinematics, a linear potential leads to linear Regge trajectories.
Further details, like spin orbit interactions and relativistic corrections can be found in the reviews on the subject, i.e. \cite{LUCHA89}. Our interest in the subject is due to the fact that within this formalism it is possible to calculate the matrix elements corresponding to the electric dipole of the hadron $\langle \psi_f\vert q(\vec{r})\vec{r} \vert \psi_i\rangle$, which should be used to calculate the width of the hadron due to radiating electromagnetically.
%\begin{itemize}
%\item \textbf{Potential models}
%\item \textbf{Heavy quark effective field theory} is used when computing properties of heavy mesons which are qualitatively similiar to the hydrogen atom. A perturbative expansion is used in powers of $\frac{\Lambda_{QCD}}{m_b}$ or $\frac{\Lambda_{QCD}}{m_c}$, exploiting various symmetries. The mass differences of mesons of different spin states such as $B(S=0)$ and $B^*(S=0)$ are due to magnetic moment interactions analogous to the hydrogen atom. If the $b$ quark is at rest it only produces an electric field. Thus the splitting must be suppressed by a factor of $\frac{\Lambda_{QCD}}{m_b}$. Thus $B$ and $B^*$ are degenerate to leading order. This is called \textbf{heavy quark spin symmetry}. In the limit of infinite heavy quark mass, the heavy quark is immobile and acts just as a source of gluons. Thus the dynamics are independent of flavor (switching $m_b\leftrightarrow m_c$) which is called \textbf{heavy quark flavor symmetry}. For a detailed introduction see \cite{}.
%\end{itemize}
\FloatBarrier
\section{Charged Holographic Strings}
The strings in our model attach to stacks of $N_f$ flavour branes. As such they are charged under the gauge group $SU(N_f)$. If the flavour branes are separated this gauge group gets broken spontaneously down to a number of $U(1)$ gauge groups, which is just the electromagnetic interaction. In our model we take account of the electromagnetic interaction by associating electric charge with the string endpoints. We now present the formulation and analyse the model.
\FloatBarrier
\subsection{The Action}
We add charges to the end points by considering the action from the previous section and adding two electromagnetic interaction lagrangians at the endpoints. Note that instead of using the Namboo-Goto action for the string one can use the polyakov action, and similarly the point particles can be described by the alternative action quadratic in the coordinates. We use here the choice of a Namboo Goto action for the string and a "proper interval" action for the point masses:
\begin{equation}
S=-T\iint\limits_{(0,-l_{2})}^{(T,l_{1})}\mathrm{d}^{2}\sigma\sqrt{-\det h}-m\int\limits_{0}^{T}\mathrm{d}\tau\sqrt{u^{\mu}u_{\mu}}|_{\sigma=-l_{2}}^{\sigma=l_{1}}-q\int\limits_{0}^{T}u^{\mu}A_{\mu}\mathrm{d}\tau|_{\sigma=-l_{2}}^{\sigma=l_{1}}
\end{equation}
The field lagrangian density for the electromagnetic fields is not included to avoid divergent self energy terms .Instead, the electromagnetic potentials and fields are determined directly by the Lienard-Wichert formulas. The worldsheet metric is as usual:
\begin{equation*}
h=
\begin{pmatrix}
\frac{dx^{\mu}}{d\tau}\frac{dx_{\mu}}{d\tau} & \frac{dx^{\mu}}{d\tau}\frac{dx_{\mu}}{d\sigma}\\
\frac{dx^{\mu}}{d\tau}\frac{dx_{\mu}}{d\sigma} & \frac{dx^{\mu}}{d\sigma}\frac{dx_{\mu}}{d\sigma}\end{pmatrix}
\end{equation*}
We can write for short \begin{align*}
&V^{\mu}=\cfrac{dx^{\mu}}{d\sigma} & u^{\mu}=\cfrac{dx^{\mu}}{d\tau} \\
&h=\left(\begin{array}{cc} u^{2} & u\cdot V\\ u\cdot V & V^{2} \end{array}\right)
\end{align*}
The action can be written then as:
\begin{equation}
