forked from aws/amazon-documentdb-jdbc-driver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
createLargeCollection.js
285 lines (259 loc) · 8.79 KB
/
createLargeCollection.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
* Requires SSH tunnel to DocumentDB to be set on the PORT constant, as well as DOC_DB_USER/PASS_PERF
* environment variables to be set appropriately for DATABASE constant.
* Args: --collection --numDocs --type --shouldClear
* collection: The name of the collection to insert documents to.
* numDocs: The number of documents that should be added.
* type: The type of document to insert, must be one of main, fields, array, random, demo.
* shouldClear: Optional, if true will clear given collection before inserting documents.
*/
const USER = process.env.DOC_DB_USER_NAME;
const PASSWORD = process.env.DOC_DB_PASSWORD;
const PORT = process.env.DOC_DB_LOCAL_PORT;
const DATABASE = "performance";
const MAIN = "main";
const FIELDS = "fields";
const ARRAY = "array";
const RANDOM = "random";
const DEMO = "demo";
const LOT_SIZE = 100000;
const MongoClient = require('mongodb').MongoClient,
f = require('util').format,
fs = require('fs');
const argv = require('yargs').argv;
const faker = require('faker');
const url = `mongodb://${USER}:${PASSWORD}@localhost:${PORT}/${DATABASE}?tls=true&tlsCAFile=rds-combined-ca-bundle.pem&tlsAllowInvalidHostNames=true`;
const COLLECTION = argv.collection;
const NUM_DOCS = parseInt(argv.numDocs);
const TYPE = argv.type;
const SHOULD_CLEAR = argv.shouldClear === "true";
if (argv.h) {
console.log("Parameters: \n" +
"--collection=[name of collection]\n" +
"--numDocs=[number of documents to add]\n" +
"--type=[type of document, one of main, fields, array, random, or demo]\n" +
"--shouldClear=[If true, will delete existing collection before replacing]");
process.exit();
}
if (typeof COLLECTION === "undefined") {
throw Error("Must provide collection name in paramenters (--collection).");
}
if (typeof NUM_DOCS === "undefined" || isNaN(NUM_DOCS)) {
throw Error("Must provide number of documents in paramenters (--numDocs).");
}
if (typeof TYPE === "undefined") {
throw Error("Must provide type of document in paramenters (--type).");
}
console.log(`Begin creation of performance collections ${new Date().toJSON()}`);
MongoClient.connect( // docs.aws.amazon.com/documentdb/latest/developerguide/connect_programmatically.html
url,
{
useNewUrlParser: true
},
function (err, client) {
if (err) throw err;
var db = client.db(DATABASE);
// Delete existing collection
if (SHOULD_CLEAR) {
dropCollection(db);
}
insertDocuments(db, client);
}
);
async function dropCollection(db, collection) {
var collections = await db.listCollections().toArray();
collections = collections.map(collection => {
return collection.name;
});
if (collections.includes(COLLECTION)) {
// Delete existing collection
await db.collection(COLLECTION).drop()
.then(res => {
console.log("Successfully removed collection.");
})
.catch(err => {
console.log("Could not clear collection");
});
} else {
console.log("Collection not found, no removal necessary.")
}
}
/*
* Adds documents to the database. Uses smaller lots of 100000 to prevent out of memory errors.
