forked from GiuliaCiaramella/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_my_colab.py
356 lines (275 loc) · 14.7 KB
/
detect_my_colab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import matplotlib.pyplot as plt
import yaml
import os
import argparse
import time
from pathlib import Path
import cv2
import torch
import warnings
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, \
xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box_ours
from utils.torch_utils import select_device, load_classifier, time_synchronized
from progress.bar import Bar
from utils_obj.im_sim_v3 import Sim # qui
from utils_obj.im_sim_v3 import rust_classifier
from utils_obj.obj_tracker import Tracker
warnings.filterwarnings(action='ignore')
def detect(save_img=False):
source, start_frame, end_frame, weights, view_img, save_txt, imgsz, yaml_file = opt.source, \
opt.start_frame, \
opt.end_frame, \
opt.weights, opt.view_img, \
opt.save_txt, opt.img_size, \
opt.yaml_file
# initialize Tracker and sim
tracker = Tracker(yaml_file) # yaml file to read classes
sim = Sim(yaml_file=yaml_file) # qui
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
# classify = False
# if classify:
# modelc = load_classifier(name='resnet101', n=2) # initialize
# modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# initialize classifier for feature vector
detect_degradation = False
if detect_degradation:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
save_img = True
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
i = 0
f = 0
with Bar('detection...', max=dataset.nframes) as bar:
for path, img, im0s, vid_cap in dataset:
# pass info to tracker
if i == 0:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
width = vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float `width`
height = vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
duration = vid_cap.get(cv2.CAP_PROP_FRAME_COUNT) / vid_cap.get(cv2.CAP_PROP_FPS)
tracker.info(fps = fps, save_dir = save_dir, video_duration = duration)
sim.info(fps = fps, save_dir = save_dir, width=width, height = height) # qui
i=1
img_for_sim = img.copy()
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
# print(img.shape) # [1,3, W,H]
# t1 = time_synchronized()
if dataset.frame >= start_frame and dataset.frame<end_frame : # first frame is
pred = model(img, augment=opt.augment)[0]# this is a tuple
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply second stage classifier Classifier
if detect_degradation:
pred = apply_classifier(pred, modelc, img, im0s)
# Apply second stage classifier Classifier
# if classify:
# pred = apply_classifier(pred, modelc, img, im0s)
else:
f+=1
pred = [torch.Tensor([])]
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
# txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
clean_im = im0.copy() # decomment
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
l = []
lines = [] # to write results in txt if images are not similar
for *xyxy, conf, cls in reversed(det):
#xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# take proprieties from the detection
nbox = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # xywh in normalized form
cl = int(cls.item())
bbox = torch.tensor(xyxy).view(1, 4)[0].tolist()
# apply classifier
rust = False
if nbox[2]*nbox[3]>=0.2:
rust = rust_classifier(clean_im, nbox)
print(rust)
# pass proprieties to Tracker
id = tracker.update(nbox, bbox, cl, frame) # object put into the tracker
if rust:
id = id+'_rust'
l = [int(cls.item())] + nbox
lines.append(l)
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box_ours(xyxy, im0, objectID = id, label=label, color=colors[int(cls)], line_thickness=3) # label=label
# save detection in case the inspector wants to label the suggested images
# pass image to check similatiry
# can return 'sim' or 'not_sim'. If not_sim, we want to retrieve the detection too
s_ = sim.new_im(clean_im, frame) # decomment
# s_ = sim.new_im(img_for_sim, frame) # qui
if s_ == 'not_sim':
sim.save_detection(lines)
# save video
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
# res = cv2.resize(im0, (416,416))
# cv2.imshow('frame', res)
# cv2.imshow('frame', im0)
# cv2.waitKey(1)
bar.next()
tracker.print_results()
sim.end() # qui
if save_txt or save_img:
print(f"Results saved to {save_dir}")
# print('Mean time to assign id: ', np.mean(id_time))
# print('With variance: ', np.var(id_time))
print(f'Done. ({time.time() - t0:.3f}s)')
print(f)
if __name__ == '__main__':
# from general conf, read which assets already exist and detection can be run
assets = {'storage_tank': r'../../content/drive/MyDrive/storage_tank.yaml'}
yaml_file = assets['storage_tank']
with open(yaml_file) as file:
current_yaml = yaml.full_load(file)
file.close()
# once read the proper yaml path, read weight file path
wp = current_yaml['weight_file_path']
weights = [os.path.join(wp, i) for i in os.listdir(wp) if i.endswith('pt')]
weight = max(weights, key=os.path.getctime) # take the last weight
# read conf lower limit adn img size of inference
conf_th = current_yaml['detection_conf']
size = current_yaml['detection_im_size']