S=-T\iint\limits_{(0,-l_{2})}^{(T,l_{1})}\mathrm{d}^{2}\sigma\sqrt{\left(u\cdot V\right)^{2}-u^{2}V^{2}}-m\int\limits_{0}^{T}\mathrm{d}\tau\sqrt{u^{\mu}u_{\mu}}|_{\sigma=-l_{2}}^{\sigma=l_{1}}-q\int\limits_{0}^{T}u^{\mu}A_{\mu}\mathrm{d}\tau|_{\sigma=-l_{2}}^{\sigma=l_{1}}
\end{equation}
We use the static gauge where:
\begin{equation}
\label{eq:staticqauge}
t=\tau \qquad r=\sigma
\end{equation}
The 4 velocity in this gauge is
\begin{align*}
u^{\mu}&=\left(\frac{dt}{d\tau},\frac{dx}{d\tau},\frac{dy}{d\tau},\frac{dz}{d\tau}\right)
=\left(1,\sigma\frac{d\cos\left(\theta\right)}{d\tau},\sigma\frac{d\sin\left(\theta\right)}{d\tau},0\right)=\\
&=\left(1,-\sigma\dot{\theta}\sin\left(\theta\right),\sigma\dot{\theta}\cos\left(\theta\right),0\right)
\end{align*}
The basis vectors for polar coordinates are
\begin{align*}
&\hat{r}=\cfrac{1}{r}\left(x\hat{x}+y\hat{y}\right) & \hat{\theta}=\cfrac{1}{r}\left(x\hat{y}-y\hat{x}\right)
\end{align*}
The components for $ A^{\mu} $ in polar coordinates are thus:
%\begin{equation*}
%u^{0}=1
%\end{equation*}
%\begin{equation*}
%u^{r}=\vec{u}\cdot\hat{r}=\cfrac{1}%{\sigma}\left(-\sigma^{2}\dot{\theta}sin\left(\theta\right)cos\left(\theta\right)
%+\sigma^{2}\dot{\theta}sin\left((\theta\right)cos\left(\theta\right)\right)=0
%\end{equation*}
%\begin{align*}
%u^{\theta}&=
%\vec{u}\cdot\hat{\theta}=
%\left(
%\hat{t}
%-\sigma\dot{\theta}\sin\left(\theta\right)\hat{x}
%+\sigma\dot{\theta}\cos\left(\theta\right)\hat{y}\right)\cdot\cfrac{1}{r}\left(x\hat{y}
%-y\hat{x}
%\right)= \\
%&=\sigma\dot{\theta}\left(y\sin\left(\theta\right)+x\cos\left(\theta\right)\right)\cdot\cfrac{1}{\sigma}=\sigma\dot{\theta}\cfrac{1}{\sigma}\left(\sigma sin^{2}\left(\theta\right)+\sigma cos^{2}\left(\theta\right)\right)=\\
%&=\dot{\theta}\sigma
%\end{align*}
\begin{align*}
&A^{r}=\vec{A}\cdot\hat{r}=\cfrac{xA^{x}+yA^{y}}{\sigma}=cos\left(\theta\right)A^{x}+sin\left(\theta\right)A^{y}\\
&A^{\theta}=\vec{A}\cdot\hat{\theta}=\cfrac{-yA^{x}+xA^{y}}{\sigma}=-sin\left(\theta\right)A^{x}+cos\left(\theta\right)A^{y}
\end{align*}
Which can be recognized as a rotation by angle $\theta$. The inverse transformation is then:
\begin{align*}
&A^{x}=cos\left(\theta\right)A^{r}-sin\left(\theta\right)A^{\theta}\\
&A^{y}=sin\left(\theta\right)A^{r}+cos\left(\theta\right)A^{\theta}
\end{align*}
The product-sum $ u^{\mu}A_{\mu} $ in our gauge is then:
\begin{align*}
u^{\mu}A_{\mu}&=u^{t}A^{t}-u^{x}A^{x}-u^{y}A^{y}-u^{z}A^{z}=\\
&=A^{t}+\sigma\dot{\theta}sin\left(\theta\right)\left(cos\left(\theta\right)A^{r}-sin\left(\theta\right)A^{\theta}\right)
-\sigma\dot{\theta}cos\left(\theta\right)\left(sin\left(\theta\right)A^{r}
+cos\left(\theta\right)A^{\theta}\right)=\\
&=A^{t}-\sigma\dot{\theta}A^{\theta}
\end{align*}
Putting everything into the action, it becomes:
\begin{equation}
\label{eq:actiongauged}
S=-T\iint\limits_{(0,-l_{2})}^{(T,l_{1})} \mathrm{d}\sigma \mathrm{d}t\sqrt{1+\sigma^{2}\left(\theta'^{2}-\dot{\theta}^{2}\right)}-m\int\limits_0^T \mathrm{d}t\sqrt{1-\sigma^{2}\dot{\theta}^{2}}|_{\sigma=-l_{2}}^{\sigma=l_{1}}-q\int\limits_{0}^{T}\left(A^{t}-\sigma\dot{\theta}A^{\theta}\right) \mathrm{d} t|_{\sigma=-l_{2}}^{\sigma=l_{1}}
\end{equation}
\FloatBarrier
\subsection{The Spinning String Ansatz}
Throughout our analysis we will assume the string to be rotating with a constant angular velocity. In the static gauge \ref{eq:staticqauge} this amounts to setting $\dot{\theta}=\omega$. More explicitly we have
\begin{subequations}
\label{eq:SpinningStringAnsatz}
\begin{align}
&x=\left(\tau,\sigma\cos\left(\omega\tau\right),\sigma\sin\left(\omega\tau\right)\right) \\
&\text{And for the second end point}\notag\\
&x_{opposite}=\left(\tau,\sigma\cos\left(\omega\tau+\pi\right),\sigma\sin\left(\omega\tau+\pi\right)\right)
\end{align}