*/
async function insertDocuments(db, client) {
var lots = Math.floor(NUM_DOCS / LOT_SIZE);
for (var i = 0; i < lots; i++) {
await db.collection(COLLECTION).insertMany(createDocuments(LOT_SIZE))
.catch(err => {
console.log("Failed to add documents to collection.");
client.close();
throw (err);
});
}
var remainingDocNum = NUM_DOCS - (LOT_SIZE * lots);
if (remainingDocNum > 0) {
await db.collection(COLLECTION).insertMany(createDocuments(remainingDocNum))
.catch(err => {
console.log("Failed to add documents to collection.");
client.close();
throw (err);
});
}
client.close();
console.log(`Added ${NUM_DOCS} documents to ${COLLECTION} at ${new Date().toJSON()}`);
}
function createDocuments(n) {
switch (TYPE) {
case MAIN:
return createPerformanceTestMain(n);
case FIELDS:
return createPerformanceTestFields(n);
case ARRAY:
return createPerformanceTestArray(n);
case RANDOM:
return createPerformanceTestRandom(n);
case DEMO:
return createPerformanceTestDemo(n);
default:
throw Error("Invalid document type, must be one of main, fields, array, random, or demo.");
}
}
function createPerformanceTestMain(n) {
var documents = [];
for (var i = 0; i < n; i++) {
var document = {
field: "string",
count: i,
timestamp: new Date(Date.now()).toISOString(),
subdocument: {
field: "ABC",
field2: [
"A", "B", "C"
]
},
twoLevelArray: [[1, 2], [3, 4], [5, 6]],
nestedArray: createNestedArray(3)
};
var nestedSubdocument = { field: 15 };
// Creates deeply nested subdocument (with 15 levels)
for (var j = 14; j >= 0; j--) {
var newDocument = {
field: j
};
newDocument["subdoc" + j] = nestedSubdocument;
nestedSubdocument = newDocument;
}
document.nestedSubdocument = nestedSubdocument;
documents.push(document);
}
return documents;
}
function createNestedArray(n) {
var array = [];
for (var i = 0; i < n; i++) {
array.push({
document: i,
innerArray: [1, 2, 3]
});
}
return array;
}
function createPerformanceTestFields(n) {
var documents = [];
for (var i = 0; i < n; i++) {
var document = {};
for (var j = 0; j < 1000; j++) {
document["field" + j] = j;
}
documents.push(document);
}
return documents;
}
function createPerformanceTestArray(n) {
var documents = [];
for (var i = 0; i < n; i++) {
var innerArray = [];
for (var j = 0; j < 1000; j++) {
innerArray.push(j);
}
documents.push({ array: innerArray });
}
return documents;
}
function createPerformanceTestRandom(n) {
var documents = [];
for (var i = 0; i < n; i++) {
var doc = {};
for (var j = 0; j < 6; j++) {
var random = Math.floor(Math.random() * (9));
switch (random) {
case 0:
doc["field" + j] = 3;
break;
case 1:
doc["field" + j] = 3.2;
break;
case 2:
doc["field" + j] = 5000000000;
break;
case 3:
doc["field" + j] = false;
break;
case 4:
doc["field" + j] = "abc";
break;
case 5:
doc["field" + j] = null;
break;
case 6:
doc["field" + j] = { field: "abc" };
break;
case 7:
doc["field" + j] = [1, 2, 3];
break;
case 8:
doc["field" + j] = new Date(Date.now()).toISOString();
break;
default:
throw Error("Error when randomly generated column, random variable out of bounds.");
}
}
documents.push(doc);
}
return documents;
}
/*
* Creates somewhat realistic data for demo purposes, using Faker to create a person with a list of purchases
*/
function createPerformanceTestDemo(n) {
var documents = [];
for (var i = 0; i < n; i++) {
// Creates random salary between 10000 and 80000, with two decimal places.
var salary = Math.floor(Math.random() * (7000000) + 1000000) / 100;
// Creates list of product purchases with fake data.
var purchases = [];
var purchasesSize = faker.datatype.number({ min: 0, max: 8 });
for (var j = 0; j < purchasesSize; j++) {
purchases.push({
product: faker.commerce.productName(),
country: faker.address.country(),
price: faker.commerce.price(),
company: faker.company.companyName()
});
}
documents.push(
{
name: faker.name.findName(),
address: {
street: faker.address.streetAddress(),
postal: faker.address.zipCode(),
state: faker.address.state()
},
salary: salary,
purchases: purchases
}
);
}
return documents;
}