# How does the detector choose? goes on a video and press 'detect' or run detect and select the video?
# source = r'F:\VivaDrive\v3d\fragmented_video_drone\pressure vessel\061_0038.mov'
# source = r'C:\Users\Giulia Ciaramella\Desktop\v3d\cut-videos-ai\01_3internalc_360p.MOV'
i = False
while not i:
source = input("Please select a video to process\n")
if not os.path.exists(source):
print('Sorry but the path does not exist.\n')
else:
i = True
cap = cv2.VideoCapture(source)
tot_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fps = cap.get(cv2.CAP_PROP_FPS)
# size = max(cap.get(cv2.CAP_PROP_FRAME_HEIGHT), cap.get(cv2.CAP_PROP_FRAME_WIDTH))
cap.release()
j = False
while not j:
cut = input(
'Do you want to specify the starting and ending point of the video?\n[This can save time if the recording '
'does not start in the interested environment]\n [y] or [n]?\n')
if cut.lower() not in ['y', 'n']:
print('Not valid input.')
elif cut.lower()=='y':
starting_point = input('Enter starting point as MM:SS (or "begin" to start from 0)\n')
ending_point = input('Enter ending point as MM:SS (or "end" to process till the end)\n')
if starting_point == 'begin':
starting_frame = 1
else:
# transform in frames
sp_m, sp_s = starting_point.split(':')
st_sec = int(sp_m)*60 + int(sp_s)
starting_frame = int(fps*st_sec)+1
if ending_point == 'end':
ending_frame = tot_frames
else:
ep_m, ep_s = ending_point.split(':')
et_sec = int(ep_m) * 60 + int(ep_s)
ending_frame = int(fps * et_sec)
j = True
elif cut.lower()== 'n':
starting_frame = 1
ending_frame = tot_frames
j = True
print(starting_frame, ending_frame)
parser = argparse.ArgumentParser()
parser.add_argument('--yaml-file', nargs='+', type=str, default=yaml_file)
parser.add_argument('--start_frame', nargs='+', type=str, default=starting_frame, help='first frame')
parser.add_argument('--end_frame', nargs='+', type=str, default=ending_frame, help='first frame')
parser.add_argument('--weights', nargs='+', type=str, default=weight, help='model.pt path(s)')
parser.add_argument('--source', type=str, default=source, help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=size, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=conf_th, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
print(opt)
check_requirements()
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
# detect()
import cProfile
import pstats
from pstats import SortKey
import io
import datetime
pr = cProfile.Profile()
pr.enable()
my_res = detect()
pr.disable()
result = io.StringIO()
p = pstats.Stats(pr, stream=result).sort_stats(SortKey.CUMULATIVE)
# p = pstats.Stats(pr, stream=result).sort_stats(SortKey.TIME)
p.print_stats()
name = os.path.basename(Path(source)).split('.')[0]
with open(name+'_'+datetime.datetime.utcnow().strftime("%Y-%m-%d-%Hh-%Mm-%Ss")+'.txt', 'w+') as f:
f.write(result.getvalue())
f.close()
# !python detect_original.py --weights weights/storage_tank_416img.pt --img 416 --conf 0.5 --source output-storage_tank_resized.mp4