\end{subequations}
\FloatBarrier
\subsection{The Electromagnetic Fields}
The Lienard-Wichert formulas for the fields of a point charge are \cite{Jackson}:
\begin{subequations}
\begin{align}
&\theta\left(\vec{x},t\right)=\left[\cfrac{e}{\left(1-\vec{\beta}\cdot\vec{n}\right)R}\right]_{ret}\\
&\vec{A}\left(\vec{x},t\right)=\left[\cfrac{e\vec{\beta}}{\left(1-\vec{\beta}\cdot\vec{n}\right)R}\right]_{ret}\\
&\vec{E}\left(\vec{x},t\right)=\left[e\cfrac{\vec{n}-\vec{\beta}}{\gamma^{2}\left(1-\vec{\beta}\cdot\vec{n}\right)^{3}R^{2}}+\cfrac{e}{c}\cfrac{\vec{n}\times\left\{ \left(\vec{n}-\vec{\beta}\right)\times\dot{\vec{\beta}}\right\} }{\left(1-\vec{\beta}\cdot\vec{n}\right)^{3}R}\right]_{ret}\\
&\vec{B}\left(\vec{x},t\right)=\left[\vec{n}\times\vec{E}\right]_{ret}
\end{align}
\end{subequations}
Where
\begin{itemize}
\item $\vec{\beta} $ is the velocity of the point charge source, divided by c.
\item $\gamma=\left(1-\beta^{2}\right)^{-1/2}$
\item $\vec{n}$ is the unit vector from the source to the point where we evaluate the fields.
\item $R$ is the distance from the source to the point where we evaluate the fields.
\item $e$ is the charge of the source.
\item $R_{ret}$ denotes the distance from the source at retarded time to the point where we evaluate the fields.
\item The formulas are evaluated with the retardation condition (also called the light cone condition) $t-t_{ret}=R_{ret}$
\end{itemize}
\begin{figure}[h]
\centering
\begin{tikzpicture}[scale=0.75]
\coordinate (PP) at (50:4);
\coordinate (P) at (10:4);
\coordinate (O) at (0,0);
\coordinate (Q) at (190:4);
\draw (P) node[anchor=west] {P};
\draw (PP) node[anchor=south] {$P_{ret}$};
\draw (Q) node[anchor=north] {Q};
\draw (O) node[anchor=north] {O};
\draw[thick,blue] (O) circle [radius=4];
\draw[dashed,thick,blue] (O) --node[sloped,above]{$l_1$}(Q);
\draw[dashed,thick,blue] (PP) --node[sloped,above]{$R_{ret}$}(Q);
\draw[dashed,thick,blue] (P)--(O)--node[sloped,above]{$l_2$}(PP) pic[draw=green,fill=green,<->,angle radius=1.5cm,"$ \Delta\theta $"] {angle= P--O--PP};
\end{tikzpicture}
\caption{The geometry of the system. The points $Q$,$P$ and $P_{ret}$ are the "receiving" particle, the emitting particle and the position of the emitting particle at retarded time, respectively. $\Delta\theta$ is the so called retardation angle. $l_1$ and $l_2$ are the respective radii of rotation and $R_{ret}$ is the retarded distance.}
\label{fig:geometry}
\end{figure}
We will see shortly that the key quantities will be the velocities of the quarks $\beta_1$ ,$\beta_2$ and the retardation angle $\Delta\theta$ defined in figure \ref{fig:geometry}. Looking at figure \ref{fig:geometry} we can use the cosine law to relate the retardation angle with the retarded distance $R_{ret}$:
\begin{equation*}
R_{ret}^2=l_1^2+l_2^2-2l_1l_2\cos\left(\pi-\Delta\theta\right)
\end{equation*}
By the definition of the retarded time, it is both ($c=1$):
\begin{itemize}
\item The time it takes the light signal to get from $P_{ret}$ to $Q$. $t-t_{ret}=R_{ret}$
\item The time it takes the emitting particle to get from $P_{ret}$ to $P$. $\omega l_2 \left(t-t_{ret}\right)=l_2\Delta\theta$
\end{itemize}
Where $\omega$ is the rate of rotation of both particles. The conclusion being that $\frac{\Delta\theta}{\omega}=R_{ret}$. Combining this with the cosine law result gives:
\begin{equation}
\label{eq:retardation}
\Delta\theta^{2}=\beta_{1}^{2}+\beta_{2}^{2}+2\beta_{1}\beta_{2}cos\left(\Delta\theta\right)
\end{equation}
Here $\beta_i=\omega l_i$.This condition relates the “retardation angle” $\Delta\theta$ and the velocities of the string end points. This equation is solved numerically, giving implicitly the function $\Delta\theta=f\left(\beta_{1}\right)$.
