-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathdata_loader.py
262 lines (209 loc) · 9.12 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
#import collections
from six.moves import cPickle
import numpy as np
from word2vec_helper import Word2Vec
import math
class DataLoader():
def __init__(self, data_dir, batch_size,seq_max_length,w2v,data_type):
self.data_dir = data_dir
self.batch_size = batch_size
self.seq_max_length = seq_max_length
self.w2v = w2v
self.trainingSamples = []
self.validationSamples = []
self.testingSamples = []
self.train_frac = 0.85
self.valid_frac = 0.05
self.load_corpus(self.data_dir)
if data_type == 'train':
self.create_batches(self.trainingSamples)
elif data_type == 'test':
self.create_batches(self.testingSamples)
elif data_type == 'valid':
self.create_batches(self.validationSamples)
self.reset_batch_pointer()
def _print_stats(self):
print('Loaded {}: training samples:{} ,validationSamples:{},testingSamples:{}'.format(
self.data_dir, len(self.trainingSamples),len(self.validationSamples),len(self.testingSamples)))
def load_corpus(self,base_path):
"""读/创建 对话数据:
在训练文件创建的过程中,由两个文件
1. self.fullSamplePath
2. self.filteredSamplesPath
"""
tensor_file = os.path.join(base_path,'poem_ids.txt')
print('tensor_file:%s' % tensor_file)
datasetExist = os.path.isfile(tensor_file)
# 如果处理过的对话数据文件不存在,创建数据文件
if not datasetExist:
print('训练样本不存在。从原始样本数据集创建训练样本...')
fullSamplesPath = os.path.join(self.data_dir,'poems_edge_split.txt')
# 创建/读取原始对话样本数据集: self.trainingSamples
print('fullSamplesPath:%s' % fullSamplesPath)
self.load_from_text_file(fullSamplesPath)
else:
self.load_dataset(tensor_file)
self.padToken = self.w2v.ix('<pad>')
self.goToken = self.w2v.ix('[')
self.eosToken = self.w2v.ix(']')
self.unknownToken = self.w2v.ix('<unknown>')
self._print_stats()
# assert self.padToken == 0
def load_from_text_file(self,in_file):
# base_path = 'F:\BaiduYunDownload\chatbot_lecture\lecture2\data\ice_and_fire_zh'
# in_file = os.path.join(base_path,'poems_edge.txt')
fr = open(in_file, "r",encoding='utf-8')
poems = fr.readlines()
fr.close()
print("唐诗总数: %d"%len(poems))
# self.seq_max_length = max([len(poem) for poem in poems])
# print("seq_max_length: %d"% (self.seq_max_length))
poem_ids = DataLoader.get_text_idx(poems,self.w2v.vocab_hash,self.seq_max_length)
# # 后续处理
# # 1. 单词过滤,去掉不常见(<=filterVocab)的单词,保留最常见的vocabSize个单词
# print('Filtering words (vocabSize = {} and wordCount > {})...'.format(
# self.args.vocabularySize,
# self.args.filterVocab
# ))
# self.filterFromFull()
# 2. 分割数据
print('分割数据为 train, valid, test 数据集...')
n_samples = len(poem_ids)
train_size = int(self.train_frac * n_samples)
valid_size = int(self.valid_frac * n_samples)
test_size = n_samples - train_size - valid_size
print('n_samples=%d, train-size=%d, valid_size=%d, test_size=%d' % (
n_samples, train_size, valid_size, test_size))
self.testingSamples = poem_ids[-test_size:]
self.validationSamples = poem_ids[-valid_size-test_size : -test_size]
self.trainingSamples = poem_ids[:train_size]
# 保存处理过的训练数据集
print('Saving dataset...')
