-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsctransform_low_variance_genes.R
56 lines (43 loc) · 1.51 KB
/
sctransform_low_variance_genes.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#load datasets
library(SeuratData)
library(ifnb.SeuratData)
library(cbmc.SeuratData)
library(panc8.SeuratData)
hbrain <- readRDS("/home/butlera/Projects/ZooBrain/processed_data/human.rds")
bm <- readRDS('/home/butlera/Projects/muir/seurat_objects/citeseq.rds')
objects <- list(ifnb,cbmc,ipanc,hbrain,bm)
means <- list()
vars <- list()
#run SCTransform
for(i in 1:length(objects)) {
objects[[i]] <- SCTransform(objects[[i]],ncells = 3000)
print(i)
}
#find genes that appear in all datasets
allgenes=rownames(objects[[1]])
for(i in 2:5) {
allgenes=intersect(allgenes, rownames(objects[[i]]))
}
#calculate means and residual variances in each dataset
#for variance, the ranking is relative based on other genes in the dataset
rmeans=list()
rvars=list()
for(i in 1:5) {
tmean <- objects[[i]][["SCT"]]@meta.features$sct.gmean
names(tmean) <- rownames(objects[[i]][["SCT"]])
tmean <- tmean[allgenes]
tvar <- objects[[i]][["SCT"]]@meta.features$sct.residual_variance
names(tvar) <- rownames(objects[[i]][["SCT"]])
tvar <- tvar[allgenes]
rmeans[[i]] <- tmean
rvars[[i]] <- rank(tvar)/length(tvar)
}
mean_matrix <- matrix(unlist(rmeans),nrow = length(rmeans[[1]]))
var_matrix <- matrix(unlist(rvars),nrow = length(rvars[[1]]))
rownames(mean_matrix) <- rownames(var_matrix) <- allgenes
#lvg = low-variance-genes, based on the mean level of dispersion across all datasets
vmin <- apply(var_matrix,1,mean)
mmin <- apply(mean_matrix,1,mean)
df <- data.frame(vmin,mmin)
df <- df[order(df$vmin),]
lvg <- rownames(df)[1:1000]