It can also be solved approximately by guessing a power series solution (in powers of $\beta $ or $1-\beta $) and solving for the coefficients iteratively.
The calculation of the various fields is then reduced to a geometric calculation where everything will depend on the length of the string and the rate of rotation.
\begin{subequations}
The result for the electromagnetic fields and potentials:
\label{eq:fields}
\begin{align}
&A^{0}\left(l_{1}\right)=\frac{q_2\omega}{\beta_{1}\beta_{2}\sin(\Delta \theta)+\Delta\theta}\\
&A^{\theta}\left(l_{1}\right)=-\frac{\beta_{2}q_2\omega\cos(\Delta\theta)}{\beta_{1}\beta_{2}\sin(\Delta\theta)+\Delta\theta}\\
&\vec{E}=\left\{ \begin{array}{c}
\frac{q_2 \omega ^2 \left(2 \beta_2 \left(\beta_1^2-\Delta \theta ^2+1\right) \cos (\Delta \theta )+\beta_1 \beta_2^2 \cos (2 \Delta \theta )+\beta_1 \beta_2^2+2 \beta_1+2 \beta_2 \Delta \theta \sin (\Delta \theta )\right)}{2 (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}\\
-\frac{\beta_2 q_2 \omega ^2 \left(\beta_1 \beta_2 (\sin (2 \Delta \theta )-2 \Delta \theta )-2 \left(\Delta \theta ^2-1\right) \sin (\Delta \theta )-2 \Delta \theta \cos (\Delta \theta )\right)}{2 (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}\\
0\end{array}\right\}\\
&\vec{B}=\left\{ \begin{array}{c}
0\\
0\\
\frac{\beta_2 q_2 \omega ^2 \left(\beta_1^2 \beta_2+\beta_1 \left(\beta_2^2+1\right) \cos (\Delta \theta )+\beta_1 \Delta \theta \sin (\Delta \theta )+\beta_2\right)}{(\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}
\end{array}\right\}
\end{align}
\end{subequations}
Which was obtained using Mathematica. To see that this complicated expression makes physical sense we calculate it in the non-relativistic limit. In this limit we have
\begin{subequations}
\begin{align}
&\beta\rightarrow 0 \\
&\beta_1\rightarrow\beta &\beta_2\rightarrow\beta \\
&\Delta\theta \rightarrow 2\beta & \omega\rightarrow \frac{2\beta}{L}\\
\end{align}
\end{subequations}
Using these we calculate the limits for the fields and potentials and get:
\begin{subequations}
\label{eq:fieldsNonrelativistic}
\begin{align}
&A^{0}\left(l_{1}\right)=\frac{q_2}{L}\\
&A^{\theta}\left(l_{1}\right)=-\frac{\beta q_2}{L}\\
&\vec{E}=\left\{ \begin{array}{c}
\frac{q_2}{L^2}\\
0\\
0
\end{array}\right\}
&\vec{B}=\left\{ \begin{array}{c}
0\\
0\\
\frac{\beta q_2}{L^2}
\end{array}\right\}
\end{align}
\end{subequations}
This shows that when $\beta=0$ we have no magnetic field and only an electrostatic field.
The fields when the velocities (and masses) are identical are:
\begin{subequations}
\begin{align}
&\vec{E}=\left\{ \begin{array}{c}
\frac{\beta q_2 \omega ^2 \left(2 \left(\beta ^2-\Delta \theta ^2+1\right) \cos (\Delta \theta )+\beta ^2 \cos (2 \Delta \theta )+\beta ^2+2 \Delta \theta \sin (\Delta \theta )+2\right)}{2 \left(\beta ^2 \sin (\Delta \theta )+\Delta \theta \right)^3}\\
\frac{\beta q_2 \omega ^2 \left(\sin (\Delta \theta ) \left(\beta ^2 (-\cos (\Delta \theta ))+\Delta \theta ^2-1\right)+\beta ^2 \Delta \theta +\Delta \theta \cos (\Delta \theta )\right)}{\left(\beta ^2 \sin (\Delta \theta )+\Delta \theta \right)^3}\\
0
\end{array}\right\}\\
&\vec{B}=\left\{ \begin{array}{c}
0\\
0\\
\frac{\beta ^2 q_2 \omega ^2 \left(\left(\beta ^2+1\right) \cos (\Delta \theta )+\beta ^2+\Delta \theta \sin (\Delta \theta )+1\right)}{\left(\beta ^2 \sin (\Delta \theta )+\Delta \theta \right)^3}
\end{array}\right\}
\end{align}
\end{subequations}
We can use this form to take the relativistic limit $\beta=1$.