poem_ids_file = os.path.join(self.data_dir,'poem_ids.txt')
self.save_dataset(poem_ids_file)
# 2. utility 函数,使用pickle写文件
def save_dataset(self, filename):
"""使用pickle保存数据文件。
数据文件包含词典和对话样本。
Args:
filename (str): pickle 文件名
"""
with open(filename, 'wb') as handle:
data = {
'trainingSamples': self.trainingSamples
}
if len(self.validationSamples)>0:
data['validationSamples'] = self.validationSamples
data['testingSamples'] = self.testingSamples
data['maxSeqLen'] = self.seq_max_length
cPickle.dump(data, handle, -1) # Using the highest protocol available
# 3. utility 函数,使用pickle读文件
def load_dataset(self, filename):
"""使用pickle读入数据文件
Args:
filename (str): pickle filename
"""
print('Loading dataset from {}'.format(filename))
with open(filename, 'rb') as handle:
data = cPickle.load(handle)
self.trainingSamples = data['trainingSamples']
if 'validationSamples' in data:
self.validationSamples = data['validationSamples']
self.testingSamples = data['testingSamples']
print('file maxSeqLen = {}'.format( data['maxSeqLen']))
@classmethod
def get_text_idx(text,vocab,max_document_length):
text_array = []
for i,x in enumerate(text):
line = []
for j, w in enumerate(x):
if (w not in vocab):
w = '<unknown>'
line.append(vocab[w])
text_array.append(line)
# else :
# print w,'not exist'
return text_array
def create_batches(self,samples):
sample_size = len(samples)
self.num_batches = math.ceil(sample_size /self.batch_size)
new_sample_size = self.num_batches * self.batch_size
# Create the batch tensor
# x_lengths = [len(sample) for sample in samples]
x_lengths = []
x_seqs = np.ndarray((new_sample_size,self.seq_max_length),dtype=np.int32)
y_seqs = np.ndarray((new_sample_size,self.seq_max_length),dtype=np.int32)
self.x_lengths = []
for i,sample in enumerate(samples):
# fill with padding to align batchSize samples into one 2D list
x_lengths.append(len(sample))
x_seqs[i] = sample + [self.padToken] * (self.seq_max_length - len(sample))
for i in range(sample_size,new_sample_size):
copyi = i - sample_size
x_seqs[i] = x_seqs[copyi]
x_lengths.append(x_lengths[copyi])
y_seqs[:,:-1] = x_seqs[:,1:]
y_seqs[:,-1] = x_seqs[:,0]
x_len_array = np.array(x_lengths)
self.x_batches = np.split(x_seqs.reshape(self.batch_size, -1), self.num_batches, 1)
self.x_len_batches = np.split(x_len_array.reshape(self.batch_size, -1), self.num_batches, 1)
self.y_batches = np.split(y_seqs.reshape(self.batch_size, -1), self.num_batches, 1)
def next_batch_dynamic(self):
x,x_len, y = self.x_batches[self.pointer], self.x_len_batches[self.pointer],self.y_batches[self.pointer]
self.pointer += 1
return x,x_len, y
def next_batch(self):
x, y = self.x_batches[self.pointer], self.y_batches[self.pointer]
self.pointer += 1
return x,y
def reset_batch_pointer(self):
self.pointer = 0
@staticmethod
def get_text_idx(text,vocab,max_document_length):
max_document_length_without_end = max_document_length - 1
text_array = []
for i,x in enumerate(text):
line = []
if len(x) > max_document_length:
x_parts = x[:max_document_length_without_end]
idx = x_parts.rfind('。')
if idx > -1 :
x_parts = x_parts[0:idx + 1] + ']'
x = x_parts
for j, w in enumerate(x):
# if j >= max_document_length:
# break
if (w not in vocab):
w = '<unknown>'
line.append(vocab[w])
text_array.append(line)
# else :
# print w,'not exist'
return text_array
if __name__ == '__main__':
base_path = './data/poem'
# poem = '风急云轻鹤背寒,洞天谁道却归难。千山万水瀛洲路,何处烟飞是醮坛。是的'
# idx = poem.rfind('。')
# poem_part = poem[:idx + 1]
w2v_file = os.path.join(base_path, "vectors_poem.bin")
w2v = Word2Vec(w2v_file)
# vect = w2v_model['['][:10]
# print(vect)
#
# vect = w2v_model['春'][:10]
# print(vect)
in_file = os.path.join(base_path,'poems_edge.txt')
# fr = open(in_file, "r",encoding='utf-8')
# poems = fr.readlines()
# fr.close()
#
#
#
# print("唐诗总数: %d"%len(poems))
#
# poem_ids = get_text_idx(poems,w2v.model.vocab_hash,100)
# poem_ids_file = os.path.join(base_path,'poem_ids.txt')
# with open(poem_ids_file, 'wb') as f:
# cPickle.dump(poem_ids, f)
dataloader = DataLoader(base_path,20,w2v.model,'train')