\begin{subequations}
\begin{align}
&\vec{E}=\left\{ \begin{array}{c}
\frac{q_2 \left(-2 \left(\Delta \theta ^2-2\right) \cos (\Delta \theta )+2 \Delta \theta \sin (\Delta \theta )+\cos (2 \Delta \theta )+3\right)}{2 l^2 (\Delta \theta +\sin (\Delta \theta ))^3} \\
\frac{q_2 \left(\left(\Delta \theta ^2-1\right) \sin (\Delta \theta )+\Delta \theta +(\Delta \theta -\sin (\Delta \theta )) \cos (\Delta \theta )\right)}{l^2 (\Delta \theta +\sin (\Delta \theta ))^3} \\
0
\end{array}\right\}\\
&\vec{B}=\left\{ \begin{array}{c}
0\\
0\\
\frac{q_2 (\Delta \theta \sin (\Delta \theta )+2 \cos (\Delta \theta )+2)}{l^2 (\Delta \theta +\sin (\Delta \theta ))^3}
\end{array}\right\}
\end{align}
\end{subequations}
We can also solve for $\Delta \theta$ in that limit and get $\Delta \theta=1.47817\approx 0.47 \pi$. Setting into the above fields yields:
\begin{subequations}
\begin{align}
&\vec{E}=\left\{ \begin{array}{c}
\frac{0.162696 q_2}{l^2} \\
\frac{0.178509 q_2}{l^2} \\
0
\end{array}\right\}\\
&\vec{B}=\left\{ \begin{array}{c}
0\\
0\\
\frac{0.241527 q_2}{l^2}
\end{array}\right\}
\end{align}
\end{subequations}
Calculating the norm of the electric fields gives $|\vec{E}|=\frac{0.241527 q_2}{l^2}$ which is exactly the norm of the magnetic field (given by it's third component).
We will use equations \ref{eq:fields} in the next sections.
\FloatBarrier
\subsection{The Equations of Motion}
\label{sec:eom}
\FloatBarrier
\subsubsection{Combining Fields and Point Particles}
In combining point particle lagrangians and field lagrangian densities, we obtain slightly non standard Euler Lagrange equations. The action is the sum: $S=\int\mathcal{L}d^{2}\sigma+\int Ld\tau$ where $\mathcal{L}$ is a lagrangian density and $L$ is a lagrangian. We obtain the equations of motion by varying the solution by an infinitesimal function $\delta x^{\mu}(\sigma,\tau)$ such that $\delta x^{\mu}(0)=\delta x^{\mu}(T)=0$
\begin{equation*}
\delta S=\int\left(\frac{\partial\mathcal{L}}{\partial x^{\mu}}\delta x^{\mu}+\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}x^{\mu})}\partial_{\alpha}\delta x^{\mu}\right)d^{2}\sigma+\sum_{\sigma=l_1,-l_2} \int\left(\frac{\partial L}{\partial x^{\mu}}\delta x^{\mu}+\frac{\partial L}{\partial(\partial_{\tau}x^{\mu})}\partial_{\tau}\delta x^{\mu}\right)d\tau
\end{equation*}
Integrating this by parts we get
\begin{align*}
\delta S=&\int\left(\frac{\partial\mathcal{L}}{\partial x^{\mu}}-\partial_{\alpha}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}x^{\mu})}\right)\right)\delta x^{\mu}d^{2}\sigma+
\int\left(\frac{\partial L}{\partial x^{\mu}}-\partial_{\tau}\left(\frac{\partial L}{\partial(\partial_{\tau}x^{\mu})}\right)+\frac{\partial\mathcal{L}}{\partial(\partial_{\sigma}x^{\mu})}\right)|^{\sigma=l_{1}}\delta x^{\mu}d\tau+\\
&\int\left(\frac{\partial L}{\partial x^{\mu}}-\partial_{\tau}\left(\frac{\partial L}{\partial(\partial_{\tau}x^{\mu})}\right)-\frac{\partial\mathcal{L}}{\partial(\partial_{\sigma}x^{\mu})}\right)|^{\sigma=-l_{2}}\delta x^{\mu}d\tau
\end{align*}
So requiring no variation to first order in the action gives us the Euler Lagrange equations of motion for the field:
\begin{equation}
\label{eq:eulerfield}
\frac{\partial\mathcal{L}}{\partial x^{\mu}}-\partial_{\alpha}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}x^{\mu})}\right)=0
\end{equation}
and for the end points:
\begin{subequations}
\label{eq:eulerpoint}
\begin{align}
&\frac{\partial L}{\partial x^{\mu}}_{\sigma=l_{1}}-\partial_{\tau}\left(\frac{\partial L}{\partial(\partial_{\tau}x^{\mu})}\right)_{\sigma=l_{1}}+\frac{\partial\mathcal{L}}{\partial(\partial_{\sigma}x^{\mu})}_{\sigma=l_{1}}=0
\\
&\frac{\partial L}{\partial x^{\mu}}_{\sigma=-l_{2}}-\partial_{\tau}\left(\frac{\partial L}{\partial(\partial_{\tau}x^{\mu})}\right)_{\sigma=-l_{2}}-\frac{\partial\mathcal{L}}{\partial(\partial_{\sigma}x^{\mu})}_{\sigma=-l_{2}}=0
\end{align}
\end{subequations}
For stationary end points we could have taken $\delta x^{\mu}_{\sigma=l_1,-l_2}=0$ for $\mu\neq0$ (Dirichlet boundary conditions). We will use the first boundary condition eq \ref{eq:eulerpoint}, as the string endpoints are free to move.
\FloatBarrier
\subsubsection{The Boundary Equations}
\label{sec:boundaryequations}
We turn to the boundary equations and write it explicitly and get boundary equations for the end points.
We first express the following derivatives:
\begin{align}
&\frac{\partial L}{\partial x^{\mu}}=-q_{1}u^{\nu}\cfrac{\partial A_{\nu}\left(l_{1}\right)}{\partial x^{\mu}}-q_{2}u^{\nu}\cfrac{\partial A_{\nu}\left(l_{2}\right)}{\partial x^{\mu}} \\
&\partial_{\tau}\frac{\partial L}{\partial(\partial_{\tau}x^{\mu})}=-m_{1}\partial_{\tau}\left(\cfrac{u_{\mu}}{\sqrt{u^{\nu}u_{\nu}}}\right)-m_{2}\partial_{\tau}\left(\cfrac{u_{\mu}}{\sqrt{u^{\nu}u_{\nu}}}\right)-q_{1}u^{\nu}\cfrac{\partial A_{\mu}\left(l_{1}\right)}{\partial x^{\nu}}-q_{2}u^{\nu}\cfrac{\partial A_{\mu}\left(l_{2}\right)}{\partial x^{\nu}} \\
&\frac{\partial\mathcal{L}}{\partial(\partial_{\sigma}x^{\mu})}=-T\cfrac{\left(u\cdot V\right)u_{\mu}-u^{2}V_{\mu}}{\sqrt{\left(u\cdot V\right)^{2}-u^{2}V^{2}}}
\end{align}
Equation \ref{eq:eulerpoint} for $ \sigma=l_1 $ is then
\begin{align*}
&m_{1}\partial_{\tau}\left(\cfrac{u_{\mu}}{\sqrt{u^{\nu}u_{\nu}}}\right)
-q_{1}u^{\nu}\cfrac{\partial A_{\nu}\left(l_{1}\right)}{\partial x^{\mu}}
+q_{1}u^{\nu}\cfrac{\partial A_{\mu}\left(l_{1}\right)}{\partial x^{\nu}}-T\cfrac{\left(u\cdot V\right)u_{\mu}-u^{2}V_{\mu}}{\sqrt{\left(u\cdot V\right)^{2}-u^{2}V^{2}}}=0
\end{align*}
Which can be written in terms of the electromagnetic fields as:
\begin{equation*}
m_{1}\partial_{\tau}\left(\cfrac{u_{\mu}}{\sqrt{u^{\nu}u_{\nu}}}\right)+q_{1}u^{\nu}F_{\nu\mu}\left(l_{1}\right)-T\cfrac{\left(u\cdot V\right)u_{\mu}-u^{2}V_{\mu}}{\sqrt{\left(u\cdot V\right)^{2}-u^{2}V^{2}}}|^{\sigma=l_{1}}=0
\end{equation*}
Inserting the spinning string solution \ref{eq:SpinningStringAnsatz}, we specialize to one axis $\mu=1$ and get:
%we use the following relations:
%\begin{align*}
%&x=\left(\tau,\sigma cos\left(\omega\tau\right),\sigma sin\left(\omega\tau\right)\right) & r=\left(\tau,%\sigma cos\left(\omega\tau+\pi\right),\sigma sin\left(\omega\tau+\pi\right)\right) \\ %&u=\left(1,-\omega\sigma sin\left(\omega\tau\right),\omega\sigma cos\left(\omega\tau\right)\right) %&V=\left(0,cos\left(\omega\tau\right),sin\left(\omega\tau\right)\right) \\
%&u_{r}=\left(1,-\omega\sigma sin\left(\omega\tau+\pi\right),\omega\sigma %cos\left(\omega\tau+\pi\right)\right) & %V_{r}=\left(0,cos\left(\omega\tau+\pi\right),sin\left(\omega\tau+\pi\right)\right)
%\end{align*}
%\begin{description}
%\item[r] here as the retarded coordinate of the opposite particle.
%\item[x] is the coordinate of the particle.
%\item[u,V] are their respective derivatives as defined before.
%\end{description}
\begin{equation}
m_{1}\cfrac{\omega^{2}l_{1}cos\left(\omega\tau\right)}{\sqrt{1-\omega^{2}l_{1}^{2}}}+q_{1}\omega l_{1}cos\left(\omega\tau\right)B_{3}\left(l_{1}\right)+q_{1}E_{1}\left(l_{1}\right)-T\sqrt{1-\omega^{2}l_{1}^{2}}cos\left(\omega\tau\right)=0
\end{equation}
We want the equation in the radial direction, so we also specialize to $\tau=0$, and in terms of $\beta_{i}=\omega l_{i}$ and $\gamma_{i}=\left(1-\beta_{i}^{2}\right)^{-1/2}$ this is:
\begin{equation}
m_{1}\cfrac{\omega\beta_{1}}{\sqrt{1-\beta_{1}^{2}}}+q_{1}\beta_{1}B_{3}\left(l_{1}\right)+q_{1}E_{1}\left(l_{1}\right)-T\sqrt{1-\beta_{1}^{2}}=0
\end{equation}
We can see a string tension term, a centrifugal term and an electromagnetic term. This equation constitutes a constraint implicitly giving $\omega=\omega\left(\beta_{1},\beta_{2},m_{1},m_{2},q_{1},q_{2},T\right)$. Using the fact that $T,q_1q_2,\omega$ and $\Delta\theta$ are the same for both end points, the force equations for the two end points also provide a relation between $\left\{ m_{1},m_{2},\beta_{1},\beta_{2}\right\}$. In the case of $q_1q_2=0$ it is just:
\begin{equation}
\label{eq:massrelation}
\gamma_{1}^{2}\beta_{1}m_{1}\omega=T=\gamma_{2}^{2}\beta_{2}m_{2}\omega
\end{equation}
%Since in reality we would take $q^2=\frac{1}{137}$, the Which can be argued to be approximately true (and much simpler) as long as $F_{tension}\approx F_{centrifugal}$. This turns out to be true for hadrons (?) as long as the state has nonzero angular momentum. In the case of zero angular momentum we get the trivial solution $\beta_{1}=\beta_{2}=0$.
In the case of equal end point masses the velocities must be equal. This extends into the case of $q_1q_2\neq0$ where the endpoint velocities must still be equal from symmetry. Plugging in the electromagnetic fields (equation \ref{eq:fields}) into the equation for one of the particles we get:
\begin{align}
\label{eq:endpoint}
&\frac{\pi \omega ^2 (a-S)}{2 (\beta_1+\beta_2)^2}-\frac{\beta_1 m_1 \omega }{\sqrt{1-\beta_1^2}}+T\sqrt{1-\beta_1^2}+\\
&-q_1 q_2 \omega ^2 \frac{\beta_1 \left(2 \beta_1^2 \beta_2^2+2 \beta_1 \left(\beta_2^2+1\right) \beta_2 \cos (\Delta \theta )+2 \beta_1 \beta_2 \Delta \theta \sin (\Delta \theta )+3 \beta_2^2+2\right)}{2 (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}+\notag\\
&-q_1 q_2 \omega ^2\frac{\beta_2 \left(\left(\beta_1^2-2 \Delta \theta ^2+2\right) \cos (\Delta \theta )+\beta_1^2 \cos (\Delta \theta )+\beta_1 \beta_2 \cos (2 \Delta \theta )+2 \Delta \theta \sin (\Delta \theta )\right)}{2 (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}=0\notag
\end{align}
%\begin{equation}
%\label{eq:endpoint}
%\begin{matrix}
%\frac{\beta m_1 \omega }{\sqrt{1-\beta ^2}}-T\sqrt{1-\beta ^2}+\\
%+\frac{q_1q_2 \omega ^2 \left(-\beta ^3\cos ^2(\Delta \theta )+\left(\beta -\beta ^3\right) \cos %(\Delta \theta )+\beta \Delta \theta \sin (\Delta \theta )+\beta \right)}{\left(\beta ^2 \sin (\Delta %\theta )+\Delta \theta \right)^3}\\
%+\frac{q_1q_2 \beta ^2 \omega ^2 \left(2 \beta ^3 \sin (\Delta \theta )+\beta \left(\beta ^2 \Delta %\theta +\beta ^2 \sin (2 \Delta \theta )+\Delta \theta \right)+\left(\beta ^2+1\right) \beta \Delta %\theta \cos (\Delta \theta )\right)}{\Delta \theta \left(\beta ^2 \sin (\Delta \theta )+\Delta \theta %\right)^3}=0
%\end{matrix}
%\end{equation}
A note on this equation is that here we only deal with it's radial component. The reason is that the angular component cannot be satisfied: it only contains electromagnetic contributions which do not cancel. The underlying issue is that we neglect the radiation emitted by the system, which is a good approximation when it would take many times the particles' lifetime to radiate a large proportion of the system's energy. This calculation is carried out in detail in appendix \ref{sec:radiation}.
The next issue is the manner of solving these equations. Trying to solve the equations as they are is a very involved and computationally intensive issue. A first approximation we can make to simplify this issue is to solve for one of the particles and take the velocity relation to be equation \ref{eq:massrelation}. The approximation we are making is assuming the electromagnetic forces are small enough relative to the other forces so that the velocity relation doesn't change. When the velocities are equal the electromagnetic contribution to the velocity relation (\ref{eq:massrelation}) vanishes, so that this approximation is exact when taking the masses equal. This approximation can be checked by solving the equations of motion (within the approximation) and checking the magnitude of the electromagnetic force relative to the others at the solution. This is calculated and presented in figure \ref{fig:EMApproxVerify} .Note that the electromagnetic force is always small relative to at least two forces. In figure \ref{fig:EMApproxVerifyVelocity} the electromagnetic contribution to the velocity relation is calculated (having took \ref{eq:massrelation} as the velocity relation) in units of $m_1\gamma_1^2\beta_1$. The error is dependent both on the velocity and on the mass ratio. This shows that our procedure is not entirely consistent. Nevertheless this does not effect the ability of the model to fit to experimental Regge trajectories. Light flavourless hadrons involve up and down quarks which have essentially the same mass, so these fit well with the approximation. On the other hand we have hadrons involving charm quarks which are very massive, but typically the velocities involved are very large, so again the error is small. There could still be a problem with strange hadrons such as the Kaon. In particular, the fits we calculated were taken to have a mass ratio of identity, where the approximation is exact. We will encounter some difficulties in the mass difference section, and these might be explained as consequences of our approximation and the symmetric assumption. We have attempted to solve the problem numerically with no approximation in the asymmetric case, but with no success so far.
\begin{figure}[h]
\centering
\includegraphics[scale=0.7]{figures/VerifyEMApprox.png}
\caption{Ratios of electromagnetic force to other forces for realistic parameters. Note the casimir force is included, as explained later.}
\label{fig:EMApproxVerify}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[scale=0.7]{figures/VerifyEMApproxVelocity.png}
\caption{The neglected terms in the velocity relation in units of $m_1\gamma_1^2\beta_1$ for varying mass ratios.}
\label{fig:EMApproxVerifyVelocity}
\end{figure}
%For completeness' sake, we quote the full equation for the velocity relation, including the casimir force which will be explained later:
%\begin{align}
%&\frac{\pi \tilde{a} \omega }{\sqrt{1-\beta_1^2} (\beta_1+\beta_2)^2}-\frac{\pi \tilde{a} \omega }{\sqrt{1-\beta_2^2} (\beta_1+\beta_2)^2}+\frac{2 \beta_1 m_1}{\beta_1^2-1}-\frac{2 \beta_2 m_2}{\beta_2^2-1}+ \notag \\
%&+\frac{4 \beta_1^2 \beta_2 q_1 q_2 \omega }{\sqrt{1-\beta_2^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}-\frac{4 \beta_1 \beta_2^2 q_1 q_2 \omega }{\sqrt{1-\beta_1^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}+\notag \\
%&+\frac{2 \Delta \theta q_1 q_2 \omega \left(\beta_1^2 (-\beta_2) \sqrt{1-\beta_2^2}+\sqrt{1-\beta_1^2} \beta_1 \left(\beta_2^2+1\right)-\beta_2 \sqrt{1-\beta_2^2}\right) \sin (\Delta \theta )}{\sqrt{1-\beta_1^2} \sqrt{1-\beta_2^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}+\notag \\
%&+\frac{2 \beta_1^2 \beta_2^3 q_1 q_2 \omega }{\sqrt{1-\beta_2^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}-\frac{2 \beta_1 q_1 q_2 \omega }{\sqrt{1-\beta_1^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}-\frac{2 \beta_1^3 \beta_2^2 q_1 q_2 \omega }{\sqrt{1-\beta_1^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}+\notag \\
%&+\frac{2 q_1 q_2 \omega \left(-\beta_1^2 \beta_2 \sqrt{1-\beta_2^2} \left(\beta_2^2+2\right)+\sqrt{1-\beta_1^2} \beta_1 \left(2 \beta_2^2+1\right)+\sqrt{1-\beta_1^2} \beta_1^3 \beta_2^2-\beta_2 \sqrt{1-\beta_2^2}\right) \cos (\Delta \theta )}{\sqrt{1-\beta_1^2} \sqrt{1-\beta_2^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}+\notag \\
%&+\frac{2 \beta_2 q_1 q_2 \omega }{\sqrt{1-\beta_2^2} (\beta_1 \beta_2 \sin (\Delta \theta )+\Delta \theta )^